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Preface

This textbook is for introductory philosophy courses on probability
and inductive logic. It is based on a typical such course I teach at the
University of Toronto, where we offer “Probability & Inductive Logic”
in the second year, alongside the usual deductive logic intro.

The book assumes no deductive logic. The early chapters introduce
the little that’s used. In fact almost no formal background is presumed,
only very simple high school algebra.

Several well known predecessors inspired and shaped this book.
Brian Skyrms’ Choice & Chance and Ian Hacking’s An Introduction to
Probability and Inductive Logic were especially influential. Both texts
are widely used with good reason—they are excellent. I’ve taught
both myself many times, with great success. But this book blends my
favourite aspects of each, organizing them in the sequence and style I
prefer.

I hope this book also offers more universal benefits.

1. It is open access, hence free.
2. It’s also open source, so other instructors can modify it to their

liking. If you teach from this book I’d love to
know: email or tweet me.

3. It’s available in both PDF and HTML. So it can be read comfort-
ably on a range of devices, or printed.

4. It emphasizes visual explanations and techniques, to make the
material more approachable.

5. It livens up the text with hyperlinks, images, and margin notes
that highlight points of history and curiosity. I also hope to add
some animations and interactive tools soon.

The book is divided into three main parts. The first explains the ba-
sics of logic and probability, the second covers basic decision theory,
and the last explores the philosophical foundations of probability and
statistics. This last, philosophical part focuses on the Bayesian and
frequentist approaches.

A “cheat sheet” summarizing key definitions and formulas appears
in Appendix A. Further appendices cover the axiomatic construction

https://github.com/jweisber/vip-source
https://twitter.com/jweisber
http://jonathanweisberg.org/vip/_main.pdf
http://jonathanweisberg.org/vip/
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of probability theory, Hume’s problem of induction, and Goodman’s
new ridle of induction.

I usually get a mix of students in my course, with different ideological
inclinations and varying levels of background. For some the technical
material is easy, even review. For others, a healthy skepticism about
scientific methods and discourses comes naturally. My goal is to get
these students all more or less on the same page.

By the end of the course, students with little formal background
have a bevy of tools for thinking about uncertainty. They can under-
stand much more of the statistical and scientific discourse they en-
counter. And hopefully they have a greater appreciation for the value
of formal methods. Students who already have strong formal tools and
skills will, I hope, better understand their limitations. I want them to
understand why these tools leave big questions open—not just philo-
sophically, but also in very pressing, practical ways.

The book was made with the bookdown package created by Yihui Xie.
It’s a wonderful tool, built on a bunch of other technologies I love,
especially the R programming language and the pandoc conversion
tool created by philosopher John MacFarlane. The book’s visual style
emulates the famous designs of Edward Tufte, thanks to more software
created by Yihui Xie, J. J. Allaire, and many others who adapted Tufte’s
designs to HTML and PDF (via LaTeX).

If it weren’t for these tools, I never would have written this book.
It wouldn’t have been possible to create one that does all the things
this book is meant to do. I also owe inspiration to Kieran Healy’s book
Data Visualization: A Practical Introduction, which uses the same suite
of tools. It gave me the idea to use those tools for an updated, open,
and visually enhanced rendition of the classic material from Skyrms
and Hacking.

Finally, I’m indebted to several teaching assistants and students
who helped with earlier drafts. Thanks especially to Liang Zhou Koh
and Meagan Phillips, who contributed several exercises; to Soroush
Marouzi and Daniel Munro, who worked out the kinks during the
first semester the book was piloted; and to the students in that course,
who bore with us, and contributed several corrections of their own.

http://socviz.co/
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1 The Monty Hall Problem

When tackling a math problem,
I encourage students to draw a picture.

—Francis Su

Imagine you’re on a game show. There are three doors, one with a
prize behind it. You’re allowed to pick any door, so you choose the
first one at random, door A.

Monty Hall was creator and host of the
game show Let’s Make a Deal.

Now the rules of the game require the host to open one of the other
doors and let you switch your choice if you want. Because the host
doesn’t want to give away the game, they always open an empty door.

In your case, the host opens door C: no prize, as expected. “Do you
want to switch to door B?” the host asks.

Pause a moment to think about your answer before reading on.

What did you decide? Did you conclude it doesn’t matter whether
you stick with door A or switch to door B?

Marilyn vos Savant made the Monty
Hall problem famous when she solved it
correctly in her magazine column. Read
about it here.

If so, you’re in good company. Most people find this answer sen-
sible, including some professors of statistics and mathematics. They
figure there are only two possibilities remaining, door A and door
B, each with the same one-in-two chance of being the winner. So it
doesn’t matter which one you pick.

But the right answer is you should switch. Door B is now twice as
likely to be the winner as door A. Why?

The reason is subtle. One way to think about it is that the host’s
choice of which door to open is a bit of a tell. Maybe they had to open
door C, because the prize is behind door B and they didn’t want to
give that away. Of course, it could be behind door A instead, so maybe
they just picked door C at random. But there was only a one-in-three
chance the prize would be behind door A. Which means there’s a two-
in-three chance they didn’t really have a choice, they had to open door
C to avoid showing you the prize behind door B.

Figure 1.1: The hundred-door version of
the Monty Hall problem, suggested by
Marilyn vos Savant

Here’s another way to think about it. Imagine the game had a hun-
dred doors instead of just three. And suppose again you start by pick-
ing the first door at random. Then the host opens all the other doors

https://www.nytimes.com/1991/07/21/us/behind-monty-hall-s-doors-puzzle-debate-and-answer.html


12 jonathan weisberg

but one, door 59 let’s say. You have to ask yourself: why did they pick
door 59 to leave closed?? Almost certainly because that’s where the
prize is hidden! Maybe you got really lucky and picked right with the
first door at the beginning. But it’s way more likely you didn’t, and
the host had to keep door 59 closed to avoid giving away the game.

1.1 Diagramming the Solution

Figure 1.2: First stage of a tree diagram
for the Monty Hall problem

Figure 1.3: Second stage

Figure 1.4: Third and final stage

A picture helps clarify things. At first the prize could be behind any
of the three doors, with equal probability each way. So we draw a tree
with three branches, each labeled with a probability of 1/3. Figure 1.2
shows the result.

Now, which door the host opens may depend on where the prize is,
i.e. which branch we’re on. If it’s behind door C, they won’t show you
by opening that door. They would have to open door B in this case.

Likewise, if the prize is behind door B, then opening door C is their
only option.

Only if the prize is behind door A do they have a choice: open either
door B or door C. In that case it’s a tossup which door they’ll open, so
each of those possibilities has a 1/2 chance. Check out Figure 1.3.

Now imagine playing the game over and over. A third of the time
things will follow the top path; a third of the time they’ll follow the
middle one; and the remaining third they’ll follow one of the two
bottom paths.

When things follow the bottom branches, half of those times the
host will open door B, and half the time they’ll open door C. So one in
every six plays will follow the A-and-Open-B path. And one in every
six plays will follow the A-and-Open-C path. See Figure 1.4.

Now we can understand what happens when the host opens door
C. Usually it’s because the prize is behind door B. Sometimes they
open door C because the prize is behind door A instead. But that’s
only a sixth of the time, compared to a third of the time where they
open door C because the prize is behind door B.

So when you see the host open door C, you should think it’s more
likely you’re on the middle branch, with the prize behind door B.
Switch!

1.2 Lessons Learned

Tree diagrams are a handy tool for solving probability problems. They
also illustrate some central concepts of probability.

Probabilities are numbers assigned to possibilities. In the Monty
Hall problem, there are three possibilities for where the prize is: door
A, door B, and door C. Each of these possibilities starts with the same
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probability: 1/3.
Some possibilities are mutually exclusive, meaning only one of them

can obtain. The prize can’t be behind door A and door B, for example.
Here are more examples of mutually exclusive possibilities:

• A coin can land heads or tails, but it can’t do both on the same
toss.

• A card drawn from a standard deck could be either an ace or a
queen, but it can’t be both.

• The temperature at noon tomorrow could be 20 degrees, or it
could be 25 degrees, but it can’t be both.

When possibilities are mutually exclusive, their probabilities add up.
For example, the initial probability the prize will be behind either door
A or door B is 1/3 + 1/3 = 2/3. And the probability a card drawn
from a standard deck will be either an ace or a queen is 4/52+ 4/52 =

8/52 = 2/13.
Another key concept is possibilities that are exhaustive. In the

Monty Hall problem, the prize has to be behind one of the three doors,
so A, B, and C “exhaust” all the possibilities. Here are more examples
of exhaustive possibilities:

• A card drawn from a standard deck must be either red or black.
• The temperature at noon tomorrow must be either above zero,

below zero, or zero.

Figure 1.5: Three partitions for a card
drawn from a standard deck

In our tree diagrams, each branch-point always uses a set of possibil-
ities that is both exclusive and exhaustive. The first split on the three
doors covers all the possibilities for where the prize might be, and only
one of those possibilities can be the actual location of the prize. Like-
wise for the second stage of the diagram. On the bottom branch for
example, the host must open either door B or door C given the rules,
but he will only open one or the other.

When a set of possibilities is both exclusive and exhaustive, it’s
called a partition. A partition “carves up” the space of possibilities
into distinct, non-overlapping units.

There can be more than one way to partition the space of possibil-
ities. For example, a randomly drawn playing card could be black or
red; it could be a face card or not; and it could be any of the four suits
(♥, ♦, ♣, ♠).

When possibilities form a partition, their probabilities must add up
to 1. Initially, the probability the prize will be behind one of the three
doors is 1/3 + 1/3 + 1/3 = 1. And the probability that a card drawn
from a standard deck at random will be either red or black is 1/2 +

1/2 = 1.
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In a way, the fundamental principle of probability is that probabili-
ties over a partition must add up to 1.

Tree diagrams follow a few simple rules based on these concepts. The
parts of a tree are called nodes, branches, and leaves: see Figure 1.6.

C

B

A

Open B         

Open C         

Open B         

Open C         

Nodes

Branches

Leaves

Figure 1.6: The parts of a tree diagram:
nodes, branches, and leaves

The rules for a tree are as follows.

• Rule 1. Each node must branch into a partition. The subpos-
sibilities that emerge from a node must be mutually exclusive,
and they must include every way the possibility from which they
emerge could obtain.

• Rule 2. The probabilities emerging from a node must add to 1.
If we add up the numbers on the branches immediately coming
out of a node, they should add to 1.

• Rule 3. The probability on a branch is conditional on the branches
leading up to it. Consider the bottom path in the Monty Hall
problem. The probability the host will open door C is 1/2 there
because we’re assuming the prize is behind door A.

• Rule 4. The probability of a leaf is calculated by multiplying
across the branches on the path leading to it. This number repre-
sents the probability that all possibilities on that path occur.
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Notice, Rule 4 is how we got the final probabilities we used to solve
the Monty Hall problem (the numbers in bold).

Exercises

1. True or false: in the Monty Hall problem, it’s essential to the
puzzle that the host doesn’t want to expose the prize. If they
didn’t care about giving away the location of the prize, there
would be no reason to switch when they open door C.

2. In the version of the Monty Hall problem with a hundred doors,
after the host opens every door except door 1 (your door) and
door 59, the chance the prize is behind door 59 is:

a. 1/100

b. 1/99

c. 1/2

d. 99/100

3. Imagine three prisoners, A, B, and C, are condemned to die in the
morning. But the king decides to pardon one of them first. He
makes his choice at random and communicates it to the guard,
who is sworn to secrecy. She can only tell the prisoners that one
of them will be released at dawn, she can’t say who.

Prisoner A welcomes the news, as he now has a 1/3 chance of
survival. Hoping to go even further, he says to the guard, “I
know you can’t tell me whether I am condemned or pardoned.
But at least one other prisoner must still be condemned, so can
you just name one who is?”. The guard tells him that B is still
condemned. “Ok,” says A, “then it’s either me or C who was
pardoned. So my chance of survival has gone up to 1/2.”

Is prisoner A’s reasoning correct? Use a probability tree to ex-
plain why/why not.

4. In a probability tree, each branch point should split into possibil-
ities that are:

a. Mutually exclusive.
b. Exhaustive.
c. Both mutually exclusive and exhaustive.
d. None of the above.

5. Suppose you have two urns. The first has two black marbles and
two white marbles. The second has three black marbles and one
white marble. You are going to flip a fair coin to select one of the
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urns at random, and then draw one marble at random. What is
the chance you will select a black marble?

Hint: draw a probability tree and ask yourself, “if I did this ex-
periment over and over again, how often would I draw a black
marble in the long run?”

a. 5/8

b. 3/8

c. 1/2

d. 1/4

6. An ice cream counter sells 4 different flavours of ice cream (choco-
late, vanilla, strawberry, mint). There are 2 toppings (fudge,
caramel), and 3 kinds of sprinkles (chocolate, rainbow, purple).
You order by picking a flavour, a topping, and a kind of sprinkles.

a. How many possible orders are there?
b. If you make your three choices randomly, what is the probabil-

ity your order will have strawberry ice cream but not rainbow
sprinkles?



2 Logic

I can win an argument on any topic, against any
opponent. People know this, and steer clear of me
at parties. Often, as a sign of their great respect,

they don’t even invite me.
—Dave Barry

Logic is the study of what follows from what. From the information
that Tweety is a bird and all birds are animals, it follows that Tweety is
an animal. But things aren’t always so certain. Can Tweety fly? Most
birds can fly, so probably. But Tweety might be a penguin.

Deductive logic is the branch of logic that studies what follows with
certainty. Inductive logic deals with uncertainty, things that only follow
with high probability.

This book is about inductive logic and probability. But we need a
few concepts from deductive logic to get started.

2.1 Validity & Soundness

In deductive logic we study “valid” arguments. An argument is valid
when the conclusion must be true if the premises are true. Take this
example again:

Tweety is a bird.
All birds are animals.
Therefore, Tweety is an animal.

The first two lines are called the premises of the argument. The last line
is called the conclusion. In this example, the conclusion must be true if
the premises are. So the argument is valid.

Here’s another example of a valid argument:

Tweety is taller than Kwazi.
Kwazi is taller than Peso.
Therefore, Tweety is taller than Peso.
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The argument is valid because it’s just not possible for the premises to
be true and the conclusion false.

Here’s an example of an invalid argument:

Tweety is a bird.
Most birds can fly.
Therefore, Tweety can fly.

It’s not valid because validity requires the conclusion to follow neces-
sarily. If there’s any way for the the premises to be true yet the con-
clusion false, the argument doesn’t count as valid. And like we said,
Tweety might be a penguin.

Valid arguments are interesting because their logic is airtight. If the
assumptions of the argument are correct, there’s no way to go wrong
accepting the conclusion. But what if the assumptions aren’t correct?
Validity isn’t everything, we also want our arguments to build on true
foundations.

We call an argument sound when it is valid and all the premises are
true:

sound = valid + true premises.

For example, here’s a sound argument:

The author of this book is human.
All humans are animals.
Therefore, the author of this book is an animal.

Sound arguments are important because their conclusions are always
true. The premises of a sound argument are true by definition. And
since it’s valid by definition too, that guarantees the conclusion to be
true as well.

Yet deductive logic studies validity, not soundness. Why?
Because logicians aren’t in the business of determining when the

premises of an argument are true. As a logician, I might have no idea
who Tweety is, and thus no idea whether Tweety is a bird. I might not
even know whether all birds fly, or just some, or even none. That’s a
job for an ornithologist.

A logician’s job is to assess the logic of an argument, the connections
between its assumptions and its conclusion. So a logician just takes the
premises of an argument for granted, and asks how well they support
the conclusion. That’s something you don’t need to know any or-
nithology to study. Or biology, or medicine, or physics, or whatever
topic a particular argument concerns.

Validity is a tricky, counterintuitive concept. It’s very much a hypo-
thetical notion: it’s about whether the conclusion must be true if the
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premises are true. So when we assess an argument’s validity, we ig-
nore what we know about the truth of its premises. We pretend they’re
true even if they aren’t. We even have to ignore what we know about
the conclusion.

Instead, we suspend what we know about the topic, and just imag-
ine the premises to be true. Then we ask: in this hypothetical scenario,
is there any way the conclusion could be false? If there is, the argu-
ment is invalid. Otherwise, it’s valid.

2.2 Propositions

Arguments are made out of statements, assertions that something is
true. In logic we call these statements propositions. And we use capi-
tal letters of the English alphabet to stand for them. For example, this
argument:

If Aegon is a tyrant, then Brandon is a wizard.
Aegon is a tyrant.
Therefore, Brandon is a wizard.

can be summarized like this:

If A, then B.
A.
Therefore, B.

Not all sentences are propositions. Some are questions, some are
commands, some are expressions of worry. For example:

• What time is it?
• Pass the rooster sauce!
• Uh oh.

One way to distinguish propositions from other kinds of sentences
is: propositions are capable of being true or false. It wouldn’t make
sense to respond to someone who asks you what time it is by saying,
“what you just said is false!” And you wouldn’t respond to someone’s
request to pass the sauce with “that’s true!” Except maybe as a joke.

2.3 Visualizing Propositions

We learned about mutually exclusive propositions in Section 1.2. Two
propositions are mutually exclusive when one of them being true means
the other must be false. For example:

• A: Confucius was born in the 6th Century A.D.
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• B: Confucius was born in the 6th Century B.C.

There is no way for both of these propositions to be true, and we can
visualize this relationship in a diagram (Figure 2.1).

A B

Figure 2.1: Mutually exclusive proposi-
tions

Each circle represents a proposition. You can think of it as sur-
rounding the possible situations where the proposition would be true.
The circles don’t overlap because there is no possible situation where
both propositions in this example are true.

In contrast, these two propositions are not mutually exclusive:

• Confucius was born in Asia.
• Confucius was born in the 6th Century B.C.

When propositons are not mutually exclusive, we say they are compat-
ible. Compatible propositions overlap (Figure 2.2). The region where
the circles overlap represents the possible scenarios where both propo-
sitions are true (the “A & B region”).

A B

Figure 2.2: Compatible propositions

These are called Euler diagrams, after the mathematician Leonhard
Euler (pronounced oiler).1 You may have seen Venn diagrams before,

1 Leonhard Euler lived from 1707 to
1783. You may have encountered some
of his work before if you’ve worked with
logarithms or taken calculus.

which are very similar. But in an Euler diagram, the circles don’t have
to overlap.

Sometimes one circle will even contain another circle entirely. Take
this example:

• Confucius was born in Asia.
• Confucius was born somewhere.

These propositions aren’t just compatible. If the first is true, then the
second must be true. Imagine an argument with the first proposition
as the premise and the second proposition as the conclusion. The
argument would be valid:

Confucius was born in Asia.
Therefore, Confucius was born somewhere.

A

B

Figure 2.3: Logical entailment

In this case we say that the first proposition logically entails the sec-
ond. In terms of an Euler diagram, the first circle is contained entirely
in the second (Figure 2.3). Because there is no possible situation where
the first proposition is true yet the second false.

What if an argument has multiple premises? For example:

Zhuangzi was born in the Chinese province of Anhui.
Zhuoru was born in the Chinese city of Beijing.
Therefore, both Zhuangzi and Zhuoru were born in China.

A BC

Figure 2.4: A valid argument with two
premises
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This argument is valid, and the diagram might look like Figure 2.4.
Notice how the A & B region lies entirely within the C circle. This re-
flects the argument’s validity: there is no way for the first two propo-
sitions to be true and the last one false.

In contrast, an invalid argument would have a diagram like Figure
2.5. This diagram allows for the possibility that A and B are both true
yet C is false; part of the A & B region falls outside the C circle.

A B

C

Figure 2.5: An invalid argument with
two premises

2.4 Strength

Inductive logic studies arguments that aren’t necessarily valid, but still
“strong.” A strong argument is one where the conclusion is highly
probable, if the premises are true. For example:

The sun has risen every day so far.
Therefore, the sun will rise again tomorrow.

This argument isn’t valid, because it’s possible the conclusion is false
even though the premise is true. Maybe the sun will explode in the
night for some surprising reason. Or maybe the earth’s rotation will
be stopped by alien forces.

These possibilities aren’t very likely, of course. So the argument is
strong, even though it’s not strictly valid. The premise gives us very
good reason to believe the conclusion, just not a 100% guarantee.

In terms of an Euler diagram then, the premise circle isn’t contained
entirely within the conclusion circle (Figure 2.6). We have to leave
some room for the possibility that the premise is true and the conclu-
sion false. But we can still convey that this possibility has only a very
slight chance of being true, by making it slim.

B

A

Figure 2.6: A strong argument with
premise A and conclusion B

Figure 2.7: Pierre Simone Laplace (1749–
1827) developed a formula for calculat-
ing the probability the sun will rise to-
morrow. We’ll learn how to do similar
calculations in the coming chapters.

We could also label the A-but-not-B region with a small number, if
we knew exactly how unlikely this possibility was.

Strength comes in degrees. An argument’s premises can make the
conclusion somewhat likely, very likely, almost certain, or perfectly
certain. So arguments range from weak, to somewhat strong, to very
strong, etc.

Strength differs from validity here, since validity is all-or-nothing. If
there is any possible way for the premises to be true and the conclusion
false, the argument is invalid—no matter how remote or bizarre that
possibility is.

Notice though, valid arguments are strong by definition. Since it’s
impossible for a valid argument’s conclusion to be false if the premises
are true, the premises make the conclusion 100% probable. A valid
argument is the strongest possible argument.

https://bit.ly/2mU9WgW
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2.5 Forms of Inductive Argument

What kinds of strong arguments are there, and how strong are they?
That’s what the rest of this book is about, in a way. But we can start
by identifying some common forms of inductive argument right now.

Generalizing from observed instances is one extremely common
form of argument:

Every raven I have ever seen has been black.
Therefore, all ravens are black.

Arguments of this kind are usually stronger the more instances you
observe. If you’ve only ever seen two ravens, this argument won’t be
very compelling. But if you’ve seen thousands, then it’s much stronger.

It also helps to observe different kinds of instances. If you’ve only
observed ravens in your city or town, then even the thousands you’ve
seen won’t count for much. Maybe the raven population in your area
is unusual, and ravens on the other side of the world are all different
colours.

Going in the opposite direction, we can use what we know about a
general population to draw conclusions about particular instances. We
saw an example of this earlier:

Most birds can fly.
Tweety is a bird.
Therefore, Tweety can fly.

Again, the strength of the inference depends on the details. If “most
birds” means 99%, the argument is quite strong. If “most” only means
80%, then it’s not so strong. (Usually “most” just means more than
50%.)

It also helps to know that Tweety is similar to the birds that can fly,
and different from the ones that can’t. If we know that Tweety is small
and has feathers, that makes the argument stronger. If instead we
know that Tweety is large, and coloured black and white, that makes
the argument weaker. It suggests Tweety is a penguin.

Inference to the best explanation is another common form of argu-
ment, quite different from the previous two. Here’s an example:

My car won’t start and the gas gauge reads ‘empty.’
Therefore, my car is out of gas.

An empty tank would explain the sytmptoms described in the premise,
so the premise makes the conclusion plausible. There could be other
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possible explanations, of course. Maybe the engine and the gas gauge
both just happened to break at the same time. But that would be quite
a coincidence, so this explanation isn’t as good.

What makes one explanation better than another? That turns out
to be a very hard question, and there is no generally accepted answer.
We’ll come back to this issue later, once we have a better grip on the
basics of probability.

Exercises

1. For each of the following arguments, say whether it is valid or
invalid.

a. All cats have whiskers.
Simba has whiskers.
Therefore, Simba is a cat.

b. Ada Lovelace wrote the world’s first computer program.
Ada Lovelace was Lord Byron’s daughter.
Therefore, the first computer program was written by Lord
Byron’s daughter.

c. All Canadian residents are Russian citizens.
Vladimir Putin is a Canadian resident.
Therefore, Vladimir Putin is a Russian citizen.

d. Manitoba is located in either Saskatchewan, Ontario, or Que-
bec.
Manitoba is not located in Saskatchewan.
Manitoba is not located in Ontario.
Therefore, Manitoba is located in Quebec.

e. If snow is black then pigs can fly.
Snow is not black.
Therefore, pigs cannot fly.

f. Either the moon is made of green cheese or pigs can fly.
Pigs can’t fly.
Therefore the moon is made of green cheese.

2. For each pair of propositions, say whether they are mutually ex-
clusive or compatible.

a. Regarding the roll of an ordinary die:

• The die will land on an even number.
• The die will land either 4 or 5.

b. Regarding the unemployment rate in your country tomorrow:
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• The unemployment rate will be at least 5%.
• The unemployment rate will be exactly 5%.

c. Regarding a party tomorrow:

• Ani will be there and so will her sister PJ.
• PJ will not be there.

3. True or false? If A and B are mutually exclusive, and B and C are
also mutually exclusive, then A and C are mutually exclusive.

4. True or false? If A and B are mutually exclusive, then A logically
entails that B is false.

5. True or false? It is possible for A to logically entail B even though
the reverse does not hold (i.e. even though B does not logically
entail A).

6. Create your own example of each of the three types of inductive
argument described in this chapter:

a. Generalizing from Observed Instances
b. Inferring an Instance from a Generalization
c. Inference to the Best Explanation

7. Suppose a family has two children.

a. How many possible ways are there for their birthdays to be
distributed among the four seasons fall, winter, spring, and
summer?

b. Suppose we know the two siblings were born in different sea-
sons. How many possibilities are there then?

c. Suppose another family has three children. We don’t know
whether any of them have the same birth-season. How many
possibilities are there in this case?

8. Suppose A and B are compatible, and B and C are compatible.
Does that mean A and C are compatible? If yes, justify your
answer. If no, describe a counterexample (an example where A
and B are compatible, and B and C are compatible, but A and C
are not compatible).

9. Suppose A logically entails B, and B logically entails C. Does
that mean A logically entails C? If yes, justify your answer. If no,
describe a counterexample (an example where A logically entails
B, and B logically entails C, but A does not logically entail C).



3 Truth Tables

In this chapter we’ll introduce the last few concepts we need from
deductive logic, and we’ll learn a useful technique in the process: truth
tables.

3.1 Connectives

Complex propositions can be built up out of other, simpler proposi-
tions:

• Aegon is a tyrant and Brandon is a wizard.
• Either Aegon is a tyrant or Brandon is a wizard.
• It’s not true that Aegon is a tyrant. Notice, we call it’s not true that a connec-

tive even though it doesn’t actually con-
nect two propositions together.Here we’ve used two simple propositions to build up longer, more

complex ones using the terms and, either/or, and it’s not true that. Such
terms are called connectives.

The three connectives just listed are the only ones we’ll need in this
book. Each has a name and a shorthand symbol:

Name English Symbol Example

conjunction and & A & B
disjunction either/or ∨ A ∨ B
negation it’s not true that ∼ ∼A

Here are some more examples of complex propositions:

• F &∼G: Florida is warm and Geneva is not.
• ∼J ∨ ∼K: Either Jing won’t come to the party or Kamal won’t

come.

Sometimes we also need parentheses, to avoid ambiguity. Consider
an example from arithmetic:

4÷ 2× 2 = 1.
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Is this equation true? That depends on what you mean. Does the divi-
sion operation come first, or the multiplication? So we use parentheses
to clarify: 4÷ (2× 2) = 1, but (4÷ 2)× 2 = 4.

In logic we use parentheses to prevent ambiguity similarly. Con-
sider:

A ∨ B & C.

This proposition is ambiguous, it has two interpretations. In English
we can distinguish them with a comma:

• Either Aegon is a tyrant or Brandon is a wizard, and Cerci is the
queen.

• Either Aegon is a tyrant, or Brandon is a wizard and Cerci is the
queen.

Notice how these statements make different claims. The first takes a
definite stand on Cerci: she is the queen. It only leaves open the ques-
tion whether Aegon is a tyrant or Brandon is a wizard. Whereas the
second statement takes no definite stand on any of our three charac-
ters. Maybe Aegon is a tyrant, maybe not. Maybe Brandon is a wizard
and Cerci is the queen, maybe not.

In logic we use parentheses to clarify which interpretation we mean:

• (A ∨ B) & C.
• A ∨ (B & C).

Notice how the first statement is primarily an & statement. It uses &
to combine the simpler statements C and A ∨ B together. Whereas the
second statement is primarily a ∨ statement. It uses ∨ to combine A
with B & C.

We call the last connective used to build up the statement the main
connective.

• (A ∨ B) & C: main connective is &.
• A ∨ (B & C): main connective is ∨.

Two more examples:

• ∼(A ∨ B): main connective is ∼.
• ∼A ∨ B: main connective is ∨.

Technically, the last example should have parentheses to prevent am-
biguity, like so: (∼A) ∨ B. But things get cluttered and hard to read
if we add parentheses around every negation. So we have a special
understanding for ∼ in order to keep things tidy.

This special understanding for ∼ mir-
rors the one for minus signs in arith-
metic.

i The negation symbol ∼ only applies to the proposition immedi-
ately following it.

So in the proposition ∼A ∨ B, the ∼ only applies to A. And in ∼(A &
B) ∨ C, it only applies to A & B.
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3.2 Truth Tables

The truth of a complex proposition built using our three connectives
depends on the truth of its components. For example, ∼A is false if A
is true, and it’s true if A is false:

Table 3.2: Truth table for ∼

A ∼A

T F
F T

Slightly more complicated is the rule for &:

Table 3.3: Truth table for &

A B A & B

T T T
T F F
F T F
F F F

There are four rows now because & combines two propositions A and
B together to make the more complex proposition A&B. Since each
of those propositions could be either true or false, there are 2× 2 = 4
possible situations to consider.

Notice that in only one of these situations is A&B true, namely the
first row where both A and B are true.

The truth table for ∨ (“either/or”) is a little more surprising:

Table 3.4: Truth table for ∨

A B A ∨ B

T T T
T F T
F T T
F F F

Now the complex proposition is always true, except in one case: the
last row where A and B are both false. It makes sense that A ∨ B is
false when both sides are false. But why is it true when both sides are
true? Doesn’t “Either A or B” mean that just one of these is true?
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Sometimes it does have that meaning. But sometimes it means “Ei-
ther A or B, or both.” Consider this exchange:

X: What are you doing tomorrow night?
Y: I’m either going to a friend’s house or out to a club. I might even do
both, if there’s time.

Person Y isn’t necessarily changing their mind here. They could just
be clarifying: they’re doing at least one of these things, possibly even
both of them.

Although it’s common to use “either/or” in English to mean just
one or the other, in logic we use the more permissive reading. So
A ∨ B means either A, or B, or both.

We can always convey the stricter way of meaning “either/or” with
a more complex construction:

(A ∨ B) &∼(A & B).

That says:

Either A or B is true, and it’s not the case that both A and B are true.

Which is just a very explicit way of saying: either one or the other, but
not both.

We can even verify that the complex construction captures the mean-
ing we want, by using a truth table. We start with an empty table,
where the header lists all the formulas we use to build up to the final,
complex one we’re interested in:

A B A ∨ B A&B ∼(A & B) (A ∨ B) &∼(A & B)

Then we fill in the possible truth values for the simplest propositions,
A and B:

A B A ∨ B A&B ∼(A & B) (A ∨ B) &∼(A & B)

T T
T F
F T
F F
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Next we consult the truth tables above for & and ∨ to fill in the
columns at the next level of complexity:

A B A ∨ B A&B ∼(A & B) (A ∨ B) &∼(A & B)

T T T T
T F T F
F T T F
F F F F

Then move up to the next level of complexity. To fill in the column for
∼(A & B), we consult the column for A & B and apply the rules from
the table for ∼:

A B A ∨ B A&B ∼(A & B) (A ∨ B) &∼(A & B)

T T T T F
T F T F T
F T T F T
F F F F T

Finally, we consult the columns for A ∨ B and ∼(A & B), and the table
for &, to fill in the column for (A ∨ B) &∼(A&B):

A B A ∨ B A&B ∼(A & B) (A ∨ B) &∼(A & B)

T T T T F F
T F T F T T
F T T F T T
F F F F T F

Complex constructions like this are difficult at first, but don’t worry.
With practice they quickly become routine.

3.3 Logical Truths & Contradictions

Some propositions come out true in every row of the truth table. Con-
sider A ∨∼A for example:

A ∼A A ∨∼A

T F T
F T T
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Such propositions are especially interesting because they must be true.
Their truth is guaranteed, just as a matter of logic. We call them logical
truths, or tautologies.

The other side of this coin is propositions that are false in every row
of the truth table, like A &∼A:

A ∼A A &∼A

T F F
F T F

These propositions are called contradictions.
Notice that the negation of a contradiction is a logical truth. For

example, consider the truth table for ∼(A &∼A):

A ∼A A &∼A ∼(A &∼A)

T F F T
F T F T

3.4 Mutual Exclusivity & Truth Tables

Truth tables can be used to establish that two propositions are mutu-
ally exclusive. A very simple example is the propositions A and ∼A:

A ∼A

T F
F T

There is no row in the table where both propositions are true. And
if two propositions can’t both be true, they are mutually exclusive by
definition.

A slightly more complex example is the pair of propositions A ∨ B
and ∼A &∼B. Their truth table (3.14) also has no row where A ∨ B
and ∼A &∼B are both true. So they are mutually exclusive.

Table 3.14: The propositions A ∨ B and ∼A &∼B are mutually
exclusive.

A B ∼A ∼B A ∨ B ∼A &∼B

T T F F T F
T F F T T F
F T T F T F
F F T T F T
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3.5 Entailment & Equivalence

Truth tables can also be used to establish that an argument is valid.
Here’s a very simple example:

A & B.
Therefore, A.

Obviously it’s not possible for the premise to be true and the conclu-
sion false, so the argument is valid (if a bit silly). Accordingly, there is
no line of the truth table where A & B comes out true, yet A comes out
false:

A B A & B

T T T
T F F
F T F
F F F

The only line where A & B comes out true is the first one. And on that
line A is true too. So the argument from A & B to A is valid.

One more example:

A ∨ B.
∼A.
Therefore, B.

This argument is valid because the first premise says that at least one
of the two propositions A and B must be true, and the second line says
it’s not A. So it must be B that’s true, as the conclusion asserts. And
once again there is no line of the truth table where both A∨ B and ∼A
are true, yet B is false:

A B ∼A A ∨ B

T T F T
T F F T
F T T T
F F T F

The only line where both A∨ B and ∼A are true is the third row, and B
is true on that row. So once again the truth table tells us this argument
is valid.

In the previous chapter we introduced the concept of logical entail-
ment. A logically entails B when it’s impossible for A to be true and
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B false. When one proposition entails another, there is no line of the
truth table where the first proposition is true and the second is false.

Sometimes entailment goes in both directions: the first proposition
entails the second and the second entails the first. For example, not only
does A & B entail B & A, but also B & A entails A & B.

We say such propositions are logically equivalent. In terms of truth
tables, their columns match perfectly, they are identical copies of T’s
and F’s.

A B A & B B & A

T T T T
T F F F
F T F F
F F F F

A more complex example is the propositions ∼(A ∨ B) and ∼A &∼B:

A B ∼A ∼B A ∨ B ∼(A ∨ B) ∼A &∼B

T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Here again the columns under these two propositions are identical.

3.6 Summary

Connectives can be used to build more complex propositions, like A &
B or A ∨∼B. We introduced three connectives:

• ∼A means it’s not true that A.
• A & B means both A and B are true.
• A ∨ B means either A is true, or B is true, or both are true.

In a complex proposition, the main connective is the last one used to
build it up from simpler components. In A ∨∼B the main connective
is the ∨.

An argument’s validity can be established with a truth table, if
there’s no row where all the premises have a T and yet the conclu-
sion has an F.

Truth tables can also be used to establish that two propositions are
mutually exclusive, if there is no row of the table where both proposi-
tions have a T.
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Logically equivalent propositions entail one another. When two
propositions have identical columns in a truth table, they are logically
equivalent.

Exercises

1. Using the following abbreviations:

A = Asha loves Cerci,

B = Balon loves Cerci,

translate each of the following into logicese (e.g. ∼A ∨ B).

a. Asha doesn’t love Cerci.
b. Asha loves Cerci and Balon loves Cerci.
c. Asha loves Cerci but Balon does not.
d. Neither Asha nor Balon loves Cerci.

2. For each pair of propositions, use a truth table to determine
whether they are mutually exclusive.

a. A & B and A &∼B.
b. A and ∼B.
c. A ∨∼A and A &∼A.

3. For each pair of propositions, use a truth table to determine
whether they are logically equivalent.

a. ∼A ∨ B and ∼(A &∼B).
b. A and (A & B) ∨ (A &∼B).
c. A and (B & A) ∨ (B &∼A).

4. The proposition A ∨ (B & C) features three simple propositions,
so its truth table has 8 rows. Fill in the rest of the table:

A B C B & C A ∨ (B & C)

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F
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5. Use a truth table to determine whether the propositions A∨ (B &
C) and (A ∨ B) & (A ∨ C) are equivalent.

6. True or false: if A and B are mutually exclusive, then A and ∼B
are logically equivalent.

7. If we are considering two compatible propositions A and B, the
truth-table has 4 rows. If there are three compatible propositions
A, B, and C, there are 8 rows.

a. How many rows are there if we have four compatible propo-
sitions?

b. In general, how many rows are there for n compatible propo-
sitions?

c. How many rows are there if we have three propositions A,
B, and C, but A and B are not compatible (they are mutually
exclusive). Assume the other pairs are compatible.

8. Suppose a family has two children.

a. How many possible ways are there for their birthdays to be
distributed among the 12 months of the year?

b. Suppose we know the two siblings were born in different months.
How many possibilities are there then?

c. Suppose another family has three children. We don’t know
whether any of them have the same birth-month. How many
possibilities are there in this case?



4 The Gambler’s Fallacy

Applied statistics is hard.
—Andrew Gelman

My wife’s family keeps having girls. My wife has two sisters and
she and her sisters each have two daughters, with no other siblings or
children. That’s nine girls in a row!

Note that girl and boy aren’t the only
possibilities. The next child could also
be intersex, like fashion model Hanne
Gaby Odiele.So are they due for a boy next? Here are three possible answers.

• Answer 1. Yes, the next baby is more likely to be a boy. Ten girls
in a row would be a really unlikely outcome.

• Answer 2. No, the next baby is actually more likely to be a girl.
Girls run in the family! Something about this family clearly pre-
dispose them to have girls.

• Answer 3. No, the next baby is equally likely to be a boy vs. girl.
Each baby’s sex is determined by a purely random event, similar
to a coin flip. So it’s equal odds every time. The nine girls so far
is just a coincidence.

Which answer is correct?

4.1 Independence

It all hangs on whether the sex of each baby is “independent” of the
others. Two events are independent when the outcome of one doesn’t
change the probability of the other.

A clear example of independence is sampling with replacement.
Suppose we have an urn with 50 black marbles and 50 white ones.
You draw a ball at random, then put it back. Then you give the urn
a good hard shake and draw at random again. The two draws are
independent in this case. Each time you draw, the number of black
vs. white marbles is the same, and they’re all randomly mixed up.

Even if you were to draw ten white balls in a row, the eleventh
draw would still be a 50-50 shot! It would just be a coincidence that
you drew ten white balls in a row. Because there’s always an even mix
of black and white marbles, and you’re always picking one at random.

https://en.wikipedia.org/wiki/Hanne_Gaby_Odiele
https://en.wikipedia.org/wiki/Hanne_Gaby_Odiele
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But now imagine sampling without replacement. The situation is
the same, except now you set aside each ball you draw rather than put
it back. Now the draws are dependent. If you draw a black ball on the
first draw, the odds of black on the next draw go down. There are only
49 black balls in the urn now, vs. 50 white.

A

~A

B ~B

Figure 4.1: Example of an eikosogram.

We can visualize independence with an eikosogram, which is like an
Euler diagram but with rectangles instead of circles. The size of each
sector reflects its probability. For example, in Figure 4.1 the proposi-
tion A & B has low probability (1/12), while ∼A & B has much higher
probability (1/2).

A

~A

B ~B

Figure 4.2: Example of an eikosogram
where A and B are independent.

When propositions are independent, as in Figure 4.2, the eikoso-
gram is divided by just two straight lines. That way the A region takes
up the same percentage of the B region as it does the ∼B region. So
the probability of A is the same whether B is true or false. In other
words, B’s truth has no effect on the probability of A.

4.2 Fairness

Flips of an ordinary coin are also independent. Even if you get ten
heads in a row, the eleventh toss is still 50-50. If it’s really an ordinary
coin, the ten heads in a row was just a coincidence.

Coin flips aren’t just independent, they’re also unbiased: heads and
tails are equally likely. A process is biased if some outcomes are more
likely than others. For example, a loaded coin that comes up heads
3/4 of the time is biased.

So coin flips are unbiased and independent. We call such processes
fair.

Fair = Unbiased + Independent.

Another example of a fair process is drawing from our black/white
urn with replacement. There are 50 black and 50 white marbles on
every draw, so black and white have equal probability every time.

But drawing without replacement is not a fair process, because the
draws are not independent. Removing a black ball makes the chance
of black on the next draw go down.

4.3 The Gambler’s Fallacy

Gambling often involves fair processes: fair dice, fair roulette wheels,
fair decks of cards, etc. But people sometimes forget that fair processes
are independent. If a roulette wheel comes up black nine times in a
row, they figure it’s “due” for red. Or if they get a bunch of bad hands
in a row at poker, they figure they’re due for a good one soon.

“Simply cannot stop thinking about a
girl I knew who dated a guy she couldn’t
STAND—all because his ex died in a
plane crash, & her biggest fear was dy-
ing in a plane crash, & she figured there
was no way the universe would let both
of this guy’s girlfriends die in a plane
crash” —@isabelzawtun.

https://twitter.com/isabelzawtun/status/1329537047837675522?s=20
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This way of thinking is called the gambler’s fallacy. A fallacy is a
mistake in reasoning. The mistake here is failing to fully account for
independence. These gamblers know the process in question is fair,
in fact that’s a key part of their reasoning. They know it’s unlikely
that the roulette wheel will land on black ten times in a row because a
fair wheel should land on black and red equally often. But then they
overlook the fact that fair also means independent, and independent
means the last nine spins tell us nothing about the tenth spin.

The gambler’s fallacy is so seductive that it can be hard to find
your way out of it. Here’s one way to think about it that may help.
Imagine the gambler’s point of view at two different times: before the
ten spins of the wheel, and after. Before, the gambler is contemplaing
the likelihood of getting ten black spins in a row:

_ _ _ _ _ _ _ _ _ _ ?

From that vantage point, the gambler is exactly right to think it’s
unlikely these ten spins will all land on black. But now imagine their
point of view after observing (to their surprise) the first nine spins all
landing black:

B B B B B B B B B _ ?

Now how likely is it these ten spins will all land black? Well, just
one more spin has to land black now to fulfill this unlikely prophecy.
So it’s not such a long shot anymore. In fact it’s a 50-50 shot. Although
it was very unlikely the first nine spins would turn out this way, now
that they have, it’s perfectly possible the tenth will turn out the same.

4.4 Ignorance Is Not a Fallacy

At this point you may have a nagging thought at the back of your
mind. If we flipped a coin 100 times and it landed heads every time,
wouldn’t we conclude the next toss will probably land heads? How
could that be a mistake?!

The answer: it’s not a mistake. It would be a mistake if you knew
the coin was fair. But if you don’t know that, then 100 heads in a row
could be enough to convince you it’s actually not fair.

The gambler’s fallacy only occurs when you know a process is fair,
and then you fail to reason accordingly. If you don’t know whether
a process is fair, then you aren’t making a logical error by reasoning
according to a different assumption.

So, is the gambler’s fallacy at work if my wife’s family expects a boy
next? As it turns out, the process that determines the sex of a child is
pretty much fair.1 So the correct answer to our opening question was 1 The question isn’t completely settled

though, as far as I could tell from my
(not very thorough) research.

https://doi.org/10.1080/09332480.2001.10542293
https://doi.org/10.1080/09332480.2001.10542293


38 jonathan weisberg

Answer 3.
Most people don’t know about the relevant research, though. They

may (like me) only know a bit from high school biology about how sex
is usually determined at conception. But it’s still possible for all they
know that some people’s eggs are more likely to select sperm cells
with an X chromosome, for example.

So it’s not necessarily a fallacy if my in-laws expect a boy next. It
could just be a reasonable conclusion given the information available.
A fallacy is an error in reasoning, not a lack of knowledge.

4.5 The Hot Hand Fallacy

Sometimes a basketball player hits a lot of baskets in a row and people
figure they’re on fire: they’ve got a “hot hand.” But a famous study
published in 1985 found that these streaks are just a coincidence. Each
shot is still independent of the others. Is the hot hand an example of
the gambler’s fallacy?

Most people don’t know about the famous 1985 study. Certainly
nobody knew what the result of the study would be before it was
conducted. So a lot of believers in the hot hand were in the unfortunate
position of just not knowing a player’s shots are independent. So the
hot hand isn’t the same as the gambler’s fallacy.

Believers in the hot hand may be guilty of a different fallacy, though.
That same study analyzed the reasoning that leads people to think a
player’s shots are dependent. Their conclusion: people tend to see
patterns in sequences of misses and hits even when they’re random.
So there may be a second, different fallacy at work, the “hot hand
fallacy.”

Things might actually be even more complicated than that, though.
Some recent studies found that the hot hand may actually be real after
all! How could that be possible? What did the earlier studies miss?

It’s still being researched, but one possibility is: defense. When a
basketball player gets in the zone, the other team ups their defense.
The hot player has to take harder shots. So one of the recent studies
added a correction to account for increased difficulty. And another
looked at baseball instead, where they did find evidence of streaks.

But here’s Selena Gomez and Nobel
prize winner Richard Thaler telling a bit
of the story in a clip from the 2015 movie
The Big Short.The full story of the hot hand fallacy has yet to be told it seems.

Exercises

1. Suppose you are going to draw a card at random from a stan-
dard deck. For each pair of propositions, say whether they are
independent or not.

http://www.sciencedirect.com/science/article/pii/0010028585900106?via%3Dihub
http://www.sciencedirect.com/science/article/pii/0010028585900106?via%3Dihub
https://www.gsb.stanford.edu/insights/jeffrey-zwiebel-why-hot-hand-may-be-real-after-all
https://www.youtube.com/watch?v=Pxr_FzpPM2Q
https://www.youtube.com/watch?v=Pxr_FzpPM2Q


odds & ends 39

a. A: the card is red.
B: the card is an ace.

b. A: the card is red.
B: the card is a diamond.

c. A: the card is an ace.
B: the card is a spade.

d. A: the card is a Queen.
B: the card is a face card.

2. After one draw with replacement, drawing a second marble from
an urn filled with 50 black and 50 white marbles is a ______
process.

a. Independent
b. Fair
c. Unbiased
d. All of the above
e. None of the above

3. After one draw without replacement, drawing a second marble
from an urn filled with 50 black and 50 white marbles is a ______
process.

a. Independent
b. Fair
c. Unbiased
d. All of the above
e. None of the above

4. For each of the following examples, say whether it is an instance
of the gambler’s fallacy.

a. You’re playing cards with your friends using a standard, ran-
domly shuffled deck of 52 cards. You’re about half-way through
the deck and no aces have been drawn yet. You conclude that
an ace is due soon, and thus the probability the next card is an
ace has gone up.

b. You’re holding a six-sided die, which you know to be fair.
You’re going to roll it 60 times. You figure about 10 of those
rolls should be threes. But after 59 rolls, you’ve rolled a three
only five times. You figure that the probability of a three on
the last roll has gone up: it’s higher than just 1/6.

c. You know the lottery numbers in Ontario are selected using a
fair process. So it’s really unlikely that someone will win two
weeks in a row. Your friend won last week, so you conclude
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their chances of winning this week too are even lower than
usual.

d. You’re visiting a new country where corruption is common,
so you aren’t sure whether the lottery there is fair. You see on
the news that the King’s cousin won the lottery two weeks in
a row. You conclude that their chances of winning next week
are higher than normal, because the lottery is rigged in their
favour.

5. Suppose A and B are compatible (not mutually exclusive). Does
it follow that they are independent? If your answer is yes, explain
why this follows. If your answer is no, give a counterexample
(an example where A and B are neither mutually exclusive nor
independent).

6. Suppose A is independent of B, and B is independent of C. Does
that mean A is independent of C? If yes, justify your answer. If
no, describe a counterexample (an example where it’s false).



5 Calculating Probabilities

Imagine you’re going to flip a fair coin twice. You could get two
heads, two tails, or one of each. How probable is each outcome?

It’s tempting to say they’re equally probable, 1/3 each. But actually
the first two are only 1/4 likely, while the last is 1/2 likely. Why?

There are actually four possible outcomes here, but we have to con-
sider the order of events to see how. If you get one each of heads and
tails, what order will they come in? You could get the head first and
then the tail, or the reverse.

So there are four possible sequences: HH, TT, HT, and TH. And all
four sequences are equally likely, a probability of 1/4.

How do we know each sequence has 1/4 probability though? And
how does that tell us the probability is 1/2 that you’ll get one each of
heads and tails? We need to introduce some mechanics of probability
to settle these questions.

5.1 Multiplying Probabilities

We denote the probability of proposition A with Pr(A). For example,
Pr(A) = 2/3 means there’s a 2/3 chance A is true.

Now, our coin is fair, and by definition that means it always has a
1/2 chance of landing heads and a 1/2 chance of landing tails. For a
single toss, we can use H for the proposition that it lands heads, and T
for the proposition that it lands tails. We can then write Pr(H) = 1/2
and Pr(T) = 1/2.

For a sequence of two tosses, we can use H1 for heads on the first
toss, and H2 for heads on the second toss. Similarly, T1 and T2 repre-
sent tails on the first and second tosses, respectively. The four possible
sequences are then expressed by the complex propositions:

• H1 & H2,
• T1 & T2,
• H1 & T2,
• T1 & H2.

We want to calculate the probabilities of these propositions. For exam-
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ple, we want to know what number Pr(H1 & H2) is equal to.
Because the coin is fair, we know Pr(H1) = 1/2 and Pr(H2) = 1/2.

The probability of heads on any given toss is always 1/2, no matter
what came before. To get the probability of H1 & H2 it’s then natural
to compute:

Pr(H1 & H2) = Pr(H1)× Pr(H2)

= 1/2× 1/2

= 1/4.

And this is indeed correct, but only because the coin is fair and thus the
tosses are independent. The following is a general rule of probability.

The Multiplication Rule. If A and B are independent, then Pr(A & B) =
Pr(A)× Pr(B).

So, because our two coin tosses are independent, we can multiply to
calculate Pr(H1 & H2) = 1/4. And the same reasoning applies to all
four possible sequences, so we have:

Pr(H1 & H2) = 1/4,

Pr(T1 & T2) = 1/4,

Pr(H1 & T2) = 1/4,

Pr(T1 & H2) = 1/4.

The Multiplication rule only applies to independent propositions.
Otherwise it gives the wrong answer.

For example, the propositions H1 and T1 are definitely not inde-
pendent. If the coin lands heads on the first toss (H1), that drastically
alters the chances of tails on the first toss (T1). It changes that proba-
bility to zero! If you were to apply the Multiplication Rule, you would
get Pr(H1 & T1) = Pr(H1)× Pr(T1) = 1/2× 1/2 = 1/4, which is defi-
nitely wrong.

þ Only use the Multiplication Rule on independent propositions.

5.2 Adding Probabilities

We observed that you can get one head and one tail two different ways.
You can either get heads then tails (H1 & T2), or you can get tails then
heads (T1 & H2). So the logical expression for “one of each” is:

(H1 & T2) ∨ (T1 & H2).

This proposition is a disjunction: its main connective is ∨. How do we
calculate the probability of a disjunction?
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The Addition Rule. If A and B are mutually exclusive, then Pr(A∨ B) =
Pr(A) + Pr(B).

In this case the two sides of our disjunction are mutually exclusive.
They describe opposite orders of affairs. So we can apply the Addition
Rule to calculate:

Pr((H1 & T2) ∨ (T1 & H2)) = Pr(H1 & T2) + Pr(T1 & H2)

= 1/4 + 1/4

= 1/2.

This completes the solution to our opening problem. We’ve now com-
puted the three probabilities we wanted:

• Pr(2 heads) = Pr(H1 & H2) = 1/2× 1/2 = 1/4,
• Pr(2 tails) = Pr(T1 & T2) = 1/2× 1/2 = 1/4,
• Pr(One of each) = Pr((H1 & T2) ∨ (T1 & H2)) = 1/4 + 1/4 =

1/2.

In the process we introduced two central rules of probability, one for
& and one for ∨. The multiplication rule for & only applies when the
propositions are independent. The addition rule for ∨ only applies
when the propositions are mutually exclusive.

Why does the addition rule for ∨ sentences only apply when the
propositions are mutually exclusive? Well imagine the weather fore-
cast says there’s a 90% chance of rain in the morning, and there’s also
a 90% chance of rain in the afternoon. What’s the chance it’ll rain at
some point during the day, either in the morning or the afternoon? If
we calculate Pr(M∨ A) = Pr(M) + Pr(A), we get 90%+ 90% = 180%,
which doesn’t make any sense. There can’t be a 180% chance of rain
tomorrow.

The problem is that M and A are not mutually exclusive. It could
rain all day, both morning and afternoon. We’ll see the correct way
to handle this kind of situation in Chapter 7. In the meantime just be
careful:

þ Only use the Addition Rule on mutually exclusive propositions.

5.3 Exclusivity vs. Independence

A B

Figure 5.1: Mutually exclusive proposi-
tions don’t overlap

Exclusivity and independence can be hard to keep straight at first.
One way to keep track of the difference is to remember that mutually
exclusive propositions don’t overlap, but independent propositions do.
Independence means the truth of one proposition doesn’t affect the
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chance of the other. So if you find out that A is true, B still has the
same chance of being true. Which means there have to be some B
possibilities within the A circle. (Unless the probability of A was zero
to start with, but our official definition of independence in the next
chapter will rule this case out by hypothsis.)

A B

Figure 5.2: Independent propositions do
overlap (unless one of them has zero
probability).

So independence and exclusivity are very different. Exclusive propo-
sitions are not independent, and independent propositions are not ex-
clusive.

Another marker that may help you keep these two concepts straight:
exclusivity is a concept of deductive logic. It’s about whether it’s pos-
sible for both propositions to be true (even if that possibility is very
unlikely). But independence is a concept of inductive logic. It’s about
whether one proposition being true changes the probability of the other
being true.

5.4 Tautologies, Contradictions, and Equivalent Propositions A

~A

Figure 5.3: The Tautology Rule. Every
point falls in either the A region or the
∼A region, so Pr(A ∨∼A) = 1.

A tautology is a proposition that must be true, so its probability is
always 1.

The Tautology Rule. Pr(T) = 1 for every tautology T.

For example, A ∨ ∼A is a tautology, so Pr(A ∨ ∼A) = 1. In terms of
an Euler diagram, the A and ∼A regions together take up the whole
diagram. To put it a bit colourfully, Pr(A ∨∼A) = �+� = 1.

The flipside of a tautology is a contradiction, a proposition that can’t
possibly be true. So it has probability 0.

The Contradiction Rule. Pr(C) = 0 for every contradiction C.

For example, A &∼A is a contradiction, so Pr(A &∼A) = 0. In terms
of our Euler diagram, there is no region where A and ∼A overlap. So
the portion the diagram devoted to A &∼A is nil, zero.

Equivalent propositions are true under exactly the same circum-
stances (and false under exactly the same circumstances). So they have
the same chance of being true (ditto false).

A B

Figure 5.4: The Equivalence Rule. The
A ∨ B region is identical to the B ∨ A re-
gion, so they have the same probability.

The Equivalence Rule. Pr(A) = Pr(B) if A and B are logically equiva-
lent.

For example, A ∨ B is logically equivalent to B ∨ A, so Pr(A ∨ B) =

Pr(B ∨ A).
In terms of an Euler diagram, the A ∨ B region is exactly the same

as the B ∨ A region: the red region in Figure 5.4. So both propositions
take up the same amount of space in the diagram.
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5.5 The Language of Events

In math and statistics books you’ll often see a lot of the same concepts
from this chapter introduced in different language. Instead of propo-
sitions, they’ll discuss events, which are sets of possible outcomes.

For example, the roll of a six-sided die has six possible outcomes:
1, 2, 3, 4, 5, 6. And the event of the die landing on an even number is
the set {2, 4, 6}.

In this way of doing things, rather than consider the probability
that a proposition A is true, we consider the probability that event E
occurs. Instead of considering a conjunction of propositions like A & B,
we consider the intersection of two events, E ∩ F. And so on.

If you’re used to seeing probability presented this way, there’s an
easy way to translate into logic-ese. For any event E, there’s the corre-
sponding proposition that event E occurs. And you can translate the
usual set operations into logic as follows:

Table 5.1: Translating between events and propositions

Events Propositions

Ec ∼A
E ∩ F A & B
E ∪ F A ∨ B

We won’t use the language of events in this book. I’m just mentioning
it in case you’ve come across it before and you’re wondering how it
connects. If you’ve never seen it before, you can safely ignore this
section.

5.6 Summary

In this chapter we learned how to represent probabilities of proposi-
tions using the Pr(. . .) operator. We also learned some fundamental
rules of probability.

There were three rules corresponding to the concepts of tautology,
contradiction, and equivalence.

• Pr(T) = 1 for every tautology T.
• Pr(C) = 0 for every contradiction C.
• Pr(A) = Pr(B) if A and B are logically equivalent.

And there were two rules corresponding to the connectives & and ∨.

• Pr(A ∨ B) = Pr(A) + Pr(B), if A and B are mutually exclusive.
• Pr(A & B) = Pr(A)× Pr(B), if A and B are independent.
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The restrictions on these two rules are essential. If you ignore them,
you will get wrong answers.

Exercises

1. What is the probability of each of the following propositions?

a. A & (B &∼A)

b. ∼(A &∼A)

2. Give an example of each of the following.

a. Two statements that are mutually exclusive.
b. Two statements that are independent.

3. For each of the following, say whether it is true or false.

a. If propositions are independent, then they must be mutually
exclusive.

b. Independent propositions usually aren’t mutually exclusive.
c. If propositions are mutually exclusive, then they must be in-

dependent.
d. Mutually exclusive propositions usually aren’t independent.

4. Assume Pr(A & B) = 1/3 and Pr(A &∼B) = 1/5. Answer each
of the following:

a. What is Pr((A & B) ∨ (A &∼B))?
b. What is Pr(A)?
c. Are (A & B) and (A &∼B) independent?

5. Suppose A and B are independent, and A and C are mutually
exclusive. Assume Pr(A) = 1/3, Pr(B) = 1/6, Pr(C) = 1/9, and
answer each of the following:

a. What is Pr(A & C)?
b. What is Pr((A & B) ∨ C)?
c. Must Pr(A & B) = 0?

6. True or false: if Pr(A) = Pr(B), then A and B are logically equiv-
alent.

7. Consider the following argument.

If a coin is fair, the probability of getting at least one heads
in a sequence of four tosses is quite high: above 90%.
Therefore, if a fair coin has landed tails three times in a
row, the next toss will probably land heads.
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Answer each of the following questions.

a. Is the premise of this argument true?
b. Is the argument valid?
c. Is the argument sound?

8. Suppose a fair, six-sided die is rolled two times. What is is the
probability of it landing on the same number each time?

Hint: calculate the probability of it landing on a different number
each time. To do this, first count the number of possible ways
the two rolls could turn out. Then count how many of these are
“no-repeats.”

9. Same as the previous exercise but with four rolls instead of two.
That is, suppose a fair, six-sided die is rolled four times. What is
the probability of it landing on the same number four times in a
row?

10. The Addition Rule can be extended to three propositions. If A,
B, and C are all mutually exclusive with one another, then

Pr(A ∨ B ∨ C) = Pr(A) + Pr(B) + Pr(C).

Explain why this rule is correct. Would the same idea extend to
four mutually exclusive propositions? To five?

(Hint: there’s more than one way to do this. You can use an Euler
diagram. Or you can derive the new rule from the original one,
by thinking of A ∨ B ∨ C as a disjunction of A ∨ B and C.)

11. You have a biased coin, where each toss has a 3/5 chance of land-
ing heads. But each toss is independent of the others. Suppose
you’re going to flip the coin 1, 000 times. The first 998 tosses all
land tails. What is the probability at least one of the last two flips
will be tails?

12. There are 3 empty buckets lined up. Someone takes 4 apples
and places each one in a bucket. The placement of each apple is
random and independent of the others. What is the probability
that the first two buckets end up with no apples?

13. Suppose three cards are stacked in order: jack on top, queen in
the middle, king on the bottom. If we shuffle them randomly,
what is the probability the queen will still be in the middle when
we’re done? Assume shuffling makes every possible ordering
of the cards equally likely. Hint: how many ways are there to
assign each card a place in the stack? How many of these have
the queen in the middle?



48 jonathan weisberg

14. At University X, all courses meet once a week for 3 hours. At
the beginning of the semester, the registrar assigns each course a
time slot at random: they pick a random weekday and then flip
a fair coin to decide on morning (9 a.m. – 12 p.m.) vs. afternoon
(1 p.m. – 4 p.m.).

Conflicts are allowed: students can sign up for two (or more)
classes scheduled at the same time.

So far Axl has signed up for 2 classes that do not conflict. If
he chooses a 3rd class at random, what is the probability it will
introduce a conflict?



6 Conditional Probability

The chances of crashing your car are pretty low, but they’re consid-
erably higher if you’re drunk. Probabilities change depending on the
conditions.

We symbolize this idea by writing Pr(A | B), the probability that A
is true given that B is true. For example, to say the probability of A
given B is 30%, we write:

Pr(A | B) = .3.

We call this kind of probability conditional probability. But how do
we calculate conditional probabilities?

6.1 Calculating Conditional Probability

Figure 6.1: Conditional probability in a
fair die roll

Suppose I roll a fair, six-sided die behind a screen. You can’t see the
result, but I tell you it’s an even number. What’s the probability it’s
also a “high” number: either a 4, 5, or 6?

Maybe you figured the correct answer: 2/3. But why is that correct?
Because, out of the three even numbers (2, 4, and 6), two of them are
high (4 and 6). And since the die is fair, we expect it to land on a high
number 2/3 of the times it lands on an even number.

This hints at a formula for Pr(A | B).

Conditional Probability.

Pr(A | B) =
Pr(A & B)

Pr(B)
.

In the die-roll example, we considered how many of the B possibili-
ties were also A possibilities. Which means we divided Pr(A & B) by
Pr(B).

In fact, this formula is our official definition for the concept of condi-
tional probability. When we write the sequence of symbols Pr(A | B),
it’s really just shorthand for the fraction Pr(A & B)/Pr(B).

A B

Figure 6.2: Conditional probability is the
size of the A & B region compared to the
entire B region.

In terms of an Euler diagram (Figure 6.2), the definition of condi-
tional probability compares the size of the purple A & B region to the
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size of the whole B region, purple and blue together. If you don’t mind
getting a little colourful with your algebra:

Pr(A | B) =
�

�+�
.

So the definition works because, informally speaking, Pr(A & B)/Pr(B)
is the proportion of the B outcomes that are also A outcomes.

Dividing by zero is a common pitfall with conditional probability.
Notice how the definition of Pr(A | B) depends on Pr(B) being larger
than zero. If Pr(B) = 0, then the formula

The comedian Steven Wright once
quipped that “black holes are where
God divided by zero.”

Pr(A | B) =
Pr(A & B)

Pr(B)
doesn’t even make any sense. There is no number that results from
the division on the right hand side.1 1 There are alternative mathematical sys-

tems of probability, where conditional
probability is defined differently to
avoid this problem. But in this book
we’ll stick to the standard system. In
this system, there’s just no such thing as
“the probability of A given B” when B
has zero probability.

In such cases we say that Pr(A | B) is undefined. It’s not zero, or
some special number. It just isn’t a number.

6.2 Conditional Probability & Trees

We already encountered conditional probabilities informally, when we
used a tree diagram to solve the Monty Hall problem.

In a tree diagram, each branch represents a possible outcome. The
number placed on that branch represents the chance of that outcome
occurring. But that number is based on the assumption that all branches
leading up to it occur. So the probability on that branch is conditional
on all previous branches.

For example, suppose there are two urns of coloured marbles.

• Urn X contains 3 black marbles, 1 white.
• Urn Y contains 1 black marble, 3 white.

I flip a fair coin to decide which urn to draw from, heads for Urn X
and tails for Urn Y. Then I draw one marble at random.

1/2

1/2

3/4

1/4

1/4

3/4

H

T

B      3/8

W      1/8

B      1/8

W      3/8

Figure 6.3: Tree diagram for an urn
problem

In Figure 6.3, the probability of drawing a black marble on the top
path is 3/4 because we are assuming the coin landed heads, and thus
I’m drawing from Urn X. If the coin lands tails instead, and I draw
from Urn Y, then the chance of a black marble is instead 1/4. So these
quantities are conditional probabilities:

Pr(B | H) = 3/4,

Pr(B | T) = 1/4.

Notice, though, the first branch in a tree diagram is different. In the
H-vs.-T branch, the probabilities are unconditional, since there are no
previous branches for them to be conditional on.



odds & ends 51

6.3 More Examples

Imagine an urn contains marbles of three different colours: 20 are red,
30 are blue, and 40 are green. I draw a marble at random. What is
Pr(R | ∼B), the probability it’s red given that it’s not blue?

Pr(R | ∼B) =
Pr(R &∼B)

Pr(∼B)

=
Pr(R)

Pr(∼B)

=
20/90
60/90

= 1/3.

This calculation relies on the fact that R &∼B is logically equivalent to
R. A red marble is automatically not blue, so R is true under exactly
the same circumstances as R &∼B. The Equivalence Rule thus tells us
Pr(R &∼B) = Pr(R).

Suppose a university has 10,000 students. Each is studying under one
of four broad headings: Humanities, Social Sciences, STEM, or Profes-
sional. Under each of these categories, the number of students with
an average grade of A, B, C, or D is listed in the following table. What
is the probability a randomly selected student will have an A average,
given that they are studying either Humanities or Social Sciences?

Humanities Social Sciences STEM Professional

A 200 600 400 900

B 500 800 1600 900

C 250 400 1500 750

D 50 200 500 450

Pr(A | H ∨ S) =
Pr(A & (H ∨ S))

Pr(H ∨ S)

=
800/10, 000

3, 000/10, 000

= 4/15.

What about the reverse probability, that a student is studying either
Humanities or Social Sciences given that they have an A average?

Pr(H ∨ S | A) =
Pr((H ∨ S) & A)

Pr(A)

=
800/10, 000

2, 100/10, 000

= 8/21.
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Notice how we get a different number now.

6.4 Order Matters

In general, the probability of A given B will be different from the
probability of B given A. These are different concepts.

For example, university students are usually young, but young peo-
ple aren’t usually university students. Most aren’t even old enough to
be in university. So the probability someone is young given they are in
university is high. But the probability someone is in university given
that they are young is low. So Pr(Y | U) 6= Pr(U | Y).

Once in a while we do find cases where Pr(A | B) = Pr(B | A).
For example, suppose we throw a dart at random at a circular board,
divided into four quadrants. The chance the dart will land on the left
half given that it lands on the top half is the same as the chance it lands
on the top half given it lands on the left. Both probabilities are 1/2.

But this kind of thing is the exception rather than the rule. Usually,
Pr(A | B) will be a different number from Pr(B | A). So it’s important
to remember how order matters.

þ When we write Pr(A | B), we are discussing the probability of
A. But we are discussing it under the assumption that B is true.

6.5 Declaring Independence

We explained independence informally back in Chapter 4: A and B
are independent if the truth of one doesn’t change the probability of
the other. Now that we’ve formally defined conditional probability, we
can formally define independence too.

Independence. A is independent of B if Pr(A | B) = Pr(A) and Pr(A) >

0.

In other words, they’re independent if A’s probability is the same after
B is given as it was before (and not just for the silly reason that there
was no chance of A being true to begin with).

Now we can establish three useful facts about independence.

The first is summed up in the mantra “independence means multi-
ply.” This actually has two parts.

We already learned the first part with the Multiplication Rule: if
A is independent of B, then Pr(A & B) = Pr(A)Pr(B). Except now
we can see why this rule holds, using the definition of conditional
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probability and some algebra:

Pr(A | B) =
Pr(A & B)

Pr(B)
by definition

Pr(A | B)Pr(B) = Pr(A & B) by algebra

Pr(A)Pr(B) = Pr(A & B) by independence.

The second part of the “independence means multiply” mantra is
new though. It basically says that the reverse also holds. As long as
Pr(A) > 0 and Pr(B) > 0, if Pr(A & B) = Pr(A)Pr(B), then A is
independent of B.

Bottom line: as long as there are no zeros to worry about, indepen-
dence is the same thing as Pr(A & B) = Pr(A)Pr(B).

Second, independence is symmetric. If A is independent of B, then B
is independent of A. Informally speaking, if B makes no difference to
A’s probability, then A makes no difference to B’s probability.

This is why we often say “A and B are independent,” without spec-
ifying which is independent of which. Since independence goes both
ways, they’re automatically independent of each other.

Third, independence extends to negations. If A is independent of
B, then it’s also independent of ∼B (as long as Pr(∼B) > 0, so that
Pr(A | ∼B) is well-defined).

Notice, this also means that if A is independent of B, then ∼A is
independent of ∼B (as long as Pr(∼A) > 0).

So far our definition of independence only applies to two proposi-
tions. We can extend it to three as follows.

Three-way Independence. A, B, and C are independent if

i. A is independent of B, A is independent of C, and B is inde-
pendent of C, and

ii. Pr(A & B & C) = Pr(A)Pr(B)Pr(C).

In other words, a trio of propositions is independent if each pair of
them is independent, and the multiplication rule applies to their con-
junction. The same idea can be extended to define independence for
four propositions, five, etc.

You may be wondering: is part (ii) of this definition really neces-
sary? If each pair of propositions is independent, then the multipli-
cation rule applies to any two of them. Doesn’t this guarantee that it
applies to all three together?

Curiously, the answer is no. Suppose someone has equal chances
of having been born in the spring, summer, fall, or winter. Let A say
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that they were born in either spring or summer; let B say they were
born in either summer or fall; and let C say they were born in either
fall or spring. Pairwise these propositions are all independent. But
Pr(A & B & C) = 0 by the Contradiction rule, since there is no season
shared by all three propositions; they cannot all be true. And yet
Pr(A)Pr(B)Pr(C) = 1/8.

Exercises

1. Answer each of the following:

a. On a fair die with six sides, what is the probability of rolling a
low number (1, 2, or 3) given that you roll an even number.

b. On a fair die with eight sides, what is the probability of rolling
an even number given that you roll a high number (5, 6, 7, or
8)?

2. Suppose Pr(B) = 4/10, Pr(A) = 7/10, and Pr(B & A) = 2/10.
What are each of the following probabilities?

a. Pr(A | B)
b. Pr(B | A)

3. Five percent of tablets made by the company Ixian have factory
defects. Ten percent of the tablets made by their competitor com-
pany Guild do. A computer store buys 40% of its tablets from
Ixian, and 60% from Guild.

This exercise and the next one are based
on very similar exercises from Ian Hack-
ing’s wonderful book, An Introduction to
Probability and Inductive Logic.Draw a probability tree to answer the following questions.

a. What is the probability a randomly selected tablet in the store
is made by Ixian and has a factory defect?

b. What is the probability a randomly selected tablet in the store
has a factory defect?

c. What is the probability a tablet from this store is made by
Ixian, given that it has a factory defect?

4. In the city of Elizabeth, the neighbourhood of Southside has lots
of chemical plants. 2% of Elizabeth’s children live in Southside,
and 14% of those children have been exposed to toxic levels of
lead. Elsewhere in the city, only 1% of the children have toxic
levels of exposure.

Draw a probability tree to answer the following questions.

a. What is the probability that a randomly chosen child from
Elizabeth lives in Southside and has toxic levels of lead expo-
sure?
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b. What is the probability that a randomly chosen child from
Elizabeth has toxic levels of lead exposure?

c. What is the probability that a randomly chosen child from
Elizabeth who has toxic levels of lead exposure lives in South-
side?

5. Imagine 100 prisoners are sentenced to death. 70 of them are
housed in cell block A, the other 30 are in cell block B. Of the
prisoners in cell block A, 9 are innocent. Only 1 prisoner in cell
block B is innocent.

The law requires that one prisoner be pardoned. The lucky pris-
oner will be selected by flipping a fair coin to choose either cell
block A or B. Then a fair lottery will be used to select a random
prisoner from the chosen cell block.

What is the probability the pardoned prisoner comes from cell
block A if she is innocent? Answer each of the following to find
out.

I = The pardoned prisoner is innocent.
A = The pardoned prisoner comes from cell block A.

a. What is Pr(I | A)?
b. What is Pr(A & I)?
c. What is Pr(I | B)?
d. What is Pr(B & I)?
e. What is Pr(I)?
f. What is Pr(A | I)?
g. Draw a probability tree to visualize and verify your calcula-

tions.

6. Suppose A, B, and C are independent, and they each have the
same probability: 1/3. What is Pr(A & B | C)?

7. If A and B are mutually exclusive, what is Pr(A | B)? Justify
your answer using the definition of conditional probability.

8. Which of the following situations is impossible? Justify your an-
swer.

a. Pr(A) = 1/2, Pr(A | B) = 1/2, Pr(B | A) = 1/2.
b. Pr(A) = 1/2, Pr(A | B) = 1, Pr(A | ∼B) = 1.

9. Is the following statement true or false: if A and B are mutually
exclusive, then Pr(A ∨ B | C) = Pr(A | C) + Pr(B | C). Justify
your answer.
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10. Justify the second part of the “independence means multiply”
mantra: if Pr(A) > 0, Pr(B) > 0, and Pr(A & B) = Pr(A)Pr(B),
then A is independent of B.

Hint: start by supposing Pr(A) > 0, Pr(B) > 0, and Pr(A &
B) = Pr(A)Pr(B). Then apply some algebra and the definition
of conditional probability.

11. Justify the claim that independence is symmetric: if A is inde-
pendent of B, then B is independent of A.

Hint: start by supposing that A is independent of B. Then write
out Pr(A | B) and apply the definition of conditional probability.

12. Suppose A, B, and C are independent. Is it possible that Pr(A &
B & C) = 0? If yes, give an example where this happens. If no,
prove that it cannot happen.

13. Suppose we have 4 apples and 10 buckets. We place each apple
in a random bucket; the placement of each apple is independent
of the others. Let Bij be the proposition that apples i and j were
placed in the same bucket.

a. Is B12 independent of B34?
b. Is B12 independent of B23?
c. Is every pair of Bij propositions independent?
d. Is every trio of Bij propositions independent?

14. Suppose we have a coin whose bias we want to learn, so we’re
going to flip it 3 times. We start out by assigning the same prob-
ability to each possible sequence of heads and tails. For example,
the sequences HTH and TTT are equally likely, as are all other
sequences.

a. Before we do our 3 flips, what is the probability of HTH?
b. What is the probability of heads on the third flip, given that

the first two flips land heads?

15. Prove that if A logically entails B, then Pr(B | A) = 1.

16. Suppose the following three conditions hold:

i. Pr(A) = Pr(∼A),
ii. Pr(B | A) = Pr(B | ∼A),

iii. Pr(B) > 0.

Must the following be true then?

iv. Pr(A | B) = Pr(A | ∼B) = 1/2?
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If yes, prove that (iv) must hold. If no, give a counterexample:
draw an Euler diagram where conditions (i)–(iii) hold, but not
(iv).

17. Prove that the equation Pr(A | B)Pr(B) = Pr(B | A)Pr(A) al-
ways holds. (Assume both conditional probabilities are well-
defined.)

18. Prove that the following equation always holds, assuming the
conditional probabilities are well-defined:

Pr(A | B)
Pr(B | A)

=
Pr(A)

Pr(B)
.

19. Does the equation Pr(A | B) = Pr(∼B | ∼A) always hold, as-
suming both conditional probabilities are both well-defined? If
yes, prove that it does. If no, draw an eikosogram where it fails
to hold.

20. Suppose an urn contains 30 black marbles and 70 white. We
randomly draw 5 marbles with replacement. Let A be the propo-
sition that 3 of the first 4 draws are black, and let B be the propo-
sition that the 5th draw is black. Calculate the following quantity:

Pr(A | B)
Pr(B | A)

Pr(B)
Pr(A)

.





7 Calculating Probabilities, Part 2

We learned rules for ∨ and & back in Chapter 5.

The Addition Rule. Pr(A∨ B) = Pr(A)+ Pr(B) if A and B are mutually
exclusive.

The Multiplication Rule. Pr(A&B) = Pr(A)× Pr(B) if A and B are in-
dependent.

In this chapter we’ll learn new, more powerful rules for ∨ and &. But
we’ll start with negation, a rule for calculating Pr(∼A).

7.1 The Negation Rule A

~A

Figure 7.1: The Negation Rule.
Pr(∼A) = 1− Pr(A).

If there’s a 70% chance of rain, then there’s a 30% chance it won’t rain.
In symbols, if Pr(R) = .7 then Pr(∼R) = .3. So the rule for Pr(∼A) is:

The Negation Rule. Pr(∼A) = 1− Pr(A).

In terms of an Euler diagram, the probability of ∼A is the size of the
red region. So Pr(∼A) is 1− Pr(A).

Notice that this rule can be flipped around, to calculate the probabil-
ity of a positive statement:

Pr(A) = 1− Pr(∼A).

Sometimes what we want to know is Pr(A), but it turns out to be much
easier to calculate Pr(∼A) first. Then we use this flipped version of
the negation rule to get what we’re after.

7.2 The General Addition Rule

The Addition Rule for calculating Pr(A∨ B) depends on A and B being
mutually exclusive. What if they’re not? Then we can use:

The General Addition Rule. Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A & B).
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This rule always applies, whether A and B are mutually exclusive or
not.

A B

Figure 7.2: The General Addition Rule in
an Euler diagram.

To understand the rule, consider an Euler diagram where A and B
are not mutually exclusive. In terms of colour, the size of the A ∨ B-
region is:

� + � + �.

Which is the same as:

(� + �) + (� + �) − �.

In algebraic terms this is:

Pr(A) + Pr(B)− Pr(A & B).

To think of it another way, when we add Pr(A) + Pr(B) to get the
size of the A ∨ B region, we double-count the A & B region. So we
have to subtract out Pr(A & B) at the end.

What if there is no A & B region? Then Pr(A & B) = 0, so subtracting
it at the end has no effect. Then we just have the old Addition Rule:

Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A & B)

= Pr(A) + Pr(B)− 0

= Pr(A) + Pr(B).

And this makes sense. If there is no A & B region, that means A and B
are mutually exclusive. So the old Addition Rule applies.

That’s why we call the new rule the General Addition Rule. It ap-
plies in general, even when A and B are not mutually exclusive. And
in the special case where they are mutually exclusive, it gives the same
result as the Addition Rule we already learned.

A tree diagram also works to explain the General Addition Rule.
Consider Figure 7.3, where we start with branches for A and ∼A, then
subdivide into branches for B and ∼B.

There are three leaves where A∨ B is true, marked with asterisks. If
we add Pr(A) + Pr(B), we’re adding the two leaves where A is true (*
and **) to the two leaves where B is true (* and ***). So we’ve double-
counted the A & B leaf (*). To get Pr(A ∨ B) then, we have to subtract
one of those A & B leaves (*).

There is a catch to the General Addition Rule. You need to know
Pr(A & B) in order to apply it. Sometimes that information is given
to us. But when it’s not, we have to figure it out somehow. If A and
B are mutually exclusive, then it’s easy: Pr(A & B) = 0. Or, if they’re
independent, then we can calculate Pr(A & B) = Pr(A)× Pr(B). But
in other cases we have to turn elsewhere.
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A

~A

B        Pr(A&B)  *

~B      Pr(A&~B)  **

B        Pr(~A&B)  ***

~B      Pr(~A&~B)

Figure 7.3: Tree diagram with the three
A ∨ B leaves marked

7.3 The General Multiplication Rule

How can we calculate Pr(A & B) in general?

The General Multiplication Rule. Pr(A & B) = Pr(A | B)Pr(B).

The intuitive idea is, if you want to know how likely it is A and B will
both turn out to be true, first ask yourself how likely A is to be true
if B is true. Then weight the answer according to B’s chances of being
true.

Notice, if A and B are independent, then this rule just collapses
into the familiar Multiplication Rule we already learned. If they’re
independent, then Pr(A | B) = Pr(A) by definition. So substituting
into the General Multiplication Rule gives:

Pr(A & B) = Pr(A | B)Pr(B)

= Pr(A)Pr(B).

Which is precisely the Multiplication Rule.
So we now have two rules for &. The first one only applies when

the two sides of the & are independent. The second applies whether
they’re independent or not. The second rule ends up being the same
as the first one when they are independent.

A tree diagram helps us understand this rule too. Recall this problem
from Chapter 6, with two urns of coloured marbles:

• Urn X contains 3 black marbles, 1 white.
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• Urn Y contains 1 black marble, 3 white.

I flip a fair coin to decide which urn to draw from, heads for Urn X
and tails for Urn Y. Then I draw one marble at random.

1/2

1/2

3/4

1/4

1/4

3/4

H

T

B      3/8

W      1/8

B      1/8

W      3/8

Figure 7.4: Tree diagram for an urn
problem

Now suppose we want to know the probability the coin will land
tails and the marble drawn will be white, Pr(T & W). The General
Multiplication Rule tells us the answer is:

Pr(T & W) = Pr(W & T)

= Pr(W | T)Pr(T)

= 3/4× 1/2

= 3/8.

In the tree diagram, this corresponds to following the bottom-most
path, multiplying the probabilities as we go. And this makes sense:
half the time the coin will land tails, and on 3/4 of those occasions the
marble drawn will be white. So, if we were to repeat the experiment
again and again, we would get tails followed by a white marble in 3
out of every 8 trials.

þ Black hole warning: notice that the General Multiplication Rule
depends on Pr(A | B) being well-defined. So it only applies
when Pr(B) > 0.
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7.4 Laplace’s Urn Puzzle

The same urn scenario was used by 18th Century mathematician Laplace
in one of his favourite puzzles. He asked what happens if we do two
draws, with replacement. What’s the probability both draws will come
up black?

It’s tempting to say 1/4. The probability of drawing a black marble
on each draw is 1/2. So it seems the probability of two blacks is just
1/2× 1/2 = 1/4.

But the correct answer is actually 5/16. Why? Let’s use a probability
tree again.

1/2

1/2

9/16

7/16

1/16

15/16

X

Y

BB      9/32

~BB

BB      1/32

~BB

Figure 7.5: Building a probability tree to
solve Laplace’s urn puzzle

Depending on how the coin lands, you could end up drawing either
from Urn X or from Urn Y, with equal probability.

If you end up drawing from Urn X, the probability of a black marble
on any given draw is 3/4. We’re drawing with replacement, so this
doesn’t change on the second draw. The probability both draws will
come up black is thus 3/4× 3/4 = 9/16.

If instead you end up drawing from Urn Y, the probability of a
black marble on any given draw is 1/4. And this doesn’t change on
the second draw since we’re drawing with replacement. So the chance
of both being black in this case is 1/4× 1/4 = 1/16.

So the probability of drawing two black marbles from Urn X is:

Pr(X & BB) = Pr(X)Pr(BB | X)

= 1/2× 9/16

= 9/32.

And the probability of drawing two black marbles from Urn Y is:

Pr(Y & BB) = Pr(Y)Pr(BB | Y)
= 1/2× 1/16

= 1/32.

Now we can apply the Addition Rule to calcualte Pr(BB):

Pr(BB) = Pr(X & BB) + Pr(Y & BB)

= 9/32 + 1/32

= 5/16.

7.5 The Law of Total Probability

This kind of calculation comes up a lot. Since it would be tedious to
figure it out from scratch every time, we make a general rule instead:

The Law of Total Probability. Pr(A) = Pr(A | B)Pr(B)+ Pr(A | ∼B)Pr(∼B).
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There’s an intuitive idea at work here. To figure out how likely A is,
consider how likely it would be if B were true, and how likely it would
be if B were false. Then weight each of those hypothetical possibilities
according to their probabilities.

A B

Figure 7.6: The Law of Total Probabil-
ity calculates the size of the A region by
summing its two parts.

We can also use an Euler diagram. The size of the A region is the
sum of the A & B region and the A &∼B region: �+�. And each of
those regions can be calculated using the General Multiplication Rule.
For example, Pr(A & B) = Pr(A | B)Pr(B). So in algebraic terms we
have:

Pr(A) = �+�

= Pr(A & B) + Pr(A &∼B)

= Pr(A | B)Pr(B) + Pr(A | ∼B)Pr(∼B).

Which is precisely the Law of Total Probability.

Pr(B
)

Pr(~B)

Pr(A|B)

 

Pr(A|~B)

 

B

~B

A        Pr(A|B)Pr(B)  *

~A

A        Pr(A|~B)Pr(~B)  **

~A

Figure 7.7: The Law of Total Probability
in a tree diagram

We can also use a tree diagram to illustrate the same reasoning.
There are two leaves where A is true, marked with asterisks. To get
the probability of each leaf we multiply across the branches (that’s the
General Multiplication Rule). And then to get the total probability for
A, we add up the two leaves: Pr(A) = ∗+ ∗∗. Once again the result is
the Law of Total Probability:

Pr(A) = Pr(A | B)Pr(B) + Pr(A | ∼B)Pr(∼B).

þ Black hole warning: notice that the Law of Total Probability de-
pends on Pr(A | B) and Pr(A | ∼B) both being well-defined. So
it only applies when Pr(B) > 0 and Pr(∼B) > 0.

7.6 Example

Every day Professor X either drives her car to campus or takes the bus.
Mostly she drives, but one time in four she takes the bus. When she
drives, she’s on time 80% of the time. When she takes the bus, she’s
on-time 90% of the time. What is the probability she’ll be on time for
class tomorrow?

First let’s solve this by just applying the Law of Total Probability
directly:

Pr(O) = Pr(O | B)Pr(B) + Pr(O | D)Pr(D)

= (9/10)(1/4) + (8/10)(3/4)

= 33/40.

Now let’s solve it slightly differently, thinking the problem through
from more basic principles.

There are two, mutually exclusive cases where Professor X is on
time: one where she takes the bus, one where she drives.

Pr(O) = Pr(O & B) + Pr(O & D).
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We can use the General Multiplication Rule to calculate the probability
she’ll take the bus and be on time:

Pr(O & B) = Pr(O | B)Pr(B).

And we can do the same for the probability she’ll drive and be on time:

Pr(O & D) = Pr(O | D)Pr(D)

Putting all the pieces together:

Pr(O) = Pr(O & B) + Pr(O & D)

= Pr(O | B)Pr(B) + Pr(O | D)Pr(D)

= (9/10)(1/4) + (8/10)(3/4)

= 33/40.

Notice that we didn’t just get the same answer, we ended up do-
ing the same calculation too. Our second approach just reconstructed
from scratch the reasoning behind the Law of Total Probability. It’s a
very good idea to understand the rationale behind the Law of Total
Probability. But once you get used to the formula, it’s also fine to skip
straight to applying it directly.

1/4

3/4

9/10

1/10

8/10

2/10

B

D

O      9/40

~O

O      24/40

~O

Figure 7.8: A probability tree for Profes-
sor X

You can also use a tree diagram. Again, the calculation will be the
same. But the diagram may help you get started, and it helps you
check that you’ve applied the formula correctly too.

Exercises

1. Suppose you have an ordinary deck of 52 playing cards, and you
draw one card at random. What is the probability you will draw:

a. A face card (king, queen, or jack)?
b. A card that is not a face card?
c. An ace or a spade?
d. A queen or a heart?
e. A queen or a non-spade?

2. Suppose that Pr(A) = 1/3, Pr(B) = 1/4, and that A and B are
independent. What is Pr(∼A &∼B)?

3. What is Pr(X ∨ B) in the first version of the urn problem? (The
first version is the one where we start with a fair coin flip to
choose between Urn X and Urn Y, then draw one marble at ran-
dom.)

4. Recall Laplace’s version of the urn puzzle: we select either Urn X
or Urn Y at random, then we do two random draws from it, with
replacement. What is Pr(X ∨ BB)?
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5. Suppose we add a third urn to Laplace’s puzzle: Urn Z contains 2
black marbles and 2 white ones. We choose one of the three urns
at random, and then do two random draws with replacement.
What is Pr(BB) then?

6. The Law of Total probability calculates Pr(A) by considering two
cases, B and ∼B. Notice that B and ∼B form a partition: they are
mutually exclusive and exhaustive possibilities.

Suppose we had a partition of three propositions instead: B, C,
and D. Would the following extension of the Law of Total Prob-
ability hold then?

Pr(A) = Pr(A | B)Pr(B) + Pr(A | C)Pr(C) + Pr(A | D)Pr(D).

Justify your answer.

7. Suppose there are two urns with the following contents:

• Urn I has 8 black balls, 2 white.
• Urn II has 2 black balls, 3 white.

A fair coin will be flipped. If it comes up heads, a ball will be
drawn from Urn I at random. Otherwise a ball will be drawn
from Urn II at random. What is the probability a black ball will
be drawn?

8. Suppose you have an ordinary deck of 52 cards. A card is drawn
and is not replaced, then another card is drawn. Assume that on
each draw all the cards then in the deck have an equal chance of
being drawn.

a. What is the probability of getting an ace on draw 1?
b. What is the probability of a ten on draw 2 given ace on draw

1?
c. What is the probability of an ace on draw 1 and a ten on draw

2?
d. What is the probability of a ten on draw 1 and an ace on draw

2?
e. What is the probability of an ace and a ten?
f. What is the probability of 2 aces?

9. The probability that George will study for the final is 4/5. The
probability he will pass given that he studies is 3/5. The proba-
bility he will pass given that he does not study is 1/10. What is
the probability George will pass?

10. Calculate each of the following probabilities:
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a. Pr(P) = 1/2, Pr(Q) = 1/2, Pr(P & Q) = 1/8. What is Pr(P ∨
Q)?

b. Pr(R) = 1/2, Pr(S) = 1/4, Pr(R ∨ S) = 3/4. What is Pr(R &
S)?

c. Pr(U) = 1/2, Pr(T) = 3/4, Pr(U & ∼T) = 1/8. What is
Pr(U ∨∼T)?

11. Pr(P) = 1/2, Pr(Q) = 1/2, and P and Q are independent.

a. What is Pr(P & Q)?
b. Are P and Q mutually exclusive?
c. What is Pr(P ∨Q)?

12. Suppose A, B, and C are all mutually exclusive, and they each
have the same probability: 1/5. What is Pr(∼(A & B) & C)?

13. Researchers are studying the safety of drug X. They enroll 60

subjects in a study and give drug X to 35 of them. By the end of
the study, 5 subjects have developed stomach cancer: 3 who were
taking drug X, 2 who were not.

Draw a Venn diagram and use it to answer the following ques-
tions about a randomly selected subject:

a. What is the probability they developed stomach cancer?
b. What is the probability they developed stomach cancer given

that they were taking drug X?
c. What is the probability they developed stomach cancer given

that they were not taking drug X?
d. Based on this study, would you conclude that drug X increases

or decreases the risk of stomach cancer?

14. There is a room filled with two types of urns.

• Type A urns contain 30 yellow marbles, 70 red.
• Type B urns contain 20 green marbles, 80 yellow.

The two types of urn look identical, but 80% of them are Type A.

a. You pick an urn at random and draw a marble from it at ran-
dom. What is the probability the marble will be yellow?

b. You look at the marble: it is yellow. What’s the probability the
urn is a Type B urn?

15. Suppose A, B, and C are independent of one another. Does it
follow that Pr(B | A & C) = Pr(B)? Justify your answer.

16. Is the following combination of probabilities possible? Pr(A) =

2/5, Pr(B) = 4/5, and Pr(A ∨ B) = 3/5. Justify your answer.
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17. Which of the following situations is impossible? Justify your an-
swer.

a. Pr(A) = 4/5, Pr(B) = 1/5, Pr(∼A & B) = 3/5.
b. Pr(∼X) = 1/3, Pr(∼Y) = 2/3, Pr(X & Y) = 0.

18. If Pr(A) = 0, what is Pr(A | B)? Justify your answer.

19. If A and B are logically equivalent, what is Pr(A | B)? Justify
your answer.

20. Suppose A, B, and C all have the same probability, namely 1/4.
Suppose they are also independent of one another. What is Pr(∼A∨
∼B ∨∼C)?

Hint: ∼A ∨ ∼B ∨ ∼C is logically equivalent to ∼(A & B & C).
Why?

21. If Pr(A) = 1/2 and Pr(B) = 3/5, are A and B mutually exclu-
sive? Justify your answer.

22. Suppose Pr(A) = 1/4, Pr(B) = 1/3, and A and B are indepen-
dent. What is Pr(A ∨ (B &∼A))?

23. Suppose A logically entails C, and A and B are independent. If
Pr(A) = 1/7, Pr(B) = 1/3, and Pr(C) = 1/3, what is Pr((A &
∼B) ∨∼C)?

24. If A and B are mutually exclusive, must the following hold?

Pr(A ∨ B | C) = Pr(A | C) + Pr(B | C).

Assume the conditional probabilities are all well-defined, and
justify your answer.

Hint: apply the definition of conditional probability and use the
following fact: (A ∨ B) & C is logically equivalent to (A & C) ∨
(B & C).

25. Prove that if A and B are mutually exclusive, then

Pr(A | A ∨ B) =
Pr(A)

Pr(A) + Pr(B)
.

26. If Pr(C | B & A) = Pr(C | B), does this follow?

Pr(A | B & C) = Pr(A | B).

Assume all conditional probabilities are well-defined, and justify
your answer.
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27. Justify the claim from Chapter 6 that independence extends to
negations: if A is independent of B, then it’s also independent of
∼B (provided Pr(∼A) > 0).

Warning: this one is hard. I suggest starting with the equation:

Pr(A & B) = Pr(A)Pr(B).

Then use the Negation Rule which tells us:

Pr(B) = 1− Pr(∼B).

And use the Addition Rule to get:

Pr(A & B) = Pr(A)− Pr(A &∼B).

28. Three friends get together and tell each other their birthdays.
If each person’s birthday is independent of the others, what is
the probability that they all have different birthdays? Assume
birthdays are randomly distributed, and ignore leap years; each
friend has a 1/365 chance of being born on a given day.

29. An urn has two marbles, one black and one white. We will do
repeated random draws, with replacement. But every time we
draw a white marble, another white marble will be added to the
urn for the next draw. Suppose we do 5 draws. What is the
probability they will all be white?

30. Consider the inequality Pr(A) < Pr(A ∨ B). Which of the fol-
lowing is correct?

a. This inequality always holds.
b. This inequality only holds sometimes: when A and B are mu-

tually exclusive.
c. This inequality only holds sometimes: when A and B are com-

patible (not mutually exclusive).
d. This inequality only holds sometimes: when Pr(∼A & B) > 0.
e. This inequality never holds.

31. Consider the following two statements.

i. If Pr(A | B) = 2/3 and Pr(A | ∼B) = 2/3, then Pr(A) = 2/3.
ii. If Pr(A) = 2/3, then Pr(A | B) = 2/3 and Pr(A | ∼B) = 2/3.

Assuming all conditional probabilities are well-defined, which of
these statements is true? Both, neither, or just one (which one)?

32. Consider the following two assignments of probabilities.

i. Pr(X & Y) = 1/4, Pr(X &∼Y) = 1/4, Pr(∼X) = 1/2.
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ii. Pr(A &∼B) = 1/3, Pr(A) = 1/2, Pr(B) = 1/4.

Which of them violate the laws of probability: both, neither, or
just one (which one)?

33. Consider the following two assignments of probabilities.

i. Pr(A) = 1/3, Pr(A & B) = 1/9, Pr(∼B | A) = 2/9.
ii. Pr(X | Y) = 1/3, Pr(X | ∼Y) = 1/2, Pr(X) = 2/3.

Which of them violate the laws of probability: both, neither, or
just one (which one)?

34. Consider the following two assignments of probabilities:

i. Pr(A) = 4/5, Pr(B) = 1/5, Pr(∼A & B) = 3/5.
ii. Pr(∼X) = 1/10, Pr(∼Y) = 9/10, Pr(X & Y) = 0.

Which of them violate the laws of probability: both, neither, or
just one (which one)?

35. In April of 2021 during the Covid-19 pandemic, concerns arose
about the safety of one of the vaccines. At the time 7 million peo-
ple had already received this vaccine, a few of whom developed
dangerous bloodclots. One of these people had already died as a
result. This exercise is based on a tweet of Nate

Silver’s

Suppose at the time there was a 1/100 chance of getting Covid-
19 without the vaccine, and only a 1/1, 000 chance with the vac-
cine. And suppose unvaccinated people who got Covid-19 died
in 1/150 cases, while those who’d had the vaccine only died in
1/500 cases.

What then was the probability of dying, either from a vaccine-
induced blood clot or from Covid-19, if you did take the vaccine?
What was the probability if you didn’t? (Assume no other vac-
cines were available.)

36. Prove that if Pr(B) = 1, then Pr(A & B) = Pr(A).

37. Prove that Pr(A & B) ≥ Pr(A) + Pr(B)− 1.

38. Prove that Pr(A & B & C) = Pr(A)Pr(B | A)Pr(C | B & A) as long
as the two conditional probabilities are well-defined.

https://twitter.com/NateSilver538/status/1381968804004065299
https://twitter.com/NateSilver538/status/1381968804004065299


8 Bayes’ Theorem

. . . in no other branch of mathematics is it so easy
for experts to blunder as in probability theory.

—Martin Gardner

In a famous psychology experiment, subjects were asked to solve the
following problem.

The experiment was first published in
1971. It was performed by Daniel Kah-
neman and Amos Tversky. Their work
on human reasoning reshaped the field
of psychology, and eventually won a No-
bel prize in 2002.A cab was involved in a hit and run accident at night. Two cab

companies, the Green and the Blue, operate in the city. You are
given the following data:

1. 85% of the cabs in the city are Green and 15% are Blue.
2. A witness identified the cab as Blue. The court tested the relia-

bility of the witness under the same circumstances that existed
on the night of the accident and concluded that the witness
correctly identified each one of the two colors 80% of the time
and failed 20% of the time.

What is the probability that the cab involved in the accident was
blue rather green?

Most people answer 80%, because the witness is 80% reliable. But the
right answer is 12/29, or about 41%.

How could the probability be so low when the witness is 80% reli-
able? The short answer is: because blue cabs are rare. So most of the
time, when the witness says a cab is blue, it’s one of the 20% of green
cabs they mistakenly identify as blue.

But this answer still needs some explaining. Let’s use a diagram.

Figure 8.1: The taxicab problem. There
are 15 blue cabs, 85 green. The dashed
region indicates those cabs the witness
identifies as "blue." It includes 80% of
the blue cabs (12), and only 20% of the
green ones (17). Yet it includes more
green cabs than blue.

Imagine there are just 100 cabs in town, 85 green and 15 blue. The
dashed blue line represents the cabs the witness identifies as “blue,”
both right or wrong. Because the witness is 80% accurate, that line
encompasses 80% of the blue cabs, which is 12 cabs. But it also en-
compasses 20% of the green cabs, which is 17. That’s a total of 29 cabs
identified as “blue,” only 12 of which actually are blue.

So out of the 29 cabs the witness calls “blue,” only 12 really are
blue. The probability a cab really is blue given the witness says so is
only 12/29, about 41%.

https://en.wikipedia.org/wiki/Daniel_Kahneman
https://en.wikipedia.org/wiki/Daniel_Kahneman
https://en.wikipedia.org/wiki/Amos_Tversky
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Another way to think about the problem is that there are two pieces
of information relevant to whether the cab is blue. The witness says
the cab is blue, but also, most cabs are not blue. So there’s evidence for
the cab being blue, but also strong evidence against it. The diagram
in Figure 8.1 shows us how to balance these two, competing pieces of
evidence and come to the correct answer.

What trips people up so much in the taxicab problem? Remember
how order matters with conditional probability. In this problem, we’re
asked to find Pr(B | W), the probability the cab is blue given that the
witness says it is. That’s not the same as Pr(W | B), the probability
the witness will say the cab is blue if it really is. The problem tells us
Pr(W | B) = 8/10, but it doesn’t tell us a number for Pr(B | W). We
have to figure that out.

We saw back in Chapter 6 that Pr(A | B) is usually a different
number from Pr(B | A). A university student will probably be young,
but a young person will probably not be a university student. That’s an
example where it’s easy to see that order matters. The taxicab example
makes it much less obvious, in fact it tempts us to confuse Pr(B | W)

with Pr(W | B).

8.1 Bayes’ Theorem

Problems where we’re given Pr(B | A) and we have to figure out
Pr(A | B) are extremely common. Luckily, there’s a famous formula
for solving them.

Thomas Bayes (1701–1761) was an En-
glish minister and mathematician, the
first to formulate the theorem that now
bears his name.

Bayes’ Theorem. If Pr(A), Pr(B) > 0, then

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(B)
.

Notice two things here. First, we need Pr(A) and Pr(B) to both be pos-
itive, because otherwise Pr(A | B) and Pr(B | A) aren’t well-defined.
Second, we need to know more than just Pr(B | A) to apply the for-
mula. We also need numbers for Pr(A) and Pr(B).

In the taxicab problem we’re given two of the three pieces of infor-
mation we need. Here’s Bayes’ theorem for the taxicab example:

Pr(B |W) =
Pr(B)Pr(W | B)

Pr(W)
.

Whereas the problem gives us the following information:

• Pr(W | B) = 80/100.
• Pr(W | ∼B) = 20/100.
• Pr(B) = 15/100.
• Pr(∼B) = 85/100.

https://en.wikipedia.org/wiki/Thomas_Bayes
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What’s missing for Bayes’ Theorem is Pr(W). Fortunately, we can
calculate it with the Law of Total Probability!

Pr(W) = Pr(W | B)Pr(B) + Pr(W | ∼B)Pr(∼B)

= (80/100)(15/100) + (20/100)(85/100)

= 29/100.

And now we have everything we need to plug into Bayes’ Theorem:

Pr(B |W) =
Pr(B)Pr(W | B)

Pr(W)

=
(15/100)(80/100)

29/100
= 12/29.

This is the same answer we got with our grid diagram (Figure 8.1).
And notice, it’s also the answer we’d get from a tree diagram too (Fig-
ure 8.2).
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0.85

0.8
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B

~B

W      0.12

~W

W      0.17

~W

Figure 8.2: A tree diagram for the taxi-
cab problem. We calculate Pr(B & W) =
.12 and Pr(W) = .12 + .17, then use the
definition of conditional probability to
get Pr(B |W) = 12/29.

8.2 Understanding Bayes’ Theorem

Why does Bayes’ theorem work? One way to think about it is to start
by recalling the definition of conditional probability:

Pr(A | B) =
Pr(A & B)

Pr(B)
.

Then apply the General Multiplication Rule to the numerator:

Pr(A & B) = Pr(B | A)Pr(A).

And plug that back into the first equation:

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(B)
.

This proves that Bayes’ theorem is correct. But it also suggests a way
of understanding it visually, with an Euler diagram.

A B

Figure 8.3: An Euler diagram for visual-
izing Bayes’ theorem

We’ve talked before about Pr(A | B) being the portion of the B region
that’s inside the A region. The purple portion of the blue B circle, in
other words:

Pr(A | B) =
Pr(A & B)

Pr(B)
.

So when we apply the General Multiplication Rule to the purple region
we get:

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)
.
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We’ll come back to another, non-visual way of understanding Bayes’
theorem in Chapter 10.

There are lots more visual explanations of Bayes’ theorem you can
find online. There’s even one using Legos! But they all tend to come
down to the same thing. A two step explanation that goes:

1. Start with the definition of conditional probability, which we
learned how to visualize in Chapter 6.

2. Then apply the General Multiplication Rule, which we learned
how to visualize in Chapter 7.

This is a perfectly good and helpful way to think about Bayes’ theorem.
But it’s not really a visualization of the theorem itself. It’s two separate
visualizations of the ingredients we use to derive the theorem.

Figure 8.4: Bayes’ theorem on display
at the offices of HP Autonomy, in Cam-
bridge, UK

In any case, Bayes’ theorem comes up so often it’s good to memorize
the formula itself. The visualization in Figure 8.4 is probably about as
helpful as it gets for this purpose.

8.3 Bayes’ Long Theorem

We had to apply the Law of Total Probability first, before we could
solve the taxicab problem with Bayes’ theorem, to calculate the de-
nominator. This is so common that you’ll often see Bayes’ theorem
written with this calculation built in. That is, the denominator Pr(B)
is expanded out using the Law of Total Probability.

Bayes’ Theorem (long version). If 1 > Pr(A) > 0 and Pr(B) > 0, then

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(A)Pr(B | A) + Pr(∼A)Pr(B | ∼A)
.

Notice how there’s some repetition in the numerator and the denom-
inator. The term Pr(A)Pr(B | A) appears both above and below. So,
when you’re doing a calculation with this formula, you can just do
that bit once and then copy it in both the top and bottom. Then you
just have to do the bottom-right term to complete the formula.

Pr(A
)

Pr(~A)

Pr(B|A)

 

Pr(B|~A)

 

A

~A

B      Pr(A)Pr(B|A)

~B

B      Pr(~A)Pr(B|~A)

~B

Figure 8.5: A tree diagram for the long
form of Bayes’ theorem. The definition
of conditional probability tells us Pr(A |
B) is the first leaf divided by the sum of
the first and third leaves.

A tree diagram helps illuminate the long version of Bayes’ theorem.
To calculate Pr(A | B), the definition of conditional probability directs
us to calculate Pr(A & B) and Pr(B):

Pr(A | B) =
Pr(A & B)

Pr(B)
.

Looking at the tree diagram in Figure 8.5, we see that this amounts to
computing the first leaf for the numerator, and the sum of the first and
third leaves for the denominator. Which yields the same formula as in
the long form of Bayes’ theorem.

https://www.countbayesie.com/blog/2015/2/18/bayes-theorem-with-lego
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8.4 Example

Let’s practice the long form of Bayes’ theorem.

Joe has just heard about the Zika virus and wonders if he has
it. His doctor tells him only 1% of the population has the virus,
but he’s still worried. There’s a blood test he can take, but it’s
not perfect. The test always comes up either negative or positive,
but:

• 95% of people who have the virus test positive.
• 85% of people who don’t have the virus test negative.

If Joe tests positive, what is the probability he really has the Zika
virus?

We’re asked to calculate Pr(Z | P), and we’re given the following:

• Pr(Z) = 1/100.
• Pr(P | Z) = 95/100.
• Pr(P | ∼Z) = 15/100.

So we can calculate Pr(Z | P) using the long form of Bayes’ theorem:

Pr(Z | P) =
Pr(Z)Pr(P | Z)

Pr(Z)Pr(P | Z) + Pr(∼Z)Pr(P | ∼Z)

=
(1/100)(95/100)

(1/100)(95/100) + (99/100)(15/100)

=
95

95 + 1, 485

= 19/316

≈ .06.

The calculation is also diagrammed in Figure 8.6.

0.01

0.99

0.95

0.15

Z

~Z

P      0.0095

~P

P      0.1485

~P

Figure 8.6: Tree diagram of the Zika
problem

It turns out there’s only about a 6% chance Joe has the virus. Even
though he tested positive with a fairly reliable blood test! It’s coun-
terintuitive, but the reason is the same as with the taxicab problem.
There are two, conflicting pieces of evidence: the blood test is positive
but the virus is rare. It turns out the virus is so rare that the positive
blood test doesn’t do much to increase Joe’s chances of being infected.

Bayes’ theorem doesn’t always give such surprising results. In fact
the results are often very intuitive. Professors just like to use the coun-
terintuitive examples to demonstrate how important Bayes’ theorem
is. Without it, it’s easy to go astray.
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8.5 The Base Rate Fallacy

In the Zika example, the rate of infection in the general population is
very low, just 1%. The rate at which something happens in general is
called the base rate. In the taxicab example, the base rate for blue cabs
was 15%.

This video by Julia Galef explains more
about how you can use Bayes’ theorem,
not just to avoid the base-rate fallacy, but
also to improve your thinking more gen-
erally. In Chapter 10 we’ll talk more
about how Bayes’ theorem illuminates
good scientific reasoning.

One lesson of this chapter is that you have to take the base rate
into account to get the right answer, via Bayes’ theorem. Humans
have a tendency to ignore the base rate, and focus only on the “test”
performed: the blood test in the Zika example, the testimony of the
witness in the taxicab example. This mistake is called base rate neglect,
or the base rate fallacy.

The base rate fallacy is so tempting, even trained professionals are
susceptible to it. In one famous study, 160 medical doctors were given
a problem similar to our Zika example (but with cancer instead of
Zika). The question was multiple choice, and it used easier numbers
than we did. Yet only 34 of the doctors got it right. Microsoft founder Bill Gates seems to be

making a similar mistake in this tweet.
Hence the quote that opens this chapter: “in no other branch of

mathematics is it so easy for experts to blunder as in probability the-
ory.”

Exercises

1. Recall this problem from Chapter 6:

Five percent of tablets made by the company Ixian have factory
defects. Ten percent of the tablets made by their competitor com-
pany Guild do. A computer store buys 40% of its tablets from
Ixian, and 60% from Guild.

Use Bayes’ theorem to find Pr(I | D), the probability a tablet from
this store is made by Ixian, given that it has a factory defect?

2. Recall this problem from Chapter 6:

In the city of Elizabeth, the neighbourhood of Southside has lots of
chemical plants. 2% of Elizabeth’s children live in Southside, and
14% of those children have been exposed to toxic levels of lead.
Elsewhere in the city, only 1% of the children have toxic levels of
exposure.

Use Bayes’ theorem to find Pr(S | L), the probability that a ran-
domly chosen child from Elizabeth who has toxic levels of lead
exposure lives in Southside?

3. The probability that Nasim will study for her test is 4/10. The
probability that she will pass, given that she studies, is 9/10.

https://www.youtube.com/watch?v=BrK7X_XlGB8
https://www.stat.berkeley.edu/~aldous/157/Papers/health_stats.pdf
https://twitter.com/BillGates/status/1118196606975787008
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The probability that she passes, given that she does not study, is
3/10. What is the probability that she has studied, given that she
passes?

4. At the height of flu season, roughly 1 in every 100 people have
the flu. But some people don’t show symptoms even when they
have it: only half the people who have the virus show symptoms.

Flu symptoms can also be caused by other things, like colds and
allergies. So about 1 in every 20 people who don’t have the flu
still have flu-like symptoms.

If someone has flu-like symptoms at the height of flu season,
what is the probability that they actually have the flu?

5. A magic shop sells two kinds of trick coins. The first kind are
biased towards heads: they come up heads 9 times out of 10 (the
tosses are independent). The second kind are biased towards
tails: they comes up tails 8 times out of 10 (tosses still indepen-
dent). Half the coins are the first kind, half are the second kind.
But they don’t label the coins, so you have to experiment to find
out which are which.

You pick a coin at random and flip it once. Given that it comes
up heads, what is the probability it’s the first kind of coin?

6. There is a room filled with two types of urns.

• Type A urns have 30 yellow marbles, 70 red.
• Type B urns have 20 green marbles, 80 yellow.

The two types of urn look identical, but 80% of them are Type A.
You pick an urn at random and draw a marble from it at random.

a. What is the probability the marble will be yellow?

Now you look at the marble: it is yellow.

b. What is the probability the urn is a Type B urn, given that you
drew a yellow marble?

7. In the long form of Bayes’ theorem, the denominator is broken
down by applying the Law of Total Probability to a partition of
two propositions, A and ∼A. We can extend the same idea to a
partition of three propositions, X, Y, and Z. Here is a start on the
formula:

Pr(X | B) =
Pr(X)Pr(B | X)

Pr(X)Pr(B | X) + . . .
.

Fill in the rest of the formula, then justify it.
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8. A company makes websites, always powered by one of three
server platforms: Bulldozer, Kumquat, or Penguin. Bulldozer
crashes 1 out of every 10 visits, Kumquat crashes 1 in 50 visits,
and Penguin only crashes 1 out of every 200 visits.

This problem is based on Exercise 6 from
p. 78 of Ian Hacking’s An Introduction to
Probability & Inductive Logic.

Half of the websites are run on Bulldozer, 30% are run on Kumquat,
and 20% are run on Penguin.

You visit one of their sites for the first time and it crashes. What
is the probability it was run on Penguin?

9. You and Carlos are at a party, which means there’s a 2/3 chance
he’s been drinking. You decide to experiment to find out: you
throw a tennis ball to Carlos and he misses the catch. Five min-
utes later you try again and he misses again. Assume the two
catches are independent.

When he’s sober, Carlos misses a catch only two times out of ten.
When he’s been drinking, Carlos misses catches half the time.

What is the probability that Carlos has been drinking, given that
he missed both catches?

10. The Queen Gertrude Hotel has two kinds of suites: singles have
one bed, royal suites have three beds. There are 80 singles and 20
royals.

In a single, the probability of bed bugs is 1/100. But every addi-
tional bed put in a suite doubles the chance of bed bugs.

If a suite is inspected at random and bed bugs are found, what is
the probability it’s a royal?

11. Willy Wonka Chocolates Inc. makes two kinds of boxes of choco-
lates. The “wonk box” has four caramel chocolates and six reg-
ular chocolates. The “zonk box” has six caramel chocolates, two
regular chocolates, and two mint chocolates. A third of their
boxes are wonk boxes, the rest are zonk boxes.

They don’t mark the boxes. The only way to tell what kind of
box you’ve bought is by trying the chocolates inside. In fact, all
the chocolates look the same; you can only tell the difference by
tasting them.

If you buy a random box, try a chocolate at random, and find
that it’s caramel, what is the probability you’ve bought a wonk
box?

12. A room contains four urns. Three of them are Type X, one is
Type Y.

• The Type X urns each contain 3 black marbles, 2 white mar-
bles.
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• The Type Y urn contains 1 black marble, 4 white marbles.

You are going to pick an urn at random and start drawing mar-
bles from it at random without replacement.

What is the probability the urn is Type X if the first draw is black?

13. Suppose I have an even mix of black and white marbles. I choose
one at random without letting you see the colour, and I put it in
a hat.

This problem was devised by Lewis Car-
roll, author of Alice’s Adventures in Won-
derland.

Then I add a second, black marble to the hat. If I draw one marble
at random from the hat and it’s black, what is the probability the
marble left in the hat is black?

14. Suppose you have a test for some disease, which always comes
up positive for people who have the disease: Pr(P | D) = 1.
The base-rate in the population for this disease is 1%. How low
does the false-positive rate Pr(P | ∼D) have to be for the test to
acheive 95% reliability, i.e. to have Pr(D | P) = .95?

15. Suppose the test for some disease is perfect for people who have
the disease, Pr(P | D) = 1. And it’s almost perfect for people
who don’t have the disease: Pr(∼P | ∼D) = 98/99. How high
does the base rate have to be for the test to be 99% reliable, i.e. to
have Pr(D | P) = .99?

16. An urn contains 4 marbles, either blue or green. The number of
blue marbles is equally likely to be 0, 1, 2, 3, or 4. Suppose we do
3 random draws with replacement, and the observed sequence
is: blue, green, blue. What is the probability the urn contains just
1 blue marble?

17. Consider the equation Pr(A | B) = Pr(B | A). Assume all condi-
tional probabilities are well-defined. Which one of the following
is correct?

a. This equation always holds.
b. This equation never holds.
c. This equation only holds sometimes: whenever Pr(A | B) =

Pr(A).
d. This equation only holds sometimes: whenever Pr(A) = Pr(B).
e. This equation only holds sometimes: whenever Pr(B) = 1.





9 Multiple Conditions

Conditioning is the soul of statistics.
—Joe Blitzstein

We often need to account for multiple pieces of evidence. More than
one witness testifies about the colour of a taxicab; more than one per-
son responds to our poll about an upcoming election; etc.

How do we a calculate conditional probability when there are mul-
tiple conditions? In other words, how do we handle quantities of the
form Pr(A | B1 & B2 & . . .)?

9.1 Multiple Draws

Imagine you’re faced with another one of our mystery urns. There are
two equally likely possibilities.

A = The urn contains 70 black marbles, 30 white marbles.

∼A = The urn contains 20 black marbles, 80 white marbles.

Now suppose you draw a marble at random and it’s black. You put it
back, give the urn a good shake, and then draw another: black again.
What’s the probability the urn has 70 black marbles?

We need to calculate Pr(A | B1 & B2), the probability of A given that
the first and second draws were both black. We already know how to
do this calculation for one draw, Pr(A | B1). We use Bayes’ theorem to
get:

Pr(A | B1) =
Pr(B1 | A)Pr(A)

Pr(B1 | A)Pr(A) + Pr(B1 | ∼A)Pr(∼A)

=
(70/100)(1/2)

(70/100)(1/2) + (20/100)(1/2)

= 7/9.

But for two draws, Bayes’ theorem gives us:

Pr(A | B1 & B2) =
Pr(B1 & B2 | A)Pr(A)

Pr(B1 & B2 | A)Pr(A) + Pr(B1 & B2 | ∼A)Pr(∼A)
.

To fill in the values on the right hand side, we need to know these
quantities:
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• Pr(B1 & B2 | A),
• Pr(B1 & B2 | ∼A).

To get the first quantity, remember that we replaced the first marble
before doing the second draw. So, given A, the second draw is inde-
pendent of the first. There are still 70 black marbles out of 100 on the
second draw, so the chance of black on the second draw is still 70/100.
In other words:

Pr(B1 & B2 | A) = Pr(B1 | A)Pr(B2 | A)

= (70/100)2.

The same reasoning applies given ∼A, too. Except here the chance of
black on each draw is 20/100. So:

Pr(B1 & B2 | ∼A) = Pr(B1 | ∼A)Pr(B2 | ∼A)

= (20/100)2.

Returning to Bayes’ theorem, we can now finish the calculation:

Pr(A | B1 & B2) =
Pr(B1 & B2 | A)Pr(A)

Pr(B1 & B2 | A)Pr(A) + Pr(B1 & B2 | ∼A)Pr(∼A)

=
(70/100)2(1/2)

(70/100)2(1/2) + (20/100)2(1/2)

= 49/53.

The same solution can also be captured in a probability tree. The tree
will have an extra stage now, because there’s a second draw. And it
will have many more leaves, but luckily we can ignore most of them.
We just need to worry about the two leaves where both draws have
come up black. And we only need to fill in the probabilities along the
paths that lead to those two leaves. The result is Figure 9.1.

So Pr(A | B1 & B2) = 0.245/(0.245 + 0.02), which is the same as
49/53, the answer we got with Bayes’ theorem.

You might be able to guess now what would happen after three black
draws. Instead of getting squared probabilities in Bayes’ theorem, we’d
get cubed probabilities. And using the same logic, we could keep
going. We could use Bayes’ theorem to calculate Pr(A | B1 & . . . & Bn)

for as many draws n as you like.

9.2 Multiple Witnesses

Let’s try a different sort of problem with multiple conditions. Recall
the taxicab problem from Chapter 8:
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Figure 9.1: Tree diagram for two draws
with replacement

A cab was involved in a hit and run accident at night. Two cab
companies, the Green and the Blue, operate in the city. You are
given the following data:

1. 85% of the cabs in the city are Green and 15% are Blue.
2. A witness identified the cab as Blue. The court tested the relia-

bility of the witness under the same circumstances that existed
on the night of the accident and concluded that the witness
correctly identified each one of the two colors 80% of the time
and failed 20% of the time.

What is the probability that the cab involved in the accident was
blue rather green?

We saw it’s only about 41% likely the cab was really blue, even with
the witness’ testimony. But what if there had been two witnesses, both
saying the cab was blue?

Let’s use Bayes’ theorem again:

Pr(B |W1 & W2) =
Pr(B)Pr(W1 & W2 | B)

Pr(W1 & W2)
.

We have one of the terms here already: Pr(B) = 15/100. What about
the other two:

• Pr(W1 & W2 | B),
• Pr(W1 & W2).
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Let’s make things easy on ourselves by assuming our two witnesses are
reporting independently. They don’t talk to each other, or influence
one another in any way. They’re only reporting what they saw (or
think they saw). Then we can “factor” these probabilities like we did
when sampling with replacement:

Pr(W1 & W2 | B) = Pr(W1 | B)Pr(W2 | B)

= (80/100)2.

And for the denominator we use the Law of Total Probability:

Pr(W1 & W2) = Pr(W1 & W2 | B)Pr(B) + Pr(W1 & W2 | ∼B)Pr(∼B)

= (80/100)2(15/100) + (20/100)2(85/100)

= 96/1000 + 34/1000

= 13/100.

Now we can return to Bayes’ theorem to finish the problem:

Pr(B |W1 & W2) =
(15/100)(80/100)2

13/100
= 96/130

≈ .74.

So, with two witnesses independently agreeing that the cab was blue,
the probability goes up from less than 1/2 to almost 3/4.
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Figure 9.2: Tree diagram for the two-
witness taxicab problem

We can use a tree here too, similar to the one we made when sampling
two black marbles with replacement. As before, we only need to worry
about the W1 & W2 leaves, the ones where both witnesses say the cab
was blue. The result is Figure 9.2, which tells us that Pr(B | W1 &
W2) = 0.096/(0.096 + 0.034), which is approximately 0.74.

9.3 Without Replacement

The problems we’ve done so far were simplified by assuming inde-
pendence. We sampled with replacement in the urn problem, and we
assumed our two witnesses were independently reporting what they
saw in the taxicab problem. What about when independence doesn’t
hold?

Let’s go back to our urn problem, but this time suppose we don’t
replace the marble after the first draw. How do we calculate Pr(A |
B1 & B2) then?

We’re still going to start with Bayes’ theorem:

Pr(A | B1 & B2) =
Pr(B1 & B2 | A)Pr(A)

Pr(B1 & B2 | A)Pr(A) + Pr(B1 & B2 | ∼A)Pr(∼A)
.
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But to calculate terms like Pr(B1 & B2 | A) now, we need to think
things through in two steps.

We know the first draw has a 70/100 chance of coming up black if
A is true:

Pr(B1 | A) = 70/100.

And once the first draw has come up black, if A is true then there are
69 black balls remaining and 30 white. So:

Pr(B2 | B1 & A) = 69/99.

So instead of multiplying 70/100 by itself, we’re multiplying 70/100
by almost 70/100:

Pr(B1 & B2 | A) = (70/100)(69/99)

= 161/330.

Using similar reasoning for the possibility that ∼A instead, we can
calculate

Pr(B1 & B2 | ∼A) = (20/100)(19/99)

= 19/495.

Returning to Bayes’ theorem to finish the calculation:

Pr(A | B1 & B2) =
Pr(B1 & B2 | A)Pr(A)

Pr(B1 & B2 | A)Pr(A) + Pr(B1 & B2 | ∼A)Pr(∼A)

=
(161/330)(1/2)

(161/330)(1/2) + (19/495)(1/2)

= 483/521

≈ .93.

Notice how similar this answer is to the .92 we got when sampling
with replacement. With so many black and white marbles in the urn,
taking one out doesn’t make much difference. The second draw is
almost the same as the first, so the final answer isn’t much affected.
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Figure 9.3: Tree diagram for two draws
without replacement, values rounded

The tree diagram for this problem will also be similar to the with-
replacement version. The key difference is the probabilities at the last
stage of the tree. Without independence, the probability of a B2 branch
is affected by the B1 that precedes it. The result is Figure 9.3, though
note that some values are rounded. Still we find that:

Pr(A | B1 & B2) ≈
0.2439

0.2439 + 0.0192
≈ 0.93.
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9.4 Multiplying Conditional Probabilities

The calculation we just did relied on a new rule, which we should
make explicit. Start by recalling a familiar rule:

The General Multiplication Rule. Pr(A & B) = Pr(A | B)Pr(B).

Our new rule applies the same idea to situations where some proposi-
tion C is taken as a given.

The General Multiplication Rule (Conditional Version). Pr(A & B | C) =

Pr(A | B & C)Pr(B | C).

In a way, the new rule isn’t really new. We just have to realize that the
probabilities we get when we take a condition C as given are still prob-
abilities. They obey all the same rules as unconditional probabilities,
and this includes the General Multiplication Rule.

Another example which illustrates this point is the Negation Rule.
The following conditional version is also valid:

The Negation Rule (Conditional Version). Pr(∼A | C) = 1− Pr(A | C).

We could go through all the rules of probability we’ve learned and
write out the conditional version for each one. But we’ve already got
enough rules and equations to keep track of. So let’s just remember
this mantra instead:

i Conditional probabilities are probabilities.

So if we have a rule of probability, the same rule will hold if we add a
condition C into each of the Pr(. . .) terms.

9.5 Summary

We’ve learned two strategies for calculating conditional probabilities
with multiple conditions.

The first strategy is easier, but it only works when the conditions are
appropriately independent. Like when we sample with replacement,
or when two witnesses independently report what they saw.

In this kind of case, we first use Bayes’ theorem, and then “factor”
the terms:

Pr(A | B1 & B2) =
Pr(B1 & B2 | A)Pr(A)

Pr(B1 & B2 | A)Pr(A) + Pr(B1 & B2 | ∼A)Pr(∼A)

=
Pr(B1 | A)Pr(B2 | A)Pr(A)

Pr(B1 | A)Pr(B2 | A)Pr(A) + Pr(B1 | ∼A)Pr(B2 | ∼A)Pr(∼A)

=
(Pr(B1 | A))2Pr(A)

(Pr(B1 | A))2Pr(A) + (Pr(B1 | ∼A))2Pr(∼A)
.
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Our second strategy is a little more difficult. But it works even when
the conditions are not independent. We still start with Bayes’ theorem.
But then we apply the conditional form of the General Multiplication
Rule:

Pr(A | B1 & B2) =
Pr(B1 & B2 | A)Pr(A)

Pr(B1 & B2 | A)Pr(A) + Pr(B1 & B2 | ∼A)Pr(∼A)

=
Pr(B2 | B1 & A)Pr(B1 | A)Pr(A)

Pr(B2 | B1 & A)Pr(B1 | A)Pr(A) + Pr(B2 | B1 &∼A)Pr(B1 | ∼A)Pr(∼A)
.

These are some pretty hairy formulas, so memorizing them prob-
ably isn’t a good idea. It’s better to understand how they flow from
Bayes’ theorem or a tree diagram.

Exercises

1. Recall the following problem from Chapter 8.

Willy Wonka Co. makes two kinds of boxes of chocolates. The
“wonk box” has four caramel chocolates and six regular choco-
lates. The “zonk box” has six caramel chocolates, two regular
chocolates, and two mint chocolates. A third of their boxes are
wonk boxes, the rest are zonk boxes.

They don’t mark the boxes. The only way to tell what kind of
box you’ve bought is by trying the chocolates inside. In fact, all
the chocolates look the same; you can only tell the difference by
tasting them.

Previously you calculated the probability a randomly chosen box
is a wonk box given that a chocolate randomly selected from it is
caramel. This time, suppose you randomly select two chocolates.

a. What is the probability it’s a wonk box given that both choco-
lates are caramel?

b. What is the probability it’s a wonk box given that the first is
caramel and the second is regular?

c. What is the probability it’s a wonk box given that the first is
regular and the second is caramel?

2. Recall the following problem from Chapter 8.

A magic shop sells two kinds of trick coins. The first kind are
biased towards heads: they come up heads 9 times out of 10 (the
tosses are independent). The second kind are biased towards
tails: they comes up tails 8 times out of 10 (tosses still indepen-
dent). Half the coins are the first kind, half are the second kind.
But they don’t label the coins, so you have to experiment to find
out which are which.
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Previously, you picked a coin at random and flipped it once. But
now suppose you flip it a second time. What’s the probability it’s
the first kind of coin if it lands heads both times?

3. Recall the following problem from Chapter 8.

There is a room filled with two types of urns.

• Type A urns have 30 yellow marbles, 70 red.
• Type B urns have 20 green marbles, 80 yellow.

The two types of urn look identical, but 80% of them are Type A.

Previously you calculated the probability a randomly selected
urn is Type B given that one marble randomly drawn from it
is yellow. Suppose now you put the yellow marble back, shake
hard, and draw another marble at random from the same urn.

a. If this marble is also yellow, what is the probability the urn is
a Type B urn?

b. If this marble is instead green, what is the probability the urn
is a Type B urn?

4. Recall the following problem from Chapter 8.

A room contains four urns. Three of them are Type X, one is
Type Y.

• The Type X urns each contain 3 black marbles, 2 white mar-
bles.

• The Type Y urn contains 1 black marble, 4 white marbles.

You are going to pick an urn at random and start drawing mar-
bles from it at random without replacement.

Previously you calculated the probability the urn is Type X given
that the first draw is black.

a. What is the probability the urn is Type X if the first draw is
black and the second is white?

b. What is the probability the urn is Type X if the first draw is
white and the second is black?

c. What is the probability the third draw will be black, if the first
draw is black and the second is white?

5. The order in which conditions are given doesn’t matter. More
precisely, the following equation always holds:

Pr(A | B & C) = Pr(A | C & B).

Use the rules of probability to prove that it always holds.
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6. The order in which things happen often matters. If the light was
red but is now green, the intersection is probably safe to drive
through. But if the light was green and is now red, it’s probably
not safe.

We just saw, though, that the order in which conditions are given
doesn’t make any difference to the probability.

Explain why these two observations do not conflict.

7. Above we observed that Pr(∼A | C) = 1− Pr(A | C). Prove that
this equation holds. Hint: start with the definition of conditional
probability, and then recall that 1 = Pr(C)/Pr(C).

8. There is a room filled with two types of urns.

• Type X urns have 2 black marbles, 3 white.
• Type Y urns have 4 black marbles, 1 white.

The two types of urn look identical, but 40% of them are Type X.
You pick an urn at random, and start drawing marbles at random
without replacement.

a. If the first draw is black, what is the probability the urn is Type
X?

b. If the first draw is black and the second draw is white, what is
the probability the urn is Type X?

c. If the first draw is black and the second draw is white, what is
the probability the third draw will be white?

9. A hat has two coins in it. One is fair, the other has a 1/4 chance
of heads on each toss (the tosses are independent). We choose a
coin randomly and flip it twice.

a. If we get 1 head and 1 tail, what is the probability we chose
the fair coin?

b. If we get 1 head and 1 tail, what is the probability the next flip
will be heads?

c. Suppose instead we had flipped the coin 5 times and gotten 5
heads in a row. Then what would the probability be that we
are flipping the fair coin?

10. Suppose that learning E would increase the probability of H, and
so would learning F. Does that mean learning both E and F
would increase the probability of H? In other words, is the fol-
lowing statement always true?

• If Pr(H | E) > Pr(H) and Pr(H | F) > Pr(H), then Pr(H |
E & F) > Pr(H).
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Assume all conditional probabilities are well-defined. If the state-
ment is true, prove that it is. If it’s not true, give a counterexam-
ple (use a standard setup like a deck of playing cards or marbles
in an urn, and clearly specify which outcomes correspond to each
of H, E, and F).

11. Suppose we are sampling without replacement from an urn of 10
marbles: 4 red and 6 green.

a. Is Pr(R1 & G2 & R3) = Pr(R1 & R2 & G3)?
b. Do such identities always hold? In other words, does the order

in which various colours are drawn matter to the probability,
or does it only matter how many of each colour are drawn?
Prove your answer.



10 Probability & Induction

Nothing in life is to be feared, it is only to be
understood. Now is the time to understand more,

so that we may fear less.
—Marie Curie

We met some common types of inductive argument back in Chapter 2.
Now that we know how to work with probability, let’s use what we’ve
learned to sharpen our understanding of how those arguments work.

10.1 Generalizing from Observed Instances

Generalizing from observed instances was the first major form of in-
ductive argument we encountered. Suppose you want to know what
colour a particular species of bird tends to be. Then you might go out
and look at a bunch of examples:

I’ve seen 10 ravens and they’ve all been black.
Therefore, all ravens are black.

How strong is this argument?
Observing ravens is a lot like sampling from an urn. Each raven

is a marble, and the population of all ravens is the urn. We don’t
know what nature’s urn contains at first: it might contain only black
ravens, or it might contain ravens of other colours too. To assess the
argument’s strength, we have to calculate Pr(A | B1 & B2 & . . . & B10):
the probability that all ravens in nature’s urn are black, given that the
first raven we observed was black, and the second, and so on, up to
the tenth raven.

We learned how to solve simple problems of this form in the pre-
vious chapter. For example, imagine you face another of our mystery
urns, and this time there are two equally likely possibilities.

A = The urn contains only black marbles.

∼A = The urn contains an equal mix of black and white marbles.
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If we do two random draws with replacement, and both are black, we
calculate Pr(A | B1 & B2) using Bayes’ theorem:

Pr(A | B1 & B2) =
Pr(B1 & B2 | A)Pr(A)

Pr(B1 & B2 | A)Pr(A) + Pr(B1 & B2 | ∼A)Pr(∼A)

=
(1)2(1/2)

(1)2(1/2) + (1/2)2(1/2)

= 4/5.

If we do a third draw with replacement, and it too comes up black, we
replace the squares with cubes. On the fourth draw we’d raise to the
fourth power. And so on. When we get to the tenth black draw, the
calculation becomes:

Pr(A | B1 & . . . & B10) =
(1)10(1/2)

(1)10(1/2) + (1/2)10(1/2)

= 1, 024/1, 025

≈ .999.

So after ten black draws, we can be about 99.9% certain the urn con-
tains only black marbles.

But that doesn’t mean our argument that all ravens are black is
99.9% strong!

10.2 Real Life Is More Complicated

There are two major limitations to our urn analogy.

The first limitation is that the ravens we observe in real life aren’t
randomly sampled from nature’s “urn.” We only observe ravens in
certain locations, for example. But our solution to the urn problem
relied on random sampling. For example, we assumed Pr(B1 | ∼A) =

1/2 because the black marbles are just as likely to be drawn as the
white ones, if there are any white ones.

If there are white ravens in the world though, they might be limited
to certain locales.1 So the fact we’re only observing ravens in our part 1 In fact there are white ravens, espe-

cially in one area of Vancouver Island.of the world could make a big difference to what we find. It matters
whether your sample really is random.

The second limitation is that we pretended there were only two pos-
sibilities: either all the marbles in the urn are black, or half of them
are. And, accordingly, we assumed there was already a 1/2 chance all
the marbles are black, before we even looked at any of them.

In real life though, when we encounter a new species, it could be
that 90% of them are black, or 31%, or 42.718%, or any portion from 0%

https://vancouversun.com/news/local-news/rare-white-raven-spotted-on-vancouver-island
https://vancouversun.com/news/local-news/rare-white-raven-spotted-on-vancouver-island
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to 100%. So there are many, many more possibilities. The possibility
that all members of the new species (100%) are black is just one of these
many possibilities. So it would start with a much lower probability
than 1/2.

10.3 The Rule of Succession

There is a famous formula that addresses this second issue.

The formula was first derived by Laplace
to solve the sunrise problem, the prob-
lem of calculating the probability that
the sun will rise tomorrow given that it’s
risen every day so far.

Suppose we take all possible compositions of the urn into account:
the portion of black balls could be anywhere from 0% to 100%. If
all these possibilities are equally likely, and we draw randomly with
replacement, then the probability the next draw will be black is

k + 1
n + 2

,

where k is the number of black marbles drawn so far, and n is the total
number of draws so far. Deriving this formula is a bit tedious so we
won’t go into it here. We’ll settle for understanding it instead.

In our example, we did 10 draws, all of which came up black. So
n = 10, and k = 10 too. Applying the Rule of Sucession gives us a
probability of

10 + 1
10 + 2

=
11
12

,

in other words the next draw has about a 0.92 probability of being
black. If we’d only gotten k = 5 black marbles out of n = 10 draws,
the probability would be 6/12 = 1/2.

Notice though that we’ve somewhat changed the subject. The Rule
of Succession gives us the probability for one draw. It doesn’t tell us
the probability that all marbles in the urn are black, it just tells us the
probability of getting a black marble if we draw one of them. Analyz-
ing the probability that all the marbles are black is trickier, so we won’t
go into it. Just be aware that the Rule of Succession gives us individual
probabilities, not general ones.

Notice also that the Rule of Succession relies on two assumptions.
The first is an assumption we also used earlier, namely that we’re sam-
pling randomly. Sometimes this assumption is realistic, but in many
real-world applications getting a random sample is tricky, even impos-
sible.

The second assumption is that all possible compositions of the urn
are equally likely. It’s just as likely that 50% of the marbles are black as
that 75% are, or 35.12%, or 0.0001%. This assumption certainly looks
reasonable, at least in some cases. But we’ll see in Chapter 18 that
there are fundamental problems lurking here.

When these assumptions hold though, the Rule of Succession is
entirely correct. It just follows from the rules of probability we’ve

https://en.wikipedia.org/wiki/Sunrise_problem
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already learned. We just need to remember that it would be a mistake
to use the Rule of Succession in situations where these assumptions
do not apply.

10.4 Inference to the Best Explanation

Let’s set aside arguments that generalize from observed instances, and
focus instead on a different form of inductive argument we met in
Chapter 2, namely Inference to the Best Explanation. An example:

My car won’t start and the gas gauge reads empty.
Therefore, my car is out of gas.

My car being out of gas is a very good explanation of the facts that
it won’t start and the gauge reads empty. So this seems like a pretty
strong argument.

How do we understand its strength using probability? This is actu-
ally a controversial topic, currently being studied by researchers. There
are different, competing theories about how Inference to the Best Ex-
planation fits into probability theory. So we’ll just look at one, popular
way of understanding things.

Let’s start by thinking about what makes an explanation a good
one.

A good explanation should account for all the things we’re trying to
explain. For example, if we’re trying to explain why my car won’t
start and the gauge reads empty, I’d be skeptical if my mechanic said
it’s because the brakes are broken. That doesn’t account for any of
the symptoms! I’d also be skeptical if they said the gas gauge was
broken. That might fit okay with one of the symptoms (the gauge
reads empty), but it doesn’t account for the fact the car won’t start.

The explanation that my car is out of gas, however, fits both symp-
toms. It would account for both the empty reading on the gauge and
the car’s refusal to start.

A good explanation should also fit with other things I know. For
example, suppose my mechanic tries to explain my car troubles by
saying that both the gauge and the ignition broke down at the same
time. But I know my car is new, it’s a highly reliable model, and it was
recently serviced. So my mechanic’s explanation doesn’t fit well with
the other things I know. It’s not a very good explanation.

We have two criteria now for a good explanation:

1. it should account for all the things we’re trying to explain, and
2. it should fit well with other things we know.
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These criteria match up with terms in Bayes’ theorem. Imagine we
have some evidence E we’re trying to explain, and some hypothesis H
that’s meant to explain it. Bayes’ theorem says:

Pr(H | E) =
Pr(H)Pr(E | H)

Pr(E)
.

How probable is our explanation H given our evidence E? Well, the
larger the terms in the numerator are, the higher that probability is.
And the terms in the numerator correspond to our two criteria for a
good explanation.

1. Pr(E | H) corresponds to how well our hypothesis H accounts
for our evidence E. If H is the hypothesis that the car is out of
gas, then Pr(E | H) ≈ 1. After all, if there’s no gas in the car, it’s
virtually guaranteed that it won’t start and the gauge will read
empty. (It’s not perfectly guaranteed because the gauge could be
broken after all, though that’s not very likely.)

2. Pr(H) corresponds to how well our hypothesis fits with other
things we know. For example, suppose I know it’s been a while
since I put gas in the car. If H is the hypothesis that the car is out
of gas, this fits well with what I already know, so Pr(H) will be
pretty high.

Whereas if H is the hypothesis that the gauge and the ignition
both broke down at the same time, this hypothesis starts out
pretty improbable given what else I know (it’s a new car, a reli-
able model, and recently serviced). So in that case, Pr(H) would
be low

So the better H accounts for the evidence, the larger Pr(E | H) will
be. And the better H fits with my background information, the larger
Pr(H) will be. Thus, the better H is as an explanation, the larger
Pr(H | E) will be. And thus the stronger E will be as an argument for
H.

What about the last term in Bayes’ theorem though, the denomina-
tor Pr(E)? It corresponds to a virtue of good explanations too!

Figure 10.1: The hammer/feather exper-
iment was performed on the moon in
1971. See the full video here.

Scientists love theories that explain the unexplained. For example,
Newton’s theory of physics is able to explain why a heavy object and
a light object, like a hammer and feather, fall to the ground at the
same speed as long as there’s no air resistance. If you’d never per-
formed this experiment before, you’d probably expect the hammer to
fall faster. You’d be surprised to find that the hammer and feather ac-
tually hit the ground at the same time. That Newton’s theory explains
this surprising fact strongly supports his theory.

https://bit.ly/1KLQzOB
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So the ability to explain surprising facts is a third virtue of a good
explanation. And this virtue corresponds to our third term in Bayes’
theorem:

Figure 10.2: The hammer/feather exper-
iment has also been performed in vac-
uum chambers here on earth. A beau-
tifully filmed example is available on
YouTube, courtesy of the BBC.

3. Pr(E) corresponds to how surprising the evidence E is. If E is
surprising, then Pr(E) will be low, since E isn’t something we
expect to be true.

And since Pr(E) is in the denominator of Bayes’ theorem, a smaller
number there means a bigger value for Pr(H | E). So the more surpris-
ing the finding E is, the more it supports a hypothesis H that explains
it.

According to this analysis then, each term in Bayes’ theorem corre-
sponds to a virtue of a good explanation. And that’s why Inference to
the Best Explanation works as a form of inductive inference.

Exercises

1. The Rule of Succession can look a little strange or mysterious at
first. Why is there a +1 in the numerator, and a +2 in the de-
nominator? To answer these questions, respond to the following.

a. According to the Rule of Succession, what is the probability
that the first marble drawn will be black? (Hint: in this sce-
nario k and n are the same number, what number?)

b. Suppose we do n random draws and half of them are black.
According to the Rule of Sucession, what is the probability
that the next marble will be black?

c. Explain why the Rule of Succession has +1 in the numerator
and +2 in the denominator.

2. The Rule of Succession doesn’t just tell us the probability of black
on the next draw. The same formula (k + 1)/(n + 2) applies to
any future draw.

a. Suppose we’ve done 10 draws so far and 7 of them were black.
What is the probability that the next two draws will both be
black? (Careful: the draws are not independent.)

b. In general, if we’ve done n draws and k were black, what is the
probability that the next two draws will both be black? Your
answer should be a formula in terms of n and k.

3. Instead of the Rule of Succession, statisticians often use the sim-
pler formula k/n. This is known as the “maximum likelihood
estimate,” or MLE.

https://bit.ly/10hw8mP
https://bit.ly/10hw8mP
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a. According to the MLE, what is the probability that the first
marble drawn will be black?

b. According to the MLE, if we draw one random marble and it’s
white, what is the probability the next marble drawn will be
black?

c. The MLE usually gives different answers than the Rule of Suc-
cession. But they do agree in one special case: when half the
draws are black, both formulas equal 1/2. Prove that this is
always true.

d. Although the two formulas usually give different answers,
they give very similar answers as long as. . . (fill in the blank)

4. Suppose an urn contains a mix of black and white balls. There
are two, equally likely possibilities: the ratio of black to white is
either 2 : 1 or 1 : 2. Suppose we do two draws and they are both
black.

a. What is the probability the next draw will be black?
b. Would the Rule of Succession give the same answer? Why or

why not?

5. Suppose we have some evidence E for which we are considering
two possible explanations, H1 and H2.

a. Suppose H1 and H2 are mutually exclusive and exhaustive,
and they fit equally well with our background information.
But H1 fits the evidence E better than H2 does. Prove that
Pr(H1 | E) > Pr(H2 | E).

b. Suppose H1 and H2 fit equally well with our background in-
formation, but they are not mutually exclusive or exhaustive.
As before, H1 fits the evidence E better than H2. Prove that
Pr(H1 | E) > Pr(H2 | E).

c. Suppose the two explanations fit the evidence E equally well,
but H1 fits better with our background information. Prove that
Pr(H1 | E) > Pr(H2 | E).

6. Suppose we flip a coin 3 times. Our evidence E is that it lands
heads, tails, heads. Now consider two possible explanations.

• H1: the coin is fair.
• H2: the coin is biased toward heads, with a 2/3 chance of

heads on each toss (the tosses are independent).

Suppose these are the only two possibilities, and they fit equally
well with our background information.



98 jonathan weisberg

a. How well does each hypothesis fit the evidence, E? That is,
what are Pr(E | H1) and Pr(E | H2)?

b. How probable is each hypothesis given the evidence. In other
words, what are Pr(H1 | E) and Pr(H2 | E)?

7. Suppose Pr(H | E) < Pr(H). When is Pr(E | H)/Pr(E) > 1
then? Always, just sometimes, or never? Assume all conditional
probabilities are well-defined.

8. Suppose Pr(E | H) > Pr(E). When is Pr(H | E) > 1/2 then?
Assume all conditional probabilities are well-defined.

a. Always
b. Just sometimes: when Pr(E) ≤ 1/2.
c. Just sometimes: when Pr(H) ≥ 1/2.
d. Never

9. Consider this statement:

• If Pr(E | H) = 1 and 0 < Pr(E) < 1, then Pr(H | E) < Pr(H).

Does this statement always hold? If yes, prove that it does. If no,
give a counterexample (draw an Euler diagram where the first
two conditions hold but not the third).



Part II





11 Expected Value

Doctor Senator: Hubris to think that you can
control things. That’s why God created

tornadoes. To remind us.
Loy Cannon: Yeah. But you can raise the odds.

—Fargo, “Raddopiarlo”

We’ve learned a lot about using probability to draw conclusions, but
what about making decisions? A lot of reasoning is practical: it’s not
just about what to believe, it’s about what to do. Once you know how
likely the various possible outcomes of a decision are, how do you
make your choice?

Suppose you have a free ticket to play one game at the local
casino. You can choose either the Coin Game or the Die Game.

• Coin Game: a fair coin is flipped and you win $1 if it lands
heads, nothing otherwise.

• Die Game: a fair die is rolled and you win $3 if it lands five or
six, nothing otherwise.

Which game should you play?

The Coin Game has better odds: a 1/2 chance of winning vs. just 1/3
in the Die Game. But the Die Game promises a bigger payoff: $3 rather
than just $1. So there are conflicting arguments here. The odds favour
the first choice, while the potential payoffs favour the second. How do
you reconcile these considerations and come to a decision?

Well, let’s think about what would happen in the long run if you
played each game over and over.

Suppose you played the Coin Game over and over, a hundred times.
Half the time you’d win $1, and half the time you’d win nothing. So
after a hundred plays, you’d probably win about $50, which is an
average of $0.50 per play.

Now suppose you played the Die Game a hundred times instead.
A third of the time you’d win $3, and the other two thirds of the time
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you’d win nothing. So after a hundred plays you’d have won about
$100, an average of about $1 per play.

In technical terms, this means the Die Game has a higher expected
value. In the long run, you’d expect to win about $1 per play in the
Die Game, as opposed to $0.50 for the Coin Game.

So the Die Game is the more advantageous one, on this analysis.
On average, people tend to win more playing that game.

11.1 Expected Monetary Values

To calculate the expected value of an option, we multiply each pay-
off by its probability, and then sum up the results. For example, our
analysis of the Coin Game can be written this way:

Pr($1)× $1 + Pr($0)× $0 = (1/2)($1) + (1/2)($0)

= $0.50.

And for the Die Game:

Pr($3)× $3 + Pr($0)× $0 = (1/3)($3) + (2/3)($0)

= $1.

Sometimes a gamble has the potential to lose money, so we use a
negative number for the “payoff.” For example, suppose the Die Game
is modified so that you have to pay $3 if the die lands 1, 2, 3, or 4. Then
we calculate:

Pr($3)× $3 + Pr(−$3)×−$3 = (1/3)($3) + (2/3)(−$3)

= −$1.

In general, the formula for a game with possible payoffs $x and $y
is:

Pr($x)× $x + Pr($y)× $y.

Notice that expected values aren’t necessarily what you might think
from the name. The expected value of a game isn’t necessarily the
amount you expect to win playing it. If you play the Die Game, you’ll
either win $3 or nothing. But the expected value is $1. So you actually
know for certain ahead of time that you won’t win the expected value,
$1.

þ The expected value isn’t the amount you expect to win from a
game. It’s the amount you expect to win on average, in the long
run, if you play the game over and over.
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11.2 Visualizing Expectations

We can visualize these long run averages as the area in a diagram.
Figure 11.1 shows a gamble with a 1/3 chance of paying $2, and a 2/3
chance of paying $6.
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Figure 11.1: A gamble with a 1/3 chance
of paying $2, and a 2/3 chance of paying
$6
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Figure 11.2: The Coin Game (top) and
the Die Game (bottom)

There are two rectangular regions, one for each possible outcome.
The width of each rectangle is the probability of the corresponding
outcome, and the height is the payoff. So each rectangle’s area is one
term in the expected value’s sum:

1/3× $2 + 2/3× $6.

The expected value is thus the area of the two rectangles together,
i.e. the area of the blue region (about $4.67 in this example).

The Coin Game and the Die Game are visualized in Figure 11.2.

We started this chapter wondering how to reconcile conflicting ar-
guments. The Coin Game has better odds, but the Die Game has a
greater potential payoff.

Well, a rectangle’s area can be enlarged by increasing either its
width or its height. Likewise, a payoff’s contribution to expected value
can be increased either by increasing its amount or by increasing its
probability.

So the expected value formula answers our opening question by
giving equal weight to the two competing factors. Width (probability)
and height (payoff) are treated the same: neither one is given greater
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weight. We just multiply one against the other and take the total area
that results.
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Figure 11.3: A gamble with one negative
payoff, one positive

When an outcome loses money and the dolllar amount is negative,
the diagram extends below the x-axis. We colour this region red, to
indicate that its area is to be subtracted, rather than added.

For example, imagine the Coin Game is modified so that you lose
$2 if the coin lands tails. Then the expected value is:

1/2× $1 + 1/2×−$2 = −$0.50.

In visual terms, we subtract the red area from the blue in Figure 11.3.
Since there’s clearly more red than blue, we know the result will be
negative, which matches our calculation.

11.3 More Than Two Outcomes

Most casino games have more than two possible payoffs. For that
matter, most decisions in life have more than two possible outcomes.
If you buy insurance for your phone, it could end up saving you $0,
or it could save you $100, or it might save you $150, etc.

So the official definition of expected monetary value is as follows.

Expected Monetary Value. Given an act A with possible consequences
$x1, $x2, . . . , $xn, the expected monetary value of A is:

E(A) = Pr($x1)× $x1 + Pr($x2)× $x2 + . . . + Pr($xn)× $xn.
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Figure 11.4: A gamble with three possi-
ble outcomes

For example, suppose a fair die will be rolled and you will win $1 if
it lands on a low number, $2 if it’s a middling number. If it’s a high
number, you lose $3. Then:

E(A) = (1/3)($1) + (1/3)($2) + (1/3)(−$3)

= $1/3 + $2/3− $1

= $0.

Gambles with more than two outcomes are visualized the same as
before. We just use three or more reactangles, one for each possible
outcome.

11.4 Fair Prices

Imagine a variation of the Coin Game, where you win $1 if the coin
lands heads, and you pay $1 if it lands tails. You might be able to
guess, the expected value of this game is $0:

Pr($1)× $1 + Pr(−$1)×−$1 = (1/2)($1) + (1/2)(−$1)

= 0.
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If you played over and over again, you’d break even in the long run.
Half the time you’d win a dollar, and the other half of the time you’d
pay a dollar back.

So if someone asked you to pay in order to play this game, that
would seem unfair. Why pay to play if you don’t expect to win?

But for a game like the Die Game, asking people to pay to play does
seem fair. In the long run, the casino is going to lose an average of $1
per play. So it’s only fair that they ask people to pay $1 to play that
game. In the long run they’ll break even. (Of course, a real casino will
demand more so they can turn a profit.)

In general, a game’s fair price is thought to be its expected value.
If the expected value is $3, it’s fair to pay $3 to play. If the expected
value is −$3, it’s fair to “pay” −$3 to play—meaning they should pay
you $3 to play.

Notice that the expected value of paying the fair price is always $0.
Suppose you pay $1 to play the original Die Game, for example. Be-
cause $1 is automatically deducted from your winnings, the possible
consequences are now $3− $1 = $2 or $0− $1 = −$1. So the expected
value of paying $1 to play is:

(1/3)($2) + (2/3)(−$1) = $2/3− $2/3

= $0.

That makes sense: if it’s a fair price, you shouldn’t have any advan-
tage over the casino. You don’t stand to gain or lose money in the long
run, if you pay the fair price to play over and over.

The casino is in the same position. For them, the losses and gains
are reversed: a roll of five or six loses them $3, and otherwise they lose
nothing. So if you pay them $1 to play, they either lose $2 in the end
or gain $1:

(1/3)(−$2) + (2/3)($1) = −$2/3 + $2/3

= $0.

Since nobody has an advantage, it’s a fair deal.

11.5 Other Goods

Money isn’t everything, of course. People value lots of other things,
like their health, their family and friends, and their free time. The con-
cept of expected value can be applied to other goods besides money,
as long as they’re quantifiable.

Imagine you’re taking a trip to Ottawa and you can either drive
or go by train. If you take the train, it’s pretty predictable: it’s
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always a five or six hour ride, with equal probability. If you
drive, it’s less predictable. Nine times out of ten it’s just a four
hour drive. But one time in ten, an accident causes a traffic jam
and it ends up being a ten hour drive.
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Figure 11.5: Take the train or drive?

If all you care about is spending as little time on the road as possible,
should you take the train or drive?

E(Train) = Pr(−5 hr)×−5 hr + Pr(−6 hr)×−6 hr

= (1/2)(−5 hr) + (1/2)(−6 hr)

= −5.5 hr,

E(Drive) = Pr(−4 hr)×−4 hr + Pr(−10 hr)×−10 hr

= (9/10)(−4 hr) + (1/10)(−10 hr)

= −4.6 hr.

So driving has a higher expected value—measured in terms of free
time, rather than money.

Notice that both options have negative expected value in this ex-
ample. After all, you’re bound to lose time travelling no matter what.
Sometimes you don’t have any choice but to accept a loss. But you
can still choose the option that minimizes your expected loss, i.e. max-
imizes expected value.

11.6 Decision Tables

Many decision problems can be represented in a table. Suppose you’re
choosing between the following two gambles, based on the roll of a
fair, six-sided die.

• A: you win $3 if it lands 1 or 2, you win $1 if it lands 3 or 4, and
you lose $1 if it lands 5 or 6.

• B: you win $3 if it lands 1 or 2, you lose $3 if it lands 3 or 4, and
nothing happens if it lands 5 or 6.

A decision table has a row for each option and a column for each
possible outcome. Each cell of the table then contains the payoff for
that combination of act and outcome:

1 or 2 3 or 4 5 or 6

A $3 $1 −$1
B $3 −$3 $0

We can also put the probability in each cell:
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1 or 2 3 or 4 5 or 6

A 1/3, $3 1/3, $1 1/3, −$1
B 1/3, $3 1/3, −$3 1/3, $0

Now calculating expected values is just a matter of multiplying the
numbers within each cell, and then adding up across each row:

1 or 2 3 or 4 5 or 6 Expected Value

A 1/3, $3 1/3, $1 1/3, −$1 $1
B 1/3, $3 1/3, −$3 1/3, $0 $0

Note that the probabilities don’t have to be the same from row to row.
The casino might choose to use a different die depending on how you
bet, for example. Suppose if you choose A, they’ll use a loaded die to
eliminate your edge:

1 or 2 3 or 4 5 or 6 Expected Value

A 1/6, $3 1/6, $1 4/6, −$1 $0
B 1/3, $3 1/3, −$3 1/3, $0 $0

Now that the die is loaded towards 5 or 6 if you choose A, the expected
value of choosing A is nil: $0.

11.7 Dominance

Once in a while you can avoid calculating expected values altogether.
Consider this decision problem:

1 or 2 3 or 4 5 or 6

A $3 $1 −$1
B $1 $0 −$3

Here it looks like we don’t even have to put in the probabilities to
make our decision. Option A seems clearly better, because it has a
better payoff no matter how the die lands. In every column, row A has
a larger payoff than row B. So A is a better decision no matter what,
right?

Not quite. Suppose you’re deciding whether to study for your
midterm, and your rich uncle has promised to give you $100 if you
get an A. The catch: to study, you’ll have to miss a shift at work, losing
$50. So you draw up this decision table:
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A No A

Don’t Study $100 $0
Study $50 −$50

The top row gets you more money in both columns. So not studying
seems like it has better results no matter what. Does that mean you
shouldn’t bother studying?

No, because you’re obviously not going to end up in the $100 cell
if you don’t study. You’re almost certainly going to get a bad grade
and end up with $0. Maybe you shouldn’t study anyway, if all you
care about is money and you don’t think you can get an A even with
studying. But if studying gives you a good enough shot at an A, then
it will maximize your expected monetary value.

When one option has a better payoff than another no matter what
happens, we say the first option dominates the second. In terms of a
table, the dominant option has a higher payoff in every column.

The lesson of our two examples is that a dominant option may not
always have higher expected monetary value. But it does when the
rows and columns are independent. If the action you take has no effect
on the probability of ending up in one column rather than another,
then a dominant option is guaranteed to have higher expected value.

Dominant options don’t come up very often in practice. Real de-
cision problems tend to be harder than that. But they do come up
sometimes. And they’re important in more advanced, theoretical top-
ics, as we’ll see in Chapter 17.

Exercises

1. Which of the following best describes expected monetary value?

a. The amount you would expect to gain if you chose the same
option over and over again for a long, long time.

b. The amount you expect to gain/lose.
c. The average amount you would expect to gain/lose each time

if you chose the same option over and over again many times.
d. The amount of profit a business expects to garner in a fiscal

year.

2. What is the expected monetary value of playing a slot machine
that costs $100 to play, and has a 1/25 chance of paying out $500?
(The rest of the time it pays nothing.)

3. Suppose a slot machine pays off $25 a fiftieth of the time and
costs a $1 to play, and a video poker machine pays off $10 a
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twentieth of the time and costs $2 to play. Which machine is the
better bet in terms of expected monetary value?

4. You’re considering downloading a new game for your phone.
The game costs $0.99. But as a promotion, the first 50, 000 down-
loaders are being entered in a fair lottery with a $10, 000 cash
prize.

This exercise is based on Exercise 2 from
p. 95 of Ian Hacking’s An Introduction to
Probability & Inductive Logic.

If you know you’ll be one of the first 50, 000 downloaders, what
is the expected monetary value of downloading the game?

5. A local casino offers a game which costs $2 to play. A fair coin is
flipped up to three times, and the payouts work as follows:

• If the coin lands heads on the first toss, you win $2 and the
game is over.

• If the coin lands heads on the second toss, you win $4 and the
game is over.

• If the coin lands heads on the third toss, you win $8 and the
game is over.

• If the coin lands tails all three times, you win $0.

What is the expected monetary value of this game?

6. When is the following statement true: the expected monetary
value of a gamble is also one of its possible payoffs.

a. Always true
b. Sometimes true
c. Never true

7. Suppose a race has just two dogs: Santa’s Little Helper and She’s
the Fastest. If you bet on Santa’s Little Helper and he wins, you
get $5; otherwise you pay $2. If you bet on She’s the Fastest and
she loses, you pay $10. The two dogs have the same chance of
winning.

This problem is based on Exercise 1 from
p. 85 of Michael D. Resnik’s excellent
book, Choices.

How much would a winning bet on She’s the Fastest have to pay
for her to be the better bet?

8. Suppose the government is deciding whether to create a vacci-
nation program to prevent a potential epidemic of Zika virus. If
there is an epidemic, it will cost the country $1, 000 million (for
medical care, lost work-hours, etc.). The vaccination program
would cost $40 million.

This problem is based on an exam-
ple from p. 86 of Michael D. Resnik’s
Choices.

If they don’t create the vaccination program, there is a 9/10
chance of an epidemic. If they do create the vaccination program,
there is still a 1/10 chance of an epidemic.
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a. Draw a 2× 2 table and label the rows with the available actions
(program, no program). Label the columns with the possible
outcomes (epidemic, no epidemic). In each cell write the mon-
etary cost and the corresponding probability.

b. What is the expected monetary value of creating the vaccine
program?

c. What is the expected monetary value of not creating the pro-
gram?

d. If the government makes their decision based on expected
monetary values, will they create the program or not?

9. Suppose Ontario is deciding whether to enact a new tax. If the
tax is enacted, it will bring in $700 million in revenue.

But it could also hurt the economy. The chance of harm to the
economy is small, just 1/5. But it would cost the country $1, 200
million in lost earnings. (The $700 million in revenue would still
be gained, partially offsetting this loss.)

Treat gains as positive and losses as negative.

a. What is the expected monetary value of enacting the new tax?

The government also has the option of conducting a study before
deciding whether to enact the new tax. If the study’s findings
are bad news, that means the chance of harm to the economy is
actually double what they thought. If its findings are good news,
then the chance of harm to the economy is actually half of what
they thought.

b. Suppose the government conducts the study and its findings
are good news. What will the expected monetary value of
enacting the tax be then?

c. Suppose the government conducts the study and its findings
are bad news. What will the expected monetary value of en-
acting the tax be then?

d. Suppose conducting the study would cost $5, 000. Will the
government conduct the study? Explain your answer. (As-
sume they make decisions by maximizing expected monetary
value.)

10. Suppose your university is considering a tuition increase. If the
increase happens, it will bring in $7 million.

But it could also hurt the university’s reputation. The chance of
harm to the university’s reputation is 3/5, and it would cost the
university $20 million in lost donations if it happened. The $7
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million in tuition would still be gained though, partially offset-
ting this loss.

Treat gains as positive and losses as negative.

a. What is the expected monetary value of enacting the tuition
increase?

The university has the option of conducting a study before decid-
ing whether to increase tuition. If the study’s findings are bad,
the chance of harm to the university’s reputation is increased by
1/5. If its findings are good, the chance of harm is decreased by
1/5.

b. Suppose the university conducts the study and its findings are
good. What will the expected monetary value of enacting the
increase be then?

c. Suppose the university conducts the study and its findings
are bad. What will the expected monetary value of increasing
tuition be then?

d. Suppose the study would cost a thousand dollars. Will the
university conduct the study? Assume they make decisions
by maximizing expected monetary value.

11. Noree has a phone worth $60 and a tablet worth $240. The
probability she’ll have to replace the phone (because of dam-
age/loss/theft/etc.) is 1/5. The probability she’ll have to replace
the tablet is 1/6. These probabilities are independent.

An insurance policy that costs $60 will cover the cost of replacing
both items.

a. What is the expected monetary value of buying the insurance?
b. What is the expected monetary value of declining the insur-

ance?

12. William has a phone worth $60 and a tablet worth $540. The
probability he’ll have to replace the phone (because of damage/
loss/theft/etc.) is 1/3. The probability he’ll have to replace the
tablet is 1/5. These probabilities are independent.

An insurance policy that costs $100 will cover the cost of replac-
ing both items.

a. What is the expected value of buying the insurance?
b. What is the expected value of declining the insurance?

13. Zhi has a netbook worth $350 and a desktop computer worth
$1400. The probability that she’ll spill liquid on the desktop is
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1/7 and the probability that she’ll spill liquid on the netbook is
1/5. These probabilities are independent, and in either case she
will have to replace the damaged device.

An insurance policy that costs $200 will cover the cost of replac-
ing either/both items if they are damaged from a spill. Treat all
losses as negative.

a. What is the expected monetary value of buying the insurance?
b. What is the expected monetary value of declining the insur-

ance?

14. Suppose you play poker with five of your friends every week, but
you’re not very good. For every week you win, there are eight
weeks where you lose. You don’t play for real money though, so
it’s usually no big deal.

But next week your friends want to have a real game where ev-
eryone puts in $15. The winner keeps all the money, everyone
else loses their $15.

a. What is the expected monetary value of playing next week?

Now suppose you see a book that teaches people to improve their
poker game. The book costs $30, but it will increase your odds
of winning.

b. How much would the book have to increase your odds of win-
ning to make the expected value of buying it positive?

15. Suppose you’ve accumulated enough loyalty points at your local
drug store to trade them in for $100 worth of merchandise.

But the pharmacy offers you a second option. You can trade your
points for an opportunity to join a lottery along with all the other
customers who’ve accumulated the same number of points. The
lottery will have one randomly selected winner, and the prize is
$10, 000 worth of merchandise. There would be 300 people in the
lottery (including you).

Treat losing the lottery as a monetary loss: −$100.

a. What is the expected monetary value of joining the lottery?
b. How small would the lottery need to be for it to be a fair

trade for your points? In other words: how few people would
there need to be in the lottery (including you) for it to have
the same expected value as just trading your points for $100
of merchandise?
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16. Consider the following game: I’m going to flip a fair coin up to
three times. If it comes up heads on the first toss, the game is
over and you win $2. If it comes up heads for the first time on
the second toss, you win $40 and the game is over. If the first
heads comes up on the third toss, you win $800 and the game
is over. If it comes up tails every time, you have to pay me $x.
What does x have to be to make the game fair.

17. Consider the following game. I’m going to roll a fair die up to
two times. If it comes up 1 on the first roll you win $x and the
game is over. Otherwise, I roll it again. If it comes up 2 on the
second roll, you win $6x and the game is over. Otherwise you
pay me $6 and the game is over. What does x have to be for this
game to be fair?

18. Consider the following game.

I draw a card from a fair deck. If it’s a 2 or 3, you pay me $x
times the face value: $2x if it’s a 2, $3x if it’s a 3.

If the first card is neither a 2 nor a 3, I draw a second card. If it’s
a 7, you win $7x. Otherwise you pay me $1 and the game is over.

What does x have to be for this game to be fair?

19. Suppose there are three urns, A, B, and C. Each urn has 100
marbles: some are black, the rest are white. You don’t know how
many black marbles there are in each urn. But you do know two
things:

• B has twice as many black marbles as A, and C has twice as
many black marbles as B.

• $1 is a fair price for the following game. I pick an urn at
random and draw a marble at random. If I pick a black marble
from urn A you win $100. If I pick a black marble from urn
B you win $50. If I pick a black marble from urn C, you win
$25. Otherwise you win nothing.

How many black marbles are there in urn A?

20. You’re on a game show where there are three closed doors. One
of the doors has a large cash prize behind it, though you don’t
know how much exactly. The other two doors have nothing. You
have two options:

• Option A: Choose a door at random and keep whatever you
find, if anything.
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• Option B: First ask the host to open one of the doors with
nothing behind it. Then choose one of the remaining doors at
random. The catch is that now you only get to keep half of
what you find, if anything.

Which option has higher expected value? Justify your answer.

Hint: first calculate the expected value of each option if the cash
prize is $100. Then do the same calculations for a prize of $1, 000.
Then explain how to generalize this reasoning to any cash prize.

21. Some workplaces hold a weekly lottery. Suppose there are 30

people in your workplace lottery, and each person pays in $5

every Monday. A finalist is chosen at random every Friday, for
three weeks. Then, on the fourth Friday, one of the three finalists
from the previous three weeks is chosen at random. That person
gets all the prize money.

What is the expected value of being in this lottery? Explain the
reasoning behind your answer.

Tip: it’s possible to answer this question without doing any cal-
culations.

22. Prove that paying the fair price for an option always results in
expected value of $0. In other words, prove that if E(A) = $x,
then E(Pay $x for A) = $0.

23. Suppose a game has two possible outcomes: either you win $3 or
you lose $10. If the game is fair (zero expected monetary value),
what must the probability of winning be?

24. A coin will be flipped, with chance p of landings heads and
chance 1− p of landing tails. We must choose between two op-
tions. Option A wins $20 if heads, and loses $10 if tails. Option
B wins $50 if heads, and loses $25 if tails. Is it possible for the
expected monetary value of A to be positive and twice the EMV
of B?

25. A gamble has two possible outcomes: either you win $x or you
lose $2x, where x > 0. Consider the following statements.

i. If the expected monetary value is zero, then the probability of
winning is twice the probability of losing.

ii. If the expected monetary value is zero, then the probability of
winning is 2/3.

Are both statements true, neither, or just one (which one)?
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26. A gamble has three possible outcomes: win $1, win $2, or lose
$3. Consider the following two statements.

i. If all outcomes are equally likely, the expected monetary value
is $0.

ii. If the expected monetary value is $0, all outcomes are equally
likely.

Are both statements correct, neither, or just one (which one)?





12 Utility

Here, have a dollar.
In fact, no brotherman here, have two.

Two dollars means a snack for me
But it means a big deal to you.

—Arrested Development, “Mr. Wendal”

Imagine your university’s student union is holding a lottery. There
are a thousand tickets, and the prize is $500. Tickets cost $1. Would
you buy one?

The expected monetary value of buying a ticket is −$0.50:

E(T) = (1/1, 000)($499) + (999/1, 000)(−$1)

= −$0.50.

So it seems like a bad deal.
But some people do buy tickets in lotteries like this one, and not

necessarily because they’re just bad at math. Maybe they enjoy the
thrill of winning, or even just having a shot at winning. Or maybe they
want to support the student union, and foster fun and community on
campus.

Suppose your friend is one of these people. How might they re-
spond to the calculation above? One thing they could do is replace the
dollar amounts with different numbers, numbers that more accurately
capture their personal values.

Instead of just a $499 gain for winning, for example, they might use
599, to capture the added value that comes from the thrill of winning.
And instead of −$1 for losing, they might put 9 to capture the con-
tribution to campus community that comes from participating in the
event.

Then the calculation looks like this:

E(T) = (1/1, 000)(599) + (999/1, 000)(9)

= 9.59

So buying a ticket has positive expected value now.
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Notice how there are no dollar signs anymore. In fact there’s no ex-
plicit unit of measurement at all. So what do these numbers represent,
if not monetary value?

They represent how good or bad an outcome is, from your friend’s
point of view. In decision theory we call these numbers utilities, or
utils for short.

If the real value of something is its utility, we should calculate expected
utilities instead of expected monetary values.

Expected Utility. Suppose act A has possible consequences C1, C2, . . . , Cn.
Denote the utility of each outcome U(C1), U(C2), etc. Then the
expected utility of A is defined:

EU(A) = Pr(C1)U(C1) + Pr(C2)U(C2) + . . . + Pr(Cn)U(Cn).

So the formula for expected utility is exactly the same as for expected
monetary value, except we replace dollars with utils.

According to standard decision theory, the right choice is the act
that has the highest expected utility. Or if there’s a tie for highest, then
any of the acts tied for highest is a good choice.

12.1 Subjectivity & Objectivity

People have different desires, needs, and interests. Some value friend-
ship most, others value family more. Some prioritize professional suc-
cess, others favour activism. Some people like eighties music, others
prefer hip-hop—and still others, to my constant surprise, enjoy opera.

So the value of a decision’s outcome depends on the person. It
is subjective. And that raises a big question: if utility is subjective,
how can we measure it objectively? Does it even make sense to treat
personal tastes and preferences using mathematical equations?

Figure 12.1: Frank Ramsey (1903–1930)
died at the age of 26, before his discovery
could become widely known. Luckily
the idea was rediscovered by economists
and statisticians in the 1940s.

The classic solution to this problem was discovered by the philoso-
pher Frank Ramsey in the 1920s. The key idea is to quantify how much
a person values a thing by considering how much they’d risk to get it.

For example, imagine you have three options for lunch: pizza, salad,
or celery. And let’s suppose you prefer them in that order: pizza >

salad > celery. We want to know, how does salad compare to your
best option (pizza) and your worst option (celery)? Is salad almost as
good as pizza, for you? Or is it not so great, almost as bad as celery
perhaps?

Here’s how we find out. We offer you a choice, you can either have
a salad or you can have a gamble. The gamble might win you pizza,
but you might end up with celery instead.

• S: salad.
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• G: a gamble with probability Pr(P) of pizza, 1− Pr(P) of celery.

The question is, how high does the probability Pr(P) have to be before
you are indifferent between these two options? How good does your
shot at pizza have to be before you’d trade the salad for the gamble,
and risk winding up with celery instead?

This is a question about your personal tastes. Some people really
like salad, they might even like it as much as pizza. So they’d need
the shot at pizza to be pretty secure before they’d give up the salad.
Others don’t care much for salad. Like me: I’d be willing to trade the
salad for the gamble even if the chances of pizza weren’t very high.
For me, salad isn’t much better than celery, but pizza is way better
than both of them.

Let’s suppose your answer is Pr(P) ≥ 1/3. That is, you’d need at
least a 1/3 chance at the pizza to risk getting celery instead of salad.
Since celery is the worst option, let’s say it has utility zero: U(C) = 0.
And since pizza is the best option, let’s say it has utility one: U(P) = 1.
What is the utility of salad U(S) then?

Figure 12.2: A utility scale for lunch op-
tions

We know that you’re willing to trade the salad for the gamble when
the probability of winning pizza is at least 1/3. So if Pr(P) = 1/3,
the utility of salad is the same as the expected utility of the gamble:
U(S) = EU(G). Therefore:

U(S) = EU(G)

= Pr(P)U(P) + Pr(C)U(C)

= (1/3)(1) + (2/3)(0)

= 1/3.

So salad has utility 1/3 for you.
Hey look! We just took something personal and subjective and gave

it a precise, objective measurement. We’ve managed to quantify your
lunch preferences.

Figure 12.3: A friend’s utility scale for
lunch options

Now imagine your friend gives a different answer. They’d need at
least a 2/3 chance at the pizza to risk ending up with celery instead
of salad. So for them, U(S) = EU(G) when Pr(P) = 2/3. So now the
calculation goes:

U(S) = Pr(P)U(P) + Pr(C)U(C)

= (2/3)(1) + (1/3)(0)

= 2/3.

So for your friend, salad is closer to pizza than to celery. For them it
has utility 2/3.
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12.2 The General Recipe

Lunch is important, but how do we apply this recipe more broadly?
How do we quantify the value a person places on other things, like
career options, their love life, or their preferred music?

What are B and W? What are the best
and worst options a person could have?
I like to think of them as heaven and hell:
B is an eternity of bliss, W is an eternity
of suffering.

That way we can look at the big pic-
ture. We can quantify a person’s utili-
ties in the grand scheme of things. We
can compare all kinds of life-outcomes,
big and small. We can measure the util-
ity of everything from raising happy and
healthy children, to landing your dream
job, to going on a Carribean vacation, to
having a cup of coffee.

But it’s important to remember that the
best and worst outcomes vary from per-
son to person. In fact, for most people
eternal bliss (heaven) isn’t the best pos-
sible outcome. They’ll want their friends
and family to go to heaven too, for ex-
ample. They may even want everyone
else to go to heaven—even their enemies,
if they’re a particularly forgiving sort of
person.

Here’s the general recipe. We start with our subject’s best possible
consequence B, and their worst possible consequence W. We assign
these consequences the following utilities:

U(B) = 1,

U(W) = 0.

Then, to find the utility of any consequence C, we follow this recipe.
We find the lowest probability Pr(B) at which they would be indifferent
between having C for sure vs. accepting the following gamble.

• G: probability Pr(B) of getting B, probability 1− Pr(B) of W.

Then we know consequence C has utility Pr(B) for them.
Why does this method work? Because our subject is indifferent

between having option C for sure, and taking the gamble G. So for
them, the utility of C is the same as the expected utility of the gamble
G. And the expected utility of gamble G is just Pr(B):

U(C) = EU(G)

= Pr(B)U(B) + (1− Pr(B))U(W)

= Pr(B).

I find it helps to think of this method as marking every point on our
utility scale with a gamble, which we can use for comparisons.

B

Pr(B) = 7 8,  Pr(W) = 1 8

Pr(B) = 2 3,  Pr(W) = 1 3

Pr(B) = 1 2,  Pr(W) = 1 2

Pr(B) = 1 6,  Pr(W) = 5 6

W

1

7 8

2 3

1 2

1 6

0
Figure 12.4: A utility scale with some
points of comparison chosen for display:
u = 7/8, 2/3, 1/2, and 1/6

For every utility value u between 0 and 1, there’s a gamble whose
expected utility is also u. To find such a gamble, we make the possible
payoffs B and W, and we set Pr(B) = u and Pr(W) = 1− u.

These gambles give us points of comparison for every possible util-
ity value u on our utility scale. Figure 12.4 shows a sample of a few
such points. We can’t show them all of course; there are infinitely
many, one for every number between 0 to 1.

Now to find the utility of an outcome—whether it’s a salad, a Car-
ribbean vacation, or a million dollars—we find which of these gambles
it’s comparable to. To locate a Carribbean vacation on our scale, for
example, we move up the scale from 0 until we hit a gamble where
our subject says, “There! I’d be willing to trade a Carribbean vacation
for that gamble there.” Then we look at what Pr(B) is equal to in that
gamble, and that tells us their utility for a Carribbean vacation.
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12.3 Choosing Scales
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Figure 12.5: The best possible gamble
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Figure 12.6: An intermediate gamble
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Figure 12.7: The worst possible gamble

Our method for quantifying utility assumes that U(W) = 0 and U(B) =
1. What justifies this assumption? It’s actually a bit arbitrary. We could
measure someone’s utilities on a scale from 0 to 10 instead. Or −1 to
1, or any interval.

It’s just convenient to use 0 and 1. Because then, once we’ve iden-
tified the relevant probability Pr(B), we can immediately set U(C) =
Pr(B). If we used a scale from 0 to 10 instead, we’d have to multiply
Pr(B) by 10 to get U(C). That would add some unnecessary work.

It’s also inuitive to use the same 0-to-1 scale for both probability
and utility. It makes our visualizations of expected utility especially
tidy. Expected utility can then be thought of as portion of the unit
square. The best possible option is a 100% chance of the best out-
come, i.e. probability 1 of getting utility 1. So the best possible choices
have area 1. Whereas the worst gamble has no chance of getting any
outcome with positive utility, and has area 0.

You can think of the 0 and 1 endpoints like the choices we make
when measuring temperature. On the celsius scale, the freezing point
of water is 0 degrees and the boiling point is 100. On the Fahrenheit
scale we use 32 and 212 instead. The celsius scale is more intuitive, so
that’s what most people use. But the Fahrenheit scale works fine too,
as long as you don’t get confused by it.

Notice, by the way, that a person’s body temperature is another ex-
ample of something personal and subjective, yet precisely and objec-
tively measurable. Different people have different body temperatures.
But that doesn’t mean we can’t quantify and measure them.

12.4 A Limitation: The Expected Utility Assumption

A measurement is only as good as the method used to generate it. An
oral thermometer only works when the temperature in your mouth is
the same as your general body temperature. If you’ve got ice cubes
tucked in your cheeks, or a mouthful of hot tea, even the best ther-
mometer will give the wrong reading.

The same goes for our method of measuring utility. It’s based on the
assumption that our subject is making their choices using the expected
utility formula. When the probability of pizza Pr(P) was 1/3, we
assumed you were indifferent between keeping the salad and taking
gamble on pizza/celery because U(C) = EU(G).

But people don’t always make their choices according to the ex-
pected utility formula. Some famous psychology experiments demon-
strate this, as we’ll see in Chapter 13. So it’s important to keep in mind
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that our “utility thermometer” doesn’t always give the right reading.

þ Our method for quantifying utilities only works when the subject
is following the expected utility formula.

12.5 The Value of Money

If you saw 50 cents on the ground while walking, would you stop
to pick it up? I probably wouldn’t. But I would have when I was
younger, back then I had a lot less money. So an additional 50 cents
made a bigger difference to my day. The more money you have, the
less an additional 50 cents will be worth to you.

Imagine you won a million dollars in the lottery. Your life would be
changed radically (unless you already happen to be a millionaire). But
if you win another million dollars in another lottery, that extra million
wouldn’t make as big a difference. It’s still a big deal, but not as big a
deal as the first million.

0.00
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0.50

0.75

1.00

0 25 50 75 100
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Figure 12.8: The diminishing value of
additional money

For most people, gaining more money adds less and less value as
the gains increase. In graphical terms, the relationship between money
and utility looks something like Figure 12.8.

We can quantify this phenomenon more precisely using our tech-
nique for measuring utilities. For example, let’s figure out how much
utility a gain of $50 has, compared with $0 and $100.

As usual we set the end-points of our scale at 0 and 1:

U($0) = 0,

U($100) = 1.

Then we ask: how high would Pr($100) have to be before you would
trade a guaranteed gain of $50 for the following gamble?

• Chance Pr($100) of winning $100, chance 1− Pr($100) of $0.

For me, I’d only be willing to take the gamble if Pr($100) ≥ .85. So,
for me, U($50) = .85.

U($50) = Pr($100)U($100) + Pr($0)U($0)

= (.85)(1) + (.15)(0)

= .85.

Notice how this fits with what we said earlier about the value of
additional money. At least for me, $100 isn’t twice as valuable as $50.
In fact it’s not even really close to being twice as valuable. A gain of
$50 is almost as good as a gain of $100: it’s .85 utils vs. 1 util.

But what about you: how does a gain of $50 compare to a gain of
$100 in your life?
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Exercises

1. According to the theory of utility presented in this chapter:

a. Utility is subjective: people differ in their priorities, and in the
value they place on things like money or food.

b. Utility is objective: there is a fact of the matter about how
much a given person values a good like money or food, and
this can be quantified.

c. Both
d. Neither

2. Which of the following best describes the concept of utility used
in decision theory?

a. Utility measures an option’s chances of having a good out-
come.

b. Utility is the moral value of an outcome: how good it is from
an ethical point of view.

c. Utility is the social value of an outcome: how good it is from
society’s point of view.

d. Utility is the value a person places on an outcome, whether it
involves money, food, friendship, or something else.

3. Lee’s favourite ice cream flavour is chocolate, her least favourite
is strawberry. Vanilla is somewhere in between. She would trade
a vanilla ice cream for a gamble on chocolate vs. strawberry, but
only as long as the chance of chocolate is at least 3/5. How much
utility does vanilla have for her on a scale from 0 (strawberry) to
1 (chocolate)?

4. Sonia has tickets to see The Weeknd tomorrow night. Her friend
has tickets to see Beyoncé, and also tickets to Katy Perry. Bey-
oncé is Sonia’s favourite performer, in fact she would rather see
Beyoncé than The Weeknd.

Sonia’s friend offers a gamble in exchange for her tickets to The
Weeknd. The gamble has a 9/10 chance of winning, in which
case Sonia gets the Beyoncé tickets (utility 1). Otherwise she gets
the Katy Perry tickets (utility 0).

If Sonia declines the gamble, what can we conclude?

a. For Sonia, the utility of seeing The Weeknd is 9/10.
b. For Sonia, the utility of seeing The Weeknd is greater than

9/10.
c. For Sonia, the utility of seeing The Weeknd is less than 9/10.
d. For Sonia, the utility of seeing The Weeknd is 1/10.
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5. After giving her calculus midterm, Professor X always offers her
students a chance to improve their grade by trying to solve an
optional “challenge” problem. If they get it right, their grade
is increased by one letter grade: F changes to D, D changes to
C, etc. But if they get it wrong, their grade goes down by one
letter-grade: A changes to B, B changes to C, etc.

Hui got a C on his midterm. He asks the professor how often
students get the challenge problem right and she says they get it
right half the time. Hui decides to stick with his C. But he would
be willing to try the challenge problem if the chances of getting
it right were higher: 2/3 or more.

Suppose getting a D has utility 4/10 for Hui, while a B has utility
8/10.

a. What is the expected utility for Hui of trying the challenge
problem?

b. How much utility does a C have for Hui?

6. Let’s explore how much value you place on money. We’ll only
consider amounts between $0 and $100, and we’ll set our scale
as usual: U($100) = 1 and U($0) = 0.

a. Now suppose you are offered a gamble that has probability
Pr($100) of paying $100, and probability 1− Pr($100) of pay-
ing $0. How high would Pr($100) have to be for you to be
willing to trade a guaranteed $50 for this gamble? (This is a
question about your personal preferences.)

b. Based on your answer to part (a), how much utility does gain-
ing $50 have for you?

c. Now consider a gamble that has probability Pr($100) of pay-
ing $100, and probability 1 − Pr($100) of paying $50. How
high would Pr($100) have to be for you to be willing to trade
a guaranteed $75 for this gamble? (This is another question
about your personal preferences.)

d. Based on your previous answers, how much utility does gain-
ing $75 have for you?

e. In terms of dollars, a gain of $75 is 1.5 times as large a gain as
$50. In terms of your utilities, how does U($75) compare to
U($50)? Is it more than 1.5 times as large? Less? The same?

f. Make a graph with dollars on the x-axis and your utilities on
the y-axis. Plot the four points established in this problem.
Then use them to draw a rough sketch of how your utilities
increase per dollar.
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7. Martha is trying to decide where to go to university. She applied
to three schools: UTM, Western, and Queens. UTM is her first
choice, Queens is her last choice.

So far Martha has only heard back from Western. They are offer-
ing her early admission: they’ll admit her but only if she agrees
right now to go there (she can’t wait until she finds out if the
other two schools will admit her).

Based on her grades, Martha knows that if she waits she’ll be
admitted to Queens for sure. But her chance of getting into UTM
is only 6/10.

After thinking about it a while, she can’t decide: a guaranteed
spot at Western seems just as good to her as the gamble on UTM
vs. Queens.

a. If the utility of going to Queens is 5/10 for Martha, and the
utility of going to UTM is 9/10, what is the utility of going to
Western?

b. Martha’s friend is considering York University. Martha didn’t
apply to York, but if she had she would be indifferent between
these options:

• Accept an early-admissions offer from York and go there.
• Gamble on a 3/4 chance at going to Western vs. a 1/4

chance of having to go to Queens.

How much utility does going to York have for Martha?

8. Eleanor wants to get a job at Google so she’s going to university
to study computer science. She has to decide between UTM and
Western.

Suppose 1/100 of UTM’s computer science students get jobs at
Google and the rest get jobs at RIM. For Eleanor, a job at Google
has utility 200 while a job at RIM has utility 50.

a. What is the expected utility of going to UTM for Eleanor?

Suppose Western students have better odds of getting a job at
Google: 5/400. And 360/400 students go to work at Amazon,
which Eleanor would prefer to RIM. On the other hand, the re-
maining 35/400 of them don’t get a job at all, which has utility
zero for Eleanor.

After thinking about it, she can’t decide: UTM and Western seem
like equally good options to her.

b. How much utility does working at Amazon have for Eleanor?
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Suppose Eleanor ends up going to UTM, and now she’s about to
graduate. Unfortunately, Google isn’t hiring any more. The only
jobs available are at Amazon and RIM.

She would have to take a special summer training program to
qualify for a job at Amazon, though. And that would mean she
can’t get a job at RIM. RIM is offering her a job, but she has to
take it now or never.

So, she has to either take the guaranteed job at RIM right now,
or gamble on the summer program. The summer program could
get her a job at Amazon, or it could leave her unemployed.

c. How high would the probability of getting a job at Amazon
have to be for the special summer program to be the better
option?

9. Farad wants to go to law school so he’s going to university to
study philosophy. He is deciding between Queens and Western.

Suppose 2/10 of Western philosophy students who apply to law
school get in, the rest go to teacher’s college or medical school.
For Farad, going to law school has utility 250, and going to
teacher’s college or medical school has utility 50.

a. What is the expected utility of going to Western for Farad?

Suppose Queens students have better odds of getting into law
school: 3/10. And 6/10 go to work for the government, which
Farad would prefer to being unemployed. On the other hand,
1/10 of them don’t get a job at all, which has utility −50 for
Farad.

Farad can’t decide: Western and Queens seem equally good choices
to him.

b. How much utility does working for the government have for
Farad?

Farad ends up going to Western and now he’s about to graduate.
Unfortunately, his grades aren’t very good, so he would have to
do a special summer program to get into law school. Alterna-
tively he can apply to medical school or teacher’s college, where
he would definitely get in.

Farad has to choose between (i) taking the summer program, and
(ii) going to medical school or teacher’s college. He won’t have
time to do both. So if the summer program doesn’t get him into
law school, he’ll end up unemployed.
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c. How high would his chances of getting into law school have
to be for him to risk taking the summer program?

10. Prove the following statement: if an action has only two possible
consequences, C1 and C2, and they are equally probable, with
U(C1) = −U(C2), then the expected utility is zero.

11. Suppose Shinji does not follow the expected utility formula: in-
stead of multiplying utilities by probabilities, he multiplies by
square roots of probabilities. In other words, he prefers options
that maximize the following quantity:

U(C1)
√

Pr(C1) + . . . + U(Cn)
√

Pr(Cn).

Shinji is indifferent between the following two options:

• He gets $50 with probability 1.
• He wins $100 with probability 7/10, otherwise he gets $0.

How much utility does winning $50 have for Shinji, if U($0) = 1
and U($100) = 10?

12. Doug does not follow the expected utility formula. Instead he
prefers options that maximize the quantity:

(Pr(C1))
2U(C1) + . . . + (Pr(Cn))

2U(Cn).

Doug is indifferent between the following two options.

• He wins $25 with probability 1/2, otherwise he gets $0.
• He wins $100 with probability 1/4, otherwise he gets $0.

If U($0) = 1 and U($100) = 3, what is U($25)?

13. Suppose two gambles, A and B, depend on the flip of a fair coin.
The utilities are a1, a2, b1, and b2, as in the following table.

H T

A a1 a2

B b1 b2

Suppose EU(A) > EU(B). Prove that if we double all the utili-
ties, A will still have higher expected utility.

14. Consider the following description: EU(A) > EU(B) even though
the probability is at least 99/100 that B will result in an outcome
with higher utility than A.
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Which one of the following is correct?

a. This situation is impossible because it violates the Additivity
rule.

b. This situation is impossible because it violates the expected
utility formula.

c. This situation is impossible because it violates the Sure-thing
Principle.

d. This situation is possible.



13 Challenges to Expected Utility

We’ve learned two key elements of modern decision theory. First,
we can quantify people’s desires, values, and priorities, a quantity we
call utility. Second, we should make our decisions according to the
expected value formula. We should choose the option with highest
expected utility.

These ideas have been extremely popular and influential in the last
hundred years. But there have also been challenges.

13.1 The Allais Paradox

Suppose you must choose between two options.

• 1A: $1 million, guaranteed.
• 1B: a gamble. . .

◦ 1% chance of $0,
◦ 89% chance of $1 million,
◦ 10% chance of $5 million.

Which would you choose, 1A or 1B? Write your answer down and set
it aside, we’ll come back to it in a moment.

Now, what if you had to choose instead between these two options.

• 2A: a gamble. . .

◦ 89% chance of $0,
◦ 11% chance of $1 million.

• 2B: a gamble. . .

◦ 90% chance of $0,
◦ 10% chance of $5 million.

Most people choose 1A over 1B in the first decision. With the safe
option of walking away $1 million richer, they don’t want to take the
chance at $5 million. Even though there’s only a 1% risk of walking
away empty handed if they take the gamble, it’s not worth it to them.
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The 10% shot at $5 million isn’t enough to risk losing out on the guar-
anteed $1 million.

But in the second decision, most people choose 2B over 2A. There’s
no safe option now, in fact you’ll probably walk away empty handed
whatever you choose. Under these circumstances, most people prefer
to take on an extra 1% risk of empty-handedness in exchange for a
10% shot at $5 million.

But here’s the thing: these choices contradict the expected utility
rule! It’s not obvious at first. But a few lines of algebra will prove that
it’s so.

Suppose someone did choose 1A over 1B, and 2B over 2A, by
applying the expected utility formula. Then we would know that
EU(1A) > EU(1B) and EU(2B) > EU(2A). In other words:

EU(1A)− EU(1B) > 0,

EU(2A)− EU(2B) < 0.

But it turns out that’s impossible, because:

EU(1A)− EU(1B) = EU(2A)− EU(2B).

To see why, let’s first write out the expected utility formula for each
option:

EU(1A) = U($1M),

EU(1B) = .89×U($1M) + .1×U($5M) + .01×U($0),

EU(2A) = .89×U($0) + .11×U($1M),

EU(2B) = .9×U($0) + .1×U($5M).

Now a little arithmetic will show that we get the same result when we
subtract the first two formulas and the second two:

EU(1A)− EU(1B) = −.01×U($0) + .11×U($1M)− .1×U($5M),

EU(2A)− EU(2B) = −.01×U($0) + .11×U($1M)− .1×U($5M).

Notice how both formulas are exactly the same. The difference in
expected value between the first two options is exactly the same as
the difference in value between the second two options. Which means
if you’re making decisions using the expected utility rule, you can’t
prefer the A option in the first decision and the B option in the second.

It’s important to understand that these calculations don’t depend
on the utility of money.

In Chapter 12 we noted that the difference in utility between $0 and
$1 million might be larger for some people than for others. Could
these individual priorities explain why some people prefer 1A over 1B
yet 2B over 2A?
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No. In the Allais paradox, the way you personally value money is
actually irrelevant. It doesn’t matter how much you value $1 million
vs. $0. Our calculations made no assumptions about the numerical val-
ues of U($0), U($1M), and U($5M). We left those terms untouched,
treating them as unknown placeholders. Whatever your personal util-
ities are, there’s just no way to prefer 1A over 1B and 2B over 2A, if
you’re following the expected utility rule.

Figure 13.1: Maurice Allais (1911–2010),
photograph by Harcourt Studios

Leonard Savage (1917–1971) was an
American staistician and mathematician,
and a leading advocate of the expected
utility rule. There doesn’t seem to be any
public-domain photograph of him avail-
able unfortunately, but you can find one
here.

This challenge is called the Allais paradox. Maurice Allais was a French
economist, writing at a time when some French thinkers disliked the
idea of reducing decisions to a simple equation. The American statis-
tician Leonard Savage, on the other hand, very much liked the idea
of expected utility. So Allais cooked up this example to prove Savage
wrong.

When Savage first encountered Allais’ example, he did exactly what
most people do. He chose 1A over 1B, but 2B over 2A. He violated
the principles of his own theory!

Savage responded by acknowledging that people are tempted to
make exactly the choices Allais predicted. But, he pointed out, people
sometimes make irrational choices. And Allais’ example brings out
our irrational temptations, Savage argued.

To make his case, Savage cast the example in concrete terms. Imag-
ine a random ticket will be drawn from a hat containing tickets num-
bered 1 through 100. The outcome of each options is determined ac-
cording to Table 13.1.

Table 13.1: Savage’s presentation of the Allais paradox

#1 #2–11 #12–100

1A $1M $1M $1M
1B $0 $5M $1M
2A $1M $1M $0

2B $0 $5M $0

In the first row you’re guaranteed to get $1 million. In the second row
you have a 1% chance of getting nothing, an 89% chance of getting $1
million, and a 10% chance of getting $5 million. And so on.

Viewed this way, we can see that there’s no difference between 1A
and 1B if the ticket drawn is one of #12–100. And likewise for 2A
vs. 2B. So you must choose based on what will happen if the ticket
drawn is #1 or one of #2–11. In other words, you should ignore the
third column and just look at the first two.

But in the first two columns, choosing 1A over 1B is the same as

http://policonomics.com/leonard-savage/
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choosing 2A over 2B. So, to be consistent, you must choose 2A if you
chose 1A.

Thus, Savage argued, we can see that the expected utility rule is
correct once we frame the problem correctly.

Here’s another way of thinking about Savage’s argument. If you
choose 2B over 2A, then you must be willing to accept a 1% chance
of getting nothing in exchange for a 10% chance at $5 million. But if
you’re willing to make that trade, then you should be willing to give
up option 1A and take option 1B instead.
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Figure 13.2: Options 1A and 1B in the
Allais paradox

Visualizing the problem is also informative. Figure 13.2 shows Al-
lais’ first choice, between 1A and 1B. Notice how the riskiness of
choosing 1B is much less noticeable in this format than the potential
upside. The 10% chance of winning $5 million jumps right out at you.
Whereas the 1% chance of winding up with nothing is barely notice-
able.

If you were presented with the Allais choices in this graphical for-
mat, instead of with numbers and words, you might choose very dif-
ferently. Psychologists call this a “framing effect.” The way a decision
is framed can make a big difference to what people will choose.

Advertisers know a lot about framing effects.

13.2 The Sure-thing Principle

Savage’s answer to the Allais paradox is based on a famous principle
of decision theory.

The Sure-thing Principle. If you would choose X over Y if you knew
that E was true, and you’d also choose X over Y if you knew E
wasn’t true, then you should choose X over Y when you don’t
know whether E is true or not.

How does this principle apply to the Allais paradox? Interpret E this
way:

• E = One of tickets #12–100 will be drawn.

Then imagine someone who chose 1A over 1B. Would it make sense
for them to choose 2B over 2A?

Well, first imagine they know E is true: they know one of tickets
#12–100 will be drawn. Then they wouldn’t prefer 2B over 2A. They
wouldn’t care about 2B vs. 2A because they’ll get $0 either way.

Next imagine they know E isn’t true: they know one of tickets #1–
11 will be drawn instead. Then they still wouldn’t prefer 2B over 2A.
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They chose 1A over 1B, so they prefer not to take a small risk of getting
$0 in order to have a chance at $5 million. And that’s exactly the same
tradeoff they’re considering with 2A vs. 2B.

So the Sure-thing Principle says they should choose 2A over 2B if
they chose 1A over 1B. They wouldn’t choose 2B if they knew E was
true, and they wouldn’t choose it if they knew E was false. So, even
when they don’t know whether E is true or false, they should still
choose 2A.

13.3 Prescriptive vs. Descriptive

Some decision theorists use the expected utility formula to describe
the way people make choices. If you want to predict when people
will buy/sell a stock, for example, you might use the expected utility
formula to describe what people will do.

But others use the formula to prescribe decisions: to determine what
we ought to do. Sometimes people do what they should, but sometimes
they make mistakes or do foolish things.

Savage’s answer to the Allais paradox is based on the prescriptive
approach to decision theory. According to Savage, people should make
decisions according to the expected utility formula. But sometimes
they don’t, as Allais’ example demonstrates.

13.4 The Ellsberg Paradox

Here’s another famous challenge to expected utility and the Sure-thing
Principle.

An urn contains 90 balls, 30 of which are red. The other 60 are
either black or white, but the proportion of black to white is not
known. A ball will be drawn at random, and you must choose
between the following.

• 1A: win $100 if the ball is red,
• 1B: win $100 if the ball is black.

You also face a second choice.

• 2A: win $100 if the ball is either red or white,
• 2B: win $100 if the ball is either black or white.

Most people choose 1A over 1B, since you know what you’re getting
with 1A: a 1/3 chance at the $100. Whereas 1B might give worse odds;
it may even have no chance at all of winning, if there are no black balls.

At the same time, most people choose 2B over 2A, and for a similar
reason. With 2B you know you’re getting a 2/3 chance at the $100.
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While 2A might give much worse odds, maybe even as low as 1/3 if
there are no white balls in the urn.

Like in the Allais paradox, this popular combination of choices vio-
lates the expected utility rule. The calculation that shows this is pretty
similar to the one we did with Allais, so we won’t rehearse it here.

Figure 13.3: Daniel Ellsberg (b. 1931) is
most famous as the leaker of the Pen-
tagon Papers. The 2017 movie The Post
tells that story, with Ellsberg portrayed
by actor Matthew Rhys. (Photograph by
Bernd Gross.)

Instead let’s think about what this puzzle is showing us.

13.5 Ellsberg & Allais

Ellsberg’s paradox is strongly reminiscent of Allais’. Both exploit a
human preference for the known. In the Allais paradox we prefer
the sure million, and in the Ellsberg paradox we prefer to know our
chances.

But the kind of risk at work in each paradox is different. In the
Allais paradox, all the probabilities are known, and in one case we
can even know the outcome. If you choose the safe million, you know
what your fate will be.

But in the Ellsberg paradox, you never know the outcome. The most
you can know is the chance of each outcome. And yet, our preference
for the known still takes hold. We still prefer to go with what we know,
even when all we can know is the chance of each outcome.

Is this preference for known risks rational? Well, it violates Savage’s
Sure-thing Principle. View Ellsberg’s dilemma as a table:

Table 13.2: The Ellsberg paradox

Red Black White

1A $100 $0 $0
1B $0 $100 $0
2A $100 $0 $100
2B $0 $100 $100

If you knew a white ball was going to be drawn, you wouldn’t care
which option you chose. In the first decision, you’d get $0 either way,
and in the second you’d get $100 either way.

And if you knew a white ball wouldn’t be drawn, then options 1A
and 2A would be equivalent. The first two rows are identical to the
second two rows, if we ignore the “White” column. So consistency
seems to demand selecting 2A if you selected 1A.

Most decision theorists find this reasoning compelling. But some
turn it on its head. They say: so much the worse for the Sure-thing
Principle. The debate has yet to settle into a universal consensus.

https://bit.ly/1Lgsq2D
https://bit.ly/1Lgsq2D
https://bit.ly/2CcHs8v
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Exercises

1. Which of the following best describes the Allais paradox? Choose
one.

a. Most people choose 1B over 1A, and 2B over 2A. But the
expected monetary value of 2A is greater than the expected
monetary value of 2B.

b. Most people choose 1A over 1B, and 2A over 2B. But the
expected monetary value of 2B is greater than the expected
monetary value of 2A.

c. Most people choose 1A over 1B, and 2B over 2A. But 1B and
2B have greater expected utilities.

d. Most people choose 1A over 1B, and 2B over 2A. But it’s
impossible for the expected utility to be greater for 1A than
for 1B and for 2B than for 2A.

2. True or false: the usual choices in the Allais paradox conflict with
the expected utility rule no matter what utilities we assign to $0,
$1M, and $5M.

a. True
b. False
c. Neither

3. According to Savage’s response to the Allais paradox, the rule of
expected utility is:

a. descriptive
b. prescriptive
c. both
d. neither

4. Which of the following best describes Savage’s answer to the Al-
lais paradox? Choose one.

a. People value money differently. For some people $5 million is
a lot better than $1 million, for others it’s only a littler better.

b. Expected utility is a descriptive formula, not a prescriptive
one. The Sure-thing Principle explains why most peoples’
choices are wrong.

c. Expected utility is a prescriptive formula, not a descriptive
one. The Sure-thing Principle explains why most peoples’
choices are wrong.

d. Expected utility is only a rough guide. Other factors affect
what choice you should make, like whether there is a “safe”
(risk-free) option.
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5. In the Allais Paradox, people tend to choose 1A over 1B, but 2B
over 2A. This suggests that:

a. for many people, the utility of $5 million is not five times that
of $1 million.

b. people maximize expected utility, not expected monetary value.
c. people are more willing to accept a small risk when things are

already risky.
d. the Sure-thing Principle is descriptive, not prescriptive.

6. In Savage’s description of the Allais paradox, we imagine the
gambles depending on the random draw of a ticket. When ap-
plying the Sure-thing Principle to this analysis. . .

a. the unknown event E must be: the ticket drawn is one of #12–
#100.

b. the unknown event E must be: the ticket drawn is one of #1–
#11.

c. the unknown event E can be either as in (a) or as in (b).
d. None of the above

7. When applying Savage’s Sure-thing Principle to the Ellsberg para-
dox, which of the following is the unknown event E?

a. The ball drawn is red.
b. The ball drawn is red or white.
c. The ball drawn is white.
d. None of the above

8. In the Ellsberg Paradox, people tend to choose 1A over 1B, but
2B over 2A. Which of the following does this suggest?

a. People sometimes violate the Sure-thing Principle.
b. People don’t always maximize expected utility.
c. People tend to prefer known chances over unknown chances.
d. All of the above

9. Suppose we don’t know what Yu’s personal probabilities and
utilities are. But we know that she has the following preferences
when a card is drawn from a standard deck (not necessarily at
random).

When offered the following two options, Yu prefers B:

• A: She wins $0 if it’s a spade; $2 if it’s a club; $0 if it’s red.
• B: She wins $2 if it’s a spade; $0 if it’s a club; $0 if it’s red.

When offered these two options, Yu prefers D:
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• C: She wins $2 if it’s a spade; $0 if it’s a club; $5 if it’s red.
• D: She wins $0 if it’s a spade; $2 if it’s a club; $5 if it’s red.

Which one of the following is correct?

a. Yu has obeyed the expected utility rule.
b. Yu has violated the expected utility rule.
c. The expected utility rule does not apply to Yu’s situation.
d. We don’t have enough information to determine whether she

has violated the expected utility rule or not.

10. Suppose an urn contains 50 balls: 25 are red, the rest are either
blue or green in unknown proportion. A random ball will be
drawn, and you must choose one of the following.

• 1A: you win $5 if the ball is red,
• 1B: you win $5 if the ball is blue.

You also face a second choice:

• 2A: you win $5 if the ball is either blue or green,
• 2B: you win $5 if the ball is either red or green.

Which one of the following is correct?

a. Preferring 1B and 2A violates the sure-thing principle.
b. Preferring 1B and 2A violates the axioms of probability.
c. Preferring 1A and 2A violates the sure-thing principle.
d. None of the above.

11. Suppose options A and B depend on a random draw from three
tickets. Label the utilities of the possible outcomes as follows:

T1 T2 T3

A a1 a2 a3

B b1 b2 b3

According to the Sure-thing principle, you should prefer A if (i)
you would prefer A given either T1 or T2, and (ii) you would
prefer A given T3. Prove that the expected utility rule agrees.

In other words, assume the following two statements hold:

• EU(A) > EU(B) if we know the ticket will be either T1 or T2;
• EU(A) > EU(B) if we know the ticket will be T3.

Then use those assumptions to show that EU(A) > EU(B).
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12. Suppose two gambles A and B depend on the flip of a fair coin.
Gamble A wins $1 if heads, and loses $1 otherwise. Gamble B is
similar, except you win $100 if heads, lose $100 otherwise.

Is it possible to have EU(A) > EU(B)? If not, prove that it’s
impossible. If it is possible, describe a utility function U($x) = y
that makes this inequality hold.



14 Infinity & Beyond

Infinity poses a different sort of challenge to expected utility. In this
chapter we’ll meet two famous examples.

14.1 The St. Petersburg Paradox

Suppose I’m going to flip a fair coin, and I’m going to keep flipping it
until it lands heads. When it does, the game is over.

• If it comes up heads on the first flip, you win $2.
• If it comes up heads on the second flip, you win $4.
• If it comes up heads on the third flip, you win $8.
• Etc.

How much would you be willing to pay to play this game? Most
people aren’t willing to pay very much. After all, you probably won’t
win more than a few dollars. Most likely you’ll only win $2 or $4
dollars. The chance you’ll win more than say $32 is only about .03.

And yet, bizarrely, the expected value of this game is infinite! There’s
a 1/2 chance you’ll win $2, a 1/4 chance you’ll win $4, a 1/8 chance
you’ll win $8, and so on. So:

E(G) = Pr($2)× $2 + Pr($4)× $4 + Pr($8)× $8 + . . .

= (1/2)($2) + (1/4)($4) + (1/8)($8) + . . .

= $1 + $1 + $1 + . . .

= $∞.

And doesn’t that mean a fair price for the game would be infinity
dollars? So even if you only have a finite bankroll, you should be
willing to stake it all to play!

Visually, the St. Petersburg game looks something like Figure 14.1.
We can’t show every possible outcome, because the payoffs get larger
and larger without limit. So we have to cut things off at some point.
But we can get the general idea by displaying just the first few possible
outcomes. (The rest are shown faded and only partially.)
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Figure 14.1: The St. Petersburg game’s
first seven outcomes. The rest extend off
the chart and are shown faded.

As the number of potential flips grows, the rectangles get narrower
because the outcomes become less probable. But they also get taller.
The payoff doubles every time the probability is cut in half. The result
is an infinite sequence of rectangles, each with the same area, namely
1. So the total area of all the rectangles is infinite.

Most people, when they first encounter this puzzle, try to take the
easy way out. “The game is impossible,” they say. “Nobody could
actually fund this game in real life. No casino has unlimited money,
not even the government does. And nobody can guarantee they’ll live
long enough to finish the game either, since it could potentially go on
for any number of flips.”

But there are two problems with this answer.
First, notice that we can make the game instantaneous. Instead of

flipping a coin over and over, we throw a dart at a square board just
once. If it lands in the left half, you win $2. The bottom right quadrant
wins $4. If it lands in the top-right, we subdivide that sector further:
its left half wins $8, etc. The probabilities and payoffs here are the
same as the coin version, but the game is settled after just one throw
of the dart.

We still need an infinite bankroll, since there’s no finite cap on the
possible amount you could win. But consider whether you’d be will-
ing to risk your life to play the game if the casino did have enough
cash on hand. Imagine if God descended from heaven and offered to
run the game. Would you gamble your life to play then? It’s a fanciful
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scenario, but if our decision theory really is correct then it should still
work even in fanciful scenarios.

Second, even if the game had a finite limit—let’s suppose it was 100
flips—would you be willing to pay $100 to play? The chance you’d
make any money at all is less than 1%.

Figure 14.2: Daniel Bernoulli (1700–
1782)

14.2 Bernoulli’s Solution

The St. Petersburg game was invented by the mathematician Nico-
laus Bernoulli in the 18th Century. He discussed it with his cousin
Daniel Bernoulli, who published a famous solution in the St. Peters-
burg Academy Proceedings. (Hence the name of the game.)

His solution: replace monetary value with real value, utility in other
words. Recall that the more money you have, the less value additional
money brings. So even though the payoffs in the St. Petersburg game
double from $2 to $4 to $8 etc., the real value doesn’t double. It grows
more slowly.

0

1

2

3

4

0 25 50 75 100

dollars

ut
ili

ty

Figure 14.3: Bernoulli’s logarithmic util-
ity function

What is the real value of money then? How much utility does a gain
of $x bring? Bernoulli proposed that utility increases “logarithmically”
with money. In terms of dollars, U($x) = log(x). Look at Figure 14.3
to see what this looks like.

Notice how, for example, $16 doesn’t have twice the utility of $8.
In fact you have to go all the way up to $64 to get twice the utility
of $8. That’s because 64 = 82, and logarithms have the property that
log(ab) = b× log(a).

The difference this makes to the St. Petersburg game is displayed in
Figure 14.4. The rectangles don’t all have the same area of 1 anymore,
they get smaller instead. In fact, Bernoulli showed that the total area
of all the rectangles is only about 1.39. In other words, the expected
utility of the St. Petersburg game is about 1.39, the equivalent of a $4
gain (because log(4) ≈ 1.39).

So if Bernoulli is right about the utility of money, the fair price for
the St. Petersburg game is only about $4. And in fact that’s about what
most people say they would pay.

14.3 St. Petersburg’s Revenge

Unfortunately, although Bernoulli was probably right that money de-
creases in value the more of it you have, that doesn’t actually solve the
paradox. Because we can just modify the game so that the monetary
payoffs grow even faster.
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The decimal value of e was used as the
key code for a locked room in the X-Files
episode “Paper Clip” (except they seem
to have forgotten the 1). The same scene
also references Monty Hall.

Instead of the payoffs increasing like this:

$2, $4, $8, . . .

Let’s change the game so they increase like this:

$e2, $e4, $e8, . . .

You may remember from math class that e is a special number, approx-
imately equal to 2.71828. It has the special property that:

log(ex) = x.

So the utility of winning $e2 is U($e2) = 2. The utility of winning $e4

is U($e4) = 4. And so on.
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Figure 14.5: St. Petersburg’s revenge

Now the utilities are the same as the dollar payoffs were in the
original version of the game:

2, 4, 8, . . .

So the expected utility is the same as the expected monetary value of
the original game, namely infinite:

E(G) = Pr($e2)U($e2) + Pr($e4)U($e4) + Pr($e8)U($e8) + . . .

= (1/2)(2) + (1/4)(4) + (1/8)(8) + . . .

= 1 + 1 + 1 + . . .

= ∞.

So, once again, you should be willing to give anything to play. Or so
the expected utility rule seems to demand.1 1 Still worried there’s not enough money

in the world to guarantee this game? Try
another variation. Imagine God offers
to substitute days in heaven for dollars.
Unlike dollars, days in heaven don’t lose
value the more you have.
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What’s the right solution to the St. Petersburg paradox then? Nobody
knows, really. Once infinities get involved, the whole expected value
framework seems to go off the rails.

Some decision theorists respond by insisting that there’s a finite
limit on utility. There’s only so good an outcome can be, they say.

But others don’t find this response plausible. There may be a limit
on how much good you can get out of money, because there’s only so
much money can buy. But money is only a means to an end, a medium
we can exchange for the things we really want—things of intrinsic
value like pleasure, happiness, beauty, and love. Is there really a finite
limit on how much value these things can bring into the world? If so,
what is that limit, and why?

14.4 Pascal’s Wager

Figure 14.6: Blaise Pascal (1623–1662)

The modern theory of probability has a curious origin. It started with
Blaise Pascal, a French mathematician and philosopher living in the
1600s. Pascal had a friend who was an avid gambler, and who came
to him for advice on gambling problems. Pascal discussed these prob-
lems in letters with another famous mathematician, Pierre de Fermat.
Out of their correspondence, the concept of expected value was born.

Pascal was a devout Catholic. So, once he developed the tools of
decision theory, he applied them to religious questions. Like: is it
rational to believe in God?

Pascal realized he could think of this question as a decision prob-
lem. If God exists, then believing gets you into heaven, which is very
good. Whereas not believing gets you a one-way ticket to hell, which
is terribly bad. So believing in God looks like the better option.

But Pascal also realized that probabilities matter as much as the
potential payoffs when making decisions. Playing the lottery might
win you millions, but the odds are very poor. So spending your money
on a cup of coffee might be the smarter choice.

Likewise, believing in God might be such a long shot that it’s not
worth it, even if the potential payoff of heaven is fantastic. Of course,
Pascal himself already believed in God. But he wanted to convince
others to do the same, even if they thought it very unlikely that God
exists.

The potential payoff of believing in God is special though, Pascal
realized: it’s not just very good, it’s infinitely good. If you believe in
God and you’re right, you go to heaven for eternity, a neverending
existence of pure ecstacy. Whereas if you don’t believe in God and
you’re wrong, the payoff is infinitely bad: an eternity in hell.

So Pascal figured the decision problem looks something like this:



144 jonathan weisberg

Table 14.1: Pascal’s Wager

God Exists God Doesn’t Exist

Believe +∞ −10
Don’t Believe −∞ +10

The −10 in the top-right cell is somewhat arbitrary. There’s some finite
cost to believing in God if he doesn’t exist. People generally prefer to
believe the truth. And if there’s no God, many people would prefer
not to spend their time and energy on religious matters. But is −10 a
good representation of these losses?

It doesn’t matter, as it turns out. Whether we use −10, −20, or any
other finite number for those losses, it ends up getting drowned out
by the +∞ in the neighbouring cell. And likewise for the +10 in the
bottom-right (which represents the value of being right about God’s
existence, and maybe also of living life your own way).

Why do these finite values not matter in the end? How do they get
drowned out?

Well, said Pascal, even atheists must admit that there’s some small
chance God exists. Nobody can be 100% sure there is no God. So
when we calculate the expected utility of believing in God, we get the
following result:

EU(Believe) = Pr(G)×∞ + Pr(∼G)×−10

= ∞− something finite

= ∞.

As long as Pr(G) is some positive number, multiplying it by ∞ results
in ∞. No matter how small a number is, adding it to itself infinitely
many times results in an infinite quantity. No matter how small your
steps, if you take infinitely many of them, you can travel any distance.

Also, ∞ minus any finite quantity is still ∞. If I start with an infinite
collection of objects, say an infinite list of numbers for example:

1, 2, 3, 4, 5, . . .

and I remove finitely many of them, say the numbers 1 throught 10,
I’m still left with an infinite list:

11, 12, 13, 14, 15, . . .

Therefore, Pascal argued, believing in God has infinite expected value.
What about not believing? It has infinitely negative expected value:

EU(Don’t Believe) = Pr(G)×−∞ + Pr(∼G)× 10

= −∞ + something finite

= −∞.
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So believing in God is an infinitely better decision than not believing!
Or so Pascal thought.

14.5 Responses to Pascal’s Wager

Some people criticized Pascal’s argument on the grounds that belief
is not a decision. Whether you believe in something isn’t voluntary,
like deciding what shirt to wear in the morning. You can’t just decide
to believe in God, you can only believe what seems plausible to you
based on what you know.

But, Pascal famously replied, you can decide how you spend your
days. And you can decide to spend them with religious people, read-
ing religious books, and going to a house of worship. So you can de-
cide to take steps that will, eventually, make you a believer. And since
believing is so much better than not, that’s how you should spend your
days.

A more serious problem with Pascal’s argument is known as the many
gods problem.

In Pascal’s day, in France, Catholicism dominatd the religious land-
scape. So for him, believing in God just meant believing in Catholi-
cism’s conception of God. But there are many possible gods besides
the Catholic god, like the god of Islam, the god of Judaism, the gods
of Hinduism, and so on.

What happens if you choose the wrong God? You might go to
hell! The god of Mormonism might send you to hell for believing in
Catholicism, for example. There might even be an anti-Catholic god,
who sends all Catholics to hell and everyone else to heaven!

So the correct decision table looks more like this:

Table 14.2: Pascal’s Wager with many gods. The . . . stands in for
the many different gods that might exist, each of which has its
own column. There is also a row for each of these possible gods,
since we have the option to believe in that god.

Catholic God Exists Anti-Catholic God Exists . . . No God Exists

Believe Catholic +∞ −∞ . . . −10
Believe Anti-Catholic −∞ +∞ . . . −10
...

...
...

. . .
...

Don’t Believe −∞ +∞ . . . +10
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What’s the expected utility of believing in the Catholic god now? It
turns out there’s no answer! The calculation comes out undefined:

EU(Believe Catholic) = Pr(Catholic)U(Catholic) + Pr(Anti-Catholic)U(Anti-Catholic) + . . .

= Pr(Catholic)×∞ + Pr(Anti-Catholic)×−∞ + . . .

= ∞−∞ + . . .

= undefined.

Why is this undefined? Why isn’t ∞−∞ = 0? Because taking an infi-
nite quantity away from an infinite quantity can result in any quantity
left over.

Imagine we start with an infinite list, a list of all the counting num-
bers for example:

1, 2, 3, 4, 5 . . .

Now remove all the even numbers from that list. There’s still an infi-
nite list of numbers remaining:

1, 3, 5 . . .

After removing an infinite quantity from an infinite quantity, we still
have a neverending list left over. So it looks at first as though ∞−∞ =

∞.
But not so fast! Suppose we start again with all the counting num-

bers:
1, 2, 3, 4, 5 . . .

But this time we remove all the numbers. Not just the evens, but the
odds too. Then there would be nothing left on our list. So now it looks
like ∞−∞ = 0 instead of ∞!

The moral: there are many ways to take an infinite quantity away
from an infinite quantity. Some of these leave an infinite quantity re-
maining. Others leave nothing remaining. There are still others that
would leave just one, two, or three items remaining. (Can you think of
your own examples here?)

So ∞−∞ is not a well-defined quantity.

The expected value framework doesn’t seem to work well when in-
finities show up. The St. Petersburg problem gave us similar trouble.
Researchers are still trying to figure out how to make decisions that
involve infinite quantities.

Exercises

1. In the St. Petersburg game, what is the probability of winning
$16 or less?
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a. 1/16
b. 1/2
c. 7/8
d. 15/16

2. Suppose we modify the St. Petersburg game by capping the num-
ber of flips at 50: if the coin lands tails 50 times in a row, the game
is over and you win nothing. What is the expected monetary value
of this game?

a. $25
b. $50
c. $100
d. $250

3. According to Daniel Bernoulli’s solution to the St. Petersburg
paradox, the utility of the coin landing heads on the (n + 1)-th
flip isn’t twice that of landing on the n-th flip, because. . .

a. when the payouts get very large, it becomes less and less likely
you’ll actually be paid the amount promised.

b. the longer the game goes on, the greater the chance it will be
interrupted before the (n + 1)-th flip can happen.

c. infinity isn’t a real number.
d. the more money you have, the less value additional money

adds.

4. According to Daniel Bernoulli, the utility of $2x is not twice that
of $x because utility is logarithmic: U($x) = log($x). So the
expected monetary value of the St. Petersburg game may be infi-
nite, but its expected utility is finite.

In the text we discussed one reason this doesn’t resolve the para-
dox. What was the reason?

a. It’s not very plausible that utility is logarithmic.
b. Even on a logarithmic scale, the expected utility is still infinite.
c. Even if Bernoulli is right, the expected monetary value is still

infinite.
d. The paradox reappears if we alter the dollar amounts of the

payoffs so that the utility doubles with each flip.

5. Some people respond to the St. Petersburg paradox by arguing
that there’s a limit on how good an outcome can be. Utilities
have an upper bound, they say.

Bernoulli’s logarithmic utility function does not have an upper
bound. In other words: for any real number y, no matter how
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large, there is some real number x such that log(x) = y. Give a
formula for y in terms of x. In other words, what is the function
f such that x = f (y), if y = log(x)?

6. Consider the first form of Pascal’s Wager, displayed in Table 14.1.
What is the expected utility of believing in God if the probability
God exists is 0?

a. −10
b. 0
c. ∞
d. Undefined

7. Consider the first form of Pascal’s Wager, displayed in Table 14.1.
Suppose the probability God exists is almost zero, but not quite:
one in ten trillion. What is the expected utility of believing in
God?

a. ∞
b. −∞
c. 0
d. one in ten trillion

8. According to the many gods objection, Pascal’s Wager argument
fails to account for the possibility of other gods besides the Catholic
conception. What happens to Pascal’s decision table when other
gods are included? Choose one.

a. The expected utilities can’t be calculated because there are in-
finitely many possible Gods.

b. The expected utilities can’t be calculated because you can’t
subtract ∞ from ∞.

c. The expected utilities can’t be calculated because we don’t
know the probabilities.

d. The expected utility of believing in God ends up being the
same as the expected utility of not believing in God.

9. Consider the “many gods” version of Pascal’s Wager, displayed
in Table 14.2. What is the expected utility of believing in Catholi-
cism?

a. ∞
b. −∞
c. Undefined
d. 0



odds & ends 149

10. Suppose an atheist responds to Pascal’s Wager as follows: “Belief
isn’t something we choose. I can’t just decide to believe in God
any more than you can decide to believe unicorns exist.”

How would Pascal reply?

a. Belief is a choice when it comes to abstract questions, like the
existence of God. Because such questions can’t be settled by
just looking and seeing.

b. Belief is a choice when it comes to questions where the evi-
dence is conflicting. And the evidence for/against God’s exis-
tence does conflict.

c. Maybe you can’t control what you believe (descriptive), but
it’s still true that you should believe (normative).

d. Maybe you can’t control what you believe directly. But you can
influence your beliefs indirectly, by choosing how and where
you spend your time.

11. Explain why the expected utility of believing in God is undefined
in Pascal’s Wager, if we include other possible gods like the “anti-
Catholic” god.

Write your answer using complete sentences. You can include
equations, tables, or diagrams, but you must explain what they
mean in words. Your answer should include an explanation why
∞−∞ is undefined.





Part III





15 Two Schools

As a statistician, there’s a big secret that I think
the public needs to know. Statisticians don’t all

agree on what probability is!
—Kareem Carr

Figure 15.1: Ned Flanders informs us
that, well sir, there are two schools of
thought on the matter.

What does the word “probability” mean? There are two competing
philosophies of probability, and two very different schools of statistics
to go with them.

15.1 Probability as Frequency

In statistics, the dominant tradition has been to think of probability in
terms of “frequency.” What’s the probability a coin will land heads?
That just depends on how often it lands heads—the frequency of heads.

If a coin lands heads half the time, then the probability of heads
on any given toss is 1/2. If it lands heads 9/10 of the time, then the
probability of heads is 9/10.

This is probably the most common way of understanding “proba-
bility.” You may even be thinking to yourself, isn’t it obvious that’s what
probability is about?

15.2 Probability as Belief

But many statements about probability don’t fit the frequency mold,
not very well at least.

Consider the statement, “the probability the dinosaurs were wiped
out by a meteor is 90%.” Does this mean 90% of the times dinosaurs
existed on earth, they were wiped out by a meteor? They only existed
once! This probability is about an event that doesn’t repeat. So there’s
no frequency with which it happens.

Here’s another example: “humans are probably the main cause of
our changing climate.” Does that mean most of the time, when climate
change happens, humans are the cause? Humans haven’t even been
around for most of the climate changes in Earth’s history. So again:
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this doesn’t seem to be a statement about the frequency with which
humans cause global warming.

These statements appear instead to be about what beliefs are sup-
ported by the evidence. When someone says it’s 90% likely the di-
nosaurs were wiped out by a meteor, they mean the evidence warrants
being 90% confident that’s what happened.1 Similarly, when some- 1 What evidence? People don’t always

say what evidence they’re relying on.
But sometimes they do: fossil records
and geological traces, for example.

one says humans are probably the main cause of climate change, they
mean that the evidence warrants being more than 50% confident it’s
true.

So, some probability statements appear to be about belief, not fre-
quency. If a proposition has high probability, that means the evidence
warrants strong belief in it. If a proposition has low probability, the
evidence only warrants low confidence.

15.3 Which Kind of Probability?

Which kind of probability are scientists using when they use probabil-
ity theory? Is science about the frequency with which certain events
happen? Or is it about what beliefs are warranted by the evidence?

There is a deep divide among scientists on this issue, especially
statisticians.

The frequentists think that science deals in the first kind of proba-
bility, frequency. This interpretation has the appeal of being conrete
and objective, since we can observe and count how often something
happens. And science is all about observation and objectivity, right?

When YouTuber Dream was accused of
cheating in a Minecraft speedrun record,
his appeal was rejected for illegitimately
mixing a frequentist approach with a
Bayesian analysis.

The Bayesians think instead that science deals in the second kind of
probability, belief-type probability. Science is supposed to tell us what
to believe given our evidence, after all. So it has to go beyond just the
frequencies we’ve observed, and say what beliefs those observations
support.

Let’s consider the strengths and weaknesses of each approach.

15.4 Frequentism

According to frequentists, probability is all about how often something
happens. But what if it only ever has one opportunity to happen?

For example, suppose we take an ordinary coin fresh from the mint,
and we flip it once. It lands heads. Then we melt it down and destroy
it. Was the probability of heads on that flip 1? The coin landed heads
1 out of 1 times, so isn’t that what the frequency view implies? And
yet, common sense says the probability of heads was 1/2, not 1. It was
an ordinary coin, it could have landed either way.

Well, we can distinguish actual frequency from hypothetical frequency.
Actual frequency is the number of times the coin actually lands heads,

https://en.wikipedia.org/wiki/Dream_(YouTuber)
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divided by the total number of flips. If there’s only one flip and it’s a
heads, then the actual frequency is 1/1, which is just 1. If there’s ten
flips and four are heads, then the actual frequency is 4/10.

But hypothetical frequency is the number of times the coin would land
heads if you flipped it over and over for a long time, divided by the
total number of hypothetical flips. If we flipped the coin a hundred
times for example, it would probably land heads about half the time,
like in Figure 15.2.
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Figure 15.2: The frequency of heads over
the course of 100 coin flips. This par-
ticular sequence of heads and tails was
generated by a computer simulation.

Presumably, it’s the hypothetical frequency that is the real probability
of heads, according to frequentists. So doesn’t that solve our problem
with one-off events? Even if a coin is only ever flipped once, what
matters is how it would have landed if we’d flipped it many times.

Serious problems beset the hypothetical frequency view too, how-
ever.

38 H
, 62 T

48 H
, 52 T

54 H
, 46 T

0 25 50 75 100

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

flip

fr
eq

ue
nc

y 
of

 h
ea

ds

Figure 15.3: Three fair coins flipped 100
times each, yielding three different fre-
quencies

The first problem is that it makes our definition of “probability”
circular, because hypothetical frequency has to be defined in terms of
probability. If you flipped the coin over and over, say a hundred times,
the most probable outcome is 50 heads and 50 tails. But other outcomes
are perfectly possible, like 48 heads, or 54 heads. Figure 15.3 shows
an example of three fair coins flipped 100 times each, yielding three
different frequencies.

So the hypothetical frequency of 1/2 isn’t what would necessarily
happen. It’s only what would probably happen. So what we’re really
saying is: “probability” = most probable hypothetical frequency. But
you can’t define a concept in terms of itself!

The second problem is about observability. You can observe actual
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frequencies, but not hypothetical frequencies. We never actually get to
flip a coin more than a few hundred times. So hypothetical frequencies
aren’t observable and objective, which undermines the main appeal of
the frequency theory.

A third problem has to do with evaluating scientific theories. Part of
the point of science is to establish which theory is most probable. But
theories don’t have frequencies. Recall the example from earlier, about
the dinosaurs being made extinct by a meteor. Or take the theory that
DNA has a double-helix structure. When we say these theories are
highly probable, how would we translate that into a statement about
hypothetical frequencies?

Sports commentators often cite statis-
tics like, “no team has ever come back
from a 28 point lead in the last period
of a championship away game.” Some-
times these statistics are informative, but
sometimes they’re so specific they feel
like parody. How specific is too specific?

A fourth and final problem is that how often an event happens de-
pends on what you compare it to. It depends on the reference class.
Consider Tweety, who has wings and is coloured black-and-white.
What is the probability that Tweety can fly? Most things with wings
can fly. Most things that are black-and-white cannot. Which refer-
ence class determines the probability that Tweety can fly? The class of
winged things, or the class of black-and-white things?

It’s problems like these that drive many philosophers and scien-
tists away from frequentism, and toward the alternative offered by
“Bayesian” probability.

15.5 Bayesianism

According to Bayesians, probability is ultimately about belief. It’s
about how certain you should be that something is true.

For example, Pr(A) = .9 means that A is certain to degree 0.9. We
can be 90% confident that A is true. Whereas Pr(A) = .3 means that
A is certain to degree 0.3. We can only be 30% confident A is true.

Why is this view called “Bayesianism”? Because it uses Bayes’ the-
orem to explain how science works.

Suppose we have a hypothesis H, and some evidence E. How be-
lievable is H given the evidence E? Bayes’ Theorem tells us Pr(H | E)
can be calculated:

Pr(H | E) =
Pr(H)Pr(E | H)

Pr(E)
.

And we saw in Section 10.4 how each term on the right corresponds
to a rule of good scientific reasoning.

The better a theory fits with the evidence, the more believable it is.
And Pr(E | H) corresponds to how well the hypothesis explains the
evidence. Since this term appears in the numerator of Bayes’ theorem,
it makes Pr(H | E) larger.

The more surprising (“novel”) a finding is, the more it supports a
theory that explains it. The term Pr(E) corresponds to how surprising
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the evidence is. And since it appears in the denominator of Bayes’ the-
orem, surprising evidence makes Pr(H | E) larger if H can successfully
explain E.

Finally, new evidence has to be weighed against previous evidence
and existing considerations. The term Pr(H) corresponds to the prior
plausibility of the hypothesis H, and it appears in the numerator of
Bayes’ theorem. So the more the hypothesis fits with prior considera-
tions, the larger Pr(H | E) will be.

So, Bayesians say, we should understand probability as the degree
of belief it’s rational to have. The laws of probability, like Bayes’ theo-
rem, show us how to be good, objective scientists, shaping our beliefs
according to the evidence.

The main challenge for Bayesians is objectivity. Critics complain that
science is objective, but belief is subjective. How so?

First, belief is something personal and mental, so it can’t be quan-
tified objectively. What does it even mean to be 90% confident that
something is true, you might ask? How can you pin a number on a
belief?

And second, belief varies from person to person. People from differ-
ent communities and with different personalities bring different opin-
ions and assumptions to the scientific table. But science is supposed
to eliminate personal, subjective elements like opinion and bias.

So frequentists and Bayesians both have their work cut out for
them. In the coming chapters we’ll see how they address these issues.

Exercises

1. Consider these two statements.

i. According to Bayesianism, frequencies aren’t real.
ii. According to Bayesianism, frequencies don’t obey the laws of

probability.

Are both statements true? Both false? Only one (which one)?

2. Explain the one-shot event problem for frequentism. Give two
original examples to illustrate the problem.

3. Explain the difference between actual and hypothetical frequency.
Give two original examples to illustrate. Then explain why the
distinction is important.

4. Explain the reference class problem for frequentism. Give two
original examples to illustrate the problem.





16 Beliefs & Betting Rates

For Bayesians, probabilities are beliefs. When I say it’ll probably rain
today, I’m telling you something about my personal level of confidence
in rain today. I’m saying I’m more than 50% confident it’ll rain.

But how can we quantify something as personal and elusive as a
level of confidence? Bayesians answer this question using the same
basic idea we used for utility in Chapter 12. They look at people’s
willingness to risk things they care about.

16.1 Measuring Personal Probabilities

The more confident someone is, the more they’ll be willing to bet. So
let’s use betting rates to quantify personal probabilities.

I said I’m more than 50% confident it’ll rain today. But exactly how
confident: 60%? 70%? Well, I’d give two-to-one odds on it raining
today, and no higher. In other words, I’d accept a deal that pays $1 if
it rains, and costs me $2 otherwise. But I wouldn’t risk more than $2
when I only stand to win $1.

In this example I put 2 dollars on the table, and you put down
1 dollar. Whoever wins the bet keeps all 3 dollars. The sum of all
the money on the table is called the stake. In this case the stake is
$2 + $1 = $3.

If it doesn’t rain, I’ll lose $2. To find my fair betting rate, we divide
this potential loss by the stake:

betting rate =
potential loss

stake

=
$2

$2 + $1

=
2
3
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Figure 16.1: A bet that pays $1 if you
win and costs $2 if you lose, is fair when
the blue and red regions have equal size:
when the probability of winning is 2/3.

A person’s betting rate reflects their degree of confidence. The more
confident they are of winning, the more they’ll be willing to risk losing.
In this example my betting rate is 2/3 because I’m 2/3 confident it will
rain. That’s my personal probability: Pr(R) = 2/3.
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Notice that a bet at two-to-one odds has zero expected value given
my personal probability of 2/3:

(2/3)($1) + (1/3)(−$2) = 0.

This makes sense: it’s a fair bet from my point of view, after all.
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Figure 16.2: A bet that pays $9 if you win
and costs $1 if you lose is fair when the
probability of winning is 1/10.

What if I were less confident in rain, say just 1/10 confident? Then
I’d be willing to stake much less. I’d need you to put down at least $9
before I’d put down even $1. Only then would the bet have 0 expected
value:

(1/10)($9) + (9/10)(−$1) = 0.

So, for the bet to be fair in my eyes, the odds have to match my fair
betting rate.

Here’s the general recipe for quantifying someone’s personal prob-
ability in proposition A.

1. Find a bet on A they deem fair. Call the potential winnings w
and the potential losses l.

2. Because they deem the bet fair, set the expected value of the bet
equal to zero:

Pr(A)× w + (1− Pr(A))×−l = 0.

3. Now solve for Pr(A):

Pr(A)× w + (1− Pr(A))×−l = 0

Pr(A)× w = (1− Pr(A))× l

Pr(A)× w + Pr(A)× l = l

Pr(A) =
l

w + l
.

Notice how we got the same formula we started with: potential loss
divided by total stake.

You can memorize this formula, but personally, I prefer to apply
the recipe. It shows why the formula works, and it also exposes the
formula’s limitations. It helps us understand when the formula doesn’t
work.

16.2 Things to Watch Out For

Personal probabilities aren’t revealed by just any old betting rate a
person will accept. They’re exposed by the person’s fair betting rates.

Consider: I’d take a bet where you pay me a million dollars if it
rains today, and I pay you just $1 otherwise. But that’s because I think
this bet is advantageous. I don’t think this is a fair bet, which is why I’d
only take one side of it. I wouldn’t take the reverse deal, where I win
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$1 if it rains and I pay you a million dollars if it does. That’s a terrible
deal from my point of view!

So you can’t just look at a bet a person is willing to accept. You have
to look at a bet they’re willing to accept because they think it’s fair.

Another caveat is that we’re cheating by using dollars instead of
utils. When we learned about utility, we saw that utility and dollars
can be quite different. Gaining a dollar and losing a dollar aren’t nec-
essarily comparable. Especially if it’s your last dollar!

So, to really measure personal probabilities accurately, we’d have to
substitute utilities for dollars. Nevertheless, we’ll pretend dollars and
utils are equal for simplicity. Dollars are a decent approximation of
utils for many people, as long as we stick to small sums.

Last but definitely not least, our method only works when the person
is following the expected value formula. Setting the expected value
equal to zero was the key to deriving the formula:

Pr(A) =
potential loss

stake
.

But we know people don’t always follow the expected value formula,
that’s one of the lessons of the Allais paradox. So this way of measur-
ing personal probabilities is limited.

16.3 Indirect Measurements

Sometimes we don’t have the betting rate we need in order to apply
the loss/stake formula directly. But we can still figure things out indi-
rectly, given the betting rates we do have.

For example, I’m not very confident there’s intelligent life on other
planets. But I’d be much more confident if we learned there was life of
any kind on another planet. If NASA finds bacteria living on Mars, I’ll
be much less surprised to learn there are intelligent aliens on Alpha
Centauri.

Exactly how confident will I be? What is Pr(I | L), my personal
probability that there is intelligent life on other planets given that
there’s life of some kind on other planets at all?

Suppose I tell you my betting rates for I and L. I deem the following
bets fair:

• I win $9 if I is true, otherwise I pay $1.
• I win $6 if L is true, otherwise I pay $4.

You can apply the loss/stake formula to figure Pr(I) = 1/10 and
Pr(L) = 4/10. But what about Pr(I | L)? You can figure that out
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by starting with the definition of conditional probability:

Pr(I | L) = Pr(I & L)/Pr(L)

= Pr(I)/Pr(L)

= 1/4.

The second line in this calculation uses the fact that I is equivalent to
I & L. If there’s intelligent life, then there must be life, by definition.
So I & L is redundant. We can drop the second half and replace the
whole statement with just I.

The general strategy here is: 1) identify what betting rates you have,
2) apply the loss/stakes formula to get those personal probabilities,
and then 3) apply familiar rules of probability to derive other personal
probabilities.

We have to be careful though. This technique only works if the
subject’s betting rates follow the familiar rules of probability. If my
betting rate for rain tomorrow is 3/10, you might expect my betting
rate for no rain to be 7/10. But people don’t always follow the laws
of probability, just as they don’t always follow the expected utility
rule. The taxicab problem from Chapter 8 illustrates one way people
commonly violate the rules of probability. We’ll encounter another
way in the next chapter.

Exercises

1. Li thinks humans will eventually colonize Mars. More exactly,
he regards the following deal as fair: if he’s right about that, you
pay him $3, otherwise he’ll pay you $7.

Suppose Li equates money with utility: for him, the utility of
gaining $3 is 3, the utility of losing $7 is −7, and so on.

a. What is Li’s personal probability that humans will colonize
Mars?

Li also thinks there’s an even better chance of colonization if Elon
Musk is elected president of the United States. If Musk is elected,
Li will regard the following deal as fair: if colonization happens
you pay him $3, otherwise he pays you $12.

b. What is Li’s personal conditional probability that humans will
colonize Mars, given that Elon Musk is elected U.S. president?

Li thinks the chances of colonization are lower if Musk is not
elected. His personal conditional probability that colonization
will happen given that Musk is not elected is 1/2.
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c. What is Li’s personal probability that Musk will be elected?
(Assume his personal probabilities obey the laws of probabil-
ity.)

2. Sam thinks the Saskatchewan Roughriders will win the next Grey
Cup game. She’s confident enough that she regards the following
deal as fair: if they win, you pay her $2, otherwise she’ll pay you
$8.

Suppose Sam equates money with utility: for her, the utility of
gaining $2 is 2, the utility of losing $8 is −8, and so on.

a. What is Sam’s personal probability that the Roughriders will
win the Grey Cup?

Sam thinks the Roughriders will have an even better chance in the
snow. If it snows during the game, she will regard the following
deal as fair: if the Roughriders win, you pay her $1, otherwise
she’ll pay you $9.

b. What is Sam’s personal conditional probability that the Roughrid-
ers will win the Grey Cup if it snows?

Sam thinks that the Roughriders will lose their advantage if it
doesn’t snow. Her personal conditional probability that the Roughrid-
ers will win if it doesn’t snow is 1/2.

c. What is Sam’s personal probability that it will snow during
the Grey Cup? (Assume her personal probabilities obey all
the familiar laws of probability.)

3. Sam thinks the Leafs have a real shot at the playoffs next year. In
fact, she regards the following deal as fair: if the Leafs make the
playoffs, you pay her $2, otherwise she pays you $10.

Suppose Sam equates money with utility: for her, the utility of
gaining $2 is 2, the utility of losing $10 is −10, and so on.

a. What is Sam’s personal probability that the Leafs will make
the playoffs?

Sam also thinks the Leafs might even have a shot at winning the
Stanley Cup. She’s willing to pay you $1 if they don’t win the
Cup, if you agree to pay her $2 if they do. That’s a fair deal for
her.

b. What is Sam’s personal probability that the Leafs will win the
Stanley Cup?
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c. What is Sam’s personal conditional probability that the Leafs
will win the Stanley Cup if they make the playoffs? (As-
sume that winning the Stanley Cup logically entails making
the playoffs.)

4. Freya isn’t sure whether it will snow tomorrow. For her, a fair
gamble is one where she gets $10 if it snows and she pays $10 if
it doesn’t. Assume Freya equates money with utility.

a. What is Freya’s personal probability for snow tomorrow?

Here’s another gamble Freya regards as fair: she’ll check her
phone to see whether tomorrow’s forecast calls for snow. If it
does predict snow, she’ll pay you $10, but you have to pay her $5
if it doesn’t.

b. What is Freya’s personal probability that the forecast calls for
snow?

After checking the forecast and seeing that it does predict snow,
Freya changes her betting odds for snow tomorrow. Now she’s
willing to accept as little as $5 if it snows, while still paying $10
if it doesn’t.

c. Now what is Freya’s personal probability for snow tomorrow?
d. Before she checked the forecast, what was Freya’s personal

probability that the forecast would predict snow and be right?

5. Ben’s favourite TV show is Community. He thinks it’s so good
they’ll make a movie of it. In fact, he’s so confident that he thinks
the following is a fair deal: he pays you $8 if they don’t make it
into a movie and you pay him $1 if they do. Assume Ben equates
money with utility.

a. What is Ben’s personal probability that Community will be
made into a movie?

Ben thinks the odds of a Community movie getting made are even
higher if his favourite character, Shirly, returns to the show (she’s
on leave right now). If Shirly returns, he’s willing to pay as much
as $17 if the movie does not get made, in return for $1 if it does.

b. What is Ben’s personal conditional probability that there will
be a Community movie if Shirly returns?

Ben also thinks the chances of a movie go down drastically if
Shirly doesn’t return. His personal conditional probability that
the movie will happen without Shirly is only 1/3.



odds & ends 165

c. What is Ben’s personal probability that Shirly will return?





17 Dutch Books

As to the speculators from the south, they had the
advantage in the toss up; they said heads, I win,
tails, you lose; they could not lose any thing for

they had nothing at stake.
—Newspaper report, Sep. 2, 1805

Critics of Bayesianism won’t be satisfied just because beliefs can be
quantified with betting rates. After all, a person’s betting rates might
not obey the laws of probability. What’s to stop someone being 9/10
confident it will rain tomorrow and also 9/10 confident it won’t rain?
How do we enforce the laws of probability, like the Negation Rule, if
probability is just subjective opinion?

17.1 Dutch Books

The Bayesian answer uses a special betting strategy. If someone vio-
lates the laws of probability, we can use this strategy to take advantage
of them. We can sucker them into a deal that will lose them money no
matter what. “A bet is a tax on bullshit.” —Alex

Tabarrok
For example, suppose Sam violates a very simple rule of probability.

His personal probability in the proposition 2 + 2 = 4 is only 9/10,
when it should be 1. (Because it’s impossible for 2 + 2 to be anything
other than 4.) Sam has violated the laws of probability, so he’ll be
willing to accept a very bad deal, as follows.

We put two marbles into an empty bucket, and then two more. We
then offer Sam the following deal: we pay him 90¢, and in exchange
he pays us $1 if the bucket has a total of 4 marbles in it.

This deal should be fair according to Sam. As he sees it, there’s a
90% chance he’ll have to pay us $1 for a net loss of 10¢. But there’s also
a 10% chance he won’t have to pay us anything, a net gain of 90¢. So
the expected value is zero according to Sam’s personal probabilities:

(9/10)(−$.10) + (1/10)($.90) = 0.

And yet, Sam will lose money no matter what! There’s no way for him

https://chroniclingamerica.loc.gov/lccn/sn83045242/1805-09-02/ed-1/seq-2.pdf
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to win: he’s bound to end up paying out $1, when we only paid him
90¢ to get in on the deal.

This kind of deal is called a Dutch book.1 A Dutch book has two 1 Why is it called that? The ‘book’ part
comes from gambling, where ‘making
a book’ means setting up a betting ar-
rangement. But the ‘Dutch’ part is a
mystery.

defining features.

1. The arrangement is fair according to the subject’s personal prob-
abilities.

2. The subject will lose money no matter what.

If you are vulnerable to a Dutch book, then it looks like there’s some-
thing very wrong with your personal probabilities. A deal looks fair
to you when it clearly isn’t. It’s impossible for you to win!

Almost nobody in real life would be foolish enough accept the deal
we just offered Sam. Real people have enough sense not to violate the
laws of probability in such obvious ways. But there are subtler ways
to violate the laws of probability, which people do fall prey to. And
we can create Dutch books for them too.

17.2 The Bankteller Fallacy

Consider a famous problem.

This problem was devised by the same
psychologists who studied the taxicab
problem: Daniel Kahneman and Amos
Tversky. This one is from a 1983 study
of theirs.Linda is 31 years old, single, outspoken, and very bright. She

majored in philosophy. As a student, she was deeply concerned
with issues of discrimination and social justice, and also partici-
pated in anti-nuclear demonstrations. Which is more probable?

1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

In psychology experiments, almost everyone chooses (2). But that can’t
be right, and you don’t need to know anything about Linda to prove
it.

B&F

B

Figure 17.1: Bank tellers and feminist
bank tellers

In general, the probability of a conjunction B & F cannot be greater
than the probability of B. There are simply more possibilities where B
is true than there are possibilities where both B and F are true. Figure
17.1 illustrates the point.

So it’s a law of probability that Pr(B & F) ≤ Pr(B). Which means it
can’t be more likely that Linda is both a bankteller and a feminist than
that she is a bankteller.

Here’s another way to think about it. Imagine everyone who fits the
description of Linda gathered in a room. The people in the room who
happen to be bank tellers are then gathered together inside a circle.
Some of the people inside that circle will also be feminists. But there
can’t be more feminists inside that circle than people! Feminist bank
tellers are just less common than bank tellers in general.

https://personal.eur.nl/wakker/miscella/dutchbk.htm
https://personal.eur.nl/wakker/miscella/dutchbk.htm
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How do we Dutch book someone who mistakenly thinks B & F is
more probable than B? We offer them two deals, one involving a bet
on B and the other a bet on B & F.

Suppose for example their betting rate for B is 1/5, and their betting
rate for B & F is 1/4. Then we offer them these deals:

1. We pay them 20¢, and in exchange they agree to pay us $1 if B is
true.

2. They pay us 25¢, and in exchange we agree to pay them $1 if
B & F is true.

Both of these deals are fair according to their betting rates. So our
victim will be willing accept both. And yet, they’ll lose money no
matter what. Why?

Notice how they’ve already paid us more than we’ve paid them,
before the bets are even settled. We’re up 5¢ from the get-go. So for
them to come out ahead, they’ll have to win the second bet. But if they
do win the second bet, we win the first bet. They only win the second
bet if B & F is true, in which case B is automatically true and we win
the first bet. Since both bets pay off $1, they cancel each other out.

Thinking through a Dutch book can be tricky, but a table like 17.1
can help. The columns are the possible outcomes, the rows are ex-
changes of cash. For clarity, we separate investments and returns into
their own rows. The investment is the amount the person pays or re-
ceives at first, when the bet is arranged. The return is the amount they
win/lose if the bet pays off. The last row sums up all the investments
and returns to get the net amount won or lost.

Table 17.1: A Dutch book for the bank teller fallacy

B & F B &∼F ∼B

Bet 1 Investment $0.20 $0.20 $0.20
Return −$1.00 −$1.00 $0.00

Bet 2 Investment −$0.25 −$0.25 −$0.25
Return $1.00 $0.00 $0.00

Net −$0.05 −$1.05 −$0.05

Notice how the net amount is negative in every column. In a Dutch
book, no matter what, the victim loses money.

17.3 Dutch Books in General

Anyone who violates any law of probability can be suckered via a
Dutch book. But if you obey the laws of probability, it’s impossible to
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be Dutch booked. That’s why the laws of probability are objectively
correct, according to Bayesians.

Bruno de Finetti (1906–1985) proved in
the 1930s that the laws of probability
are the only safegaurd against Dutch
books. The same point was also noted
by Frank Ramsey in an essay from the
1920s, though he didn’t include a proof.

What’s the general recipe for constructing a Dutch book when some-
one violates the laws of probability?

First, use bets with a $1 stake. That makes things simple, because
the victim’s personal probability will be the same as their fair price
for the bet. If their personal probability is 1/2, they’ll be willing to
pay 50¢ for a bet with a $1 payoff. If their personal probability is 1/4,
they’ll be willing to pay 25¢ for a bet with a $1 payoff. And so on.

Second, remember that if a bet is fair then a person should be will-
ing to take either side of the bet. Suppose they think it’s fair to pay 25¢
in exchange for $1 if A turns out to be true. Then they should also be
willing to accept 25¢ instead, and pay you $1 if A turns out to be true.
It’s a fair bet, so either side should be acceptable.

Third is the trickiest bit. Which propositions should you get them
to bet on, and which should you get them to bet against? Think about
which propositions they are overconfident of, and which they are un-
derconfident of.

For example, Sam was underconfident in 2 + 2 = 4. He was only
9/10 confident instead of 1. So we underpaid him for a bet on that
proposition: 90¢ in exchange for $1 if it was true. His underconfidence
meant he was willing to accept too little in exchange for a $1 payout.

Whereas in the bank teller example, the victim was overconfident of
B & F, and underconfident in B. So we underpaid them for a bet on B,
and got them to overpay us for a bet on B & F.

Here’s one more example. Suppose Suzy the Scientist is conducting
an experiment. The experiment could have either of two outcomes, E
or ∼E. Suzy thinks there’s a 70% chance of E, and a 40% chance of ∼E.
She’s violated the Additivity rule: Pr(E) = 7/10 and Pr(∼E) = 4/10,
which adds up to more than 1.

So we can make a Dutch book against Suzy. In this case she’s over-
confident in both of the propositions E and ∼E. So we get her to
overpay us for bets on E and on ∼E.

1. Suzy pays us 70¢, and in exchange we pay her $1 if E is true.
2. Suzy pays us 40¢, and in exchange we pay her $1 if ∼E is true.

The end result is that Suzy loses 10¢ no matter what. At the beginning
she pays us $0.70 + $0.40 = $1.10. Then she wins back $1, either for
the bet on E or for the bet on ∼E. But in the end, she still has a net
loss of 10¢.
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Table 17.2: A Dutch book for Suzy the Scientist

E ∼E

Bet 1 Investment −$0.70 −$0.70
Return $1.00 $0.00

Bet 2 Investment −$0.40 −$0.40
Return $0.00 $1.00

Net −$0.10 −$0.10

We now have a second way for Bayesians to argue that the concept of
personal probability is scientifically respectable. Not only can beliefs
be quantified. There are also objective rules that everyone’s beliefs
should follow: the laws of probability. Anyone who doesn’t follow
those laws can be suckered into a sure loss.

Exercises

1. Suppose Ronnie has personal probabilities Pr(A) = 4/10 and
Pr(∼A) = 7/10. Explain how to make a Dutch book against
Ronnie. Your answer should include all of the following:

• A list of the bets to be made with Ronnie.
• An explanation why Ronnie will regard these bets as fair.
• An explanation why these bets will lead to a sure loss for Ron-

nie no matter what.

2. Suppose Marco has personal probabilities Pr(X) = 3/10, Pr(Y) =
2/10, and Pr(X ∨Y) = 6/10. Explain how to make a Dutch book
against him. Your answer should include all of the following:

• A list of the bets to be made with Marco.
• An explanation why Marco will regard these bets as fair.
• An explanation why these bets will lead to a sure loss for

Marco no matter what.

3. Maya is the star of her high school hockey team. My personal
probability that she’ll go to university on an athletic scholarship
is 3/5. But because she doesn’t like schoolwork, my personal
probability that she’ll go to university is 1/3. Explain how to
make a Dutch book against me.

4. Saia isn’t sure what grade she’ll get in her statistics class. But she
thinks the following deals are all fair:

• If she gets at least a B+, you pay her $2; otherwise she pays
you $5.
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• If she gets a B+, you pay her $6; otherwise she pays you $1.
• If she gets a B+, B, or B-, you pay her $5; otherwise she pays

you $2.

Assume that utility and money are equal for Saia.

a. What is Saia’s personal probability that she’ll get at least a B+?
b. What is Saia’s personal probability that she’ll get a B or a B-?
c. True or false: given the information provided about Saia’s fair

betting rates, there is a way to make a Dutch book against her.

5. Cheryl isn’t sure what the weather will be tomorrow, but she
thinks the following deals are both fair:

• If it rains, you pay her $3; otherwise she pays you $7.
• If it rains or snows, she pays you $8; otherwise you pay her

$2.

Assume that utility and money are equal for Cheryl.

a. What is Cheryl’s personal probability that it will rain?
b. What is Cheryl’s personal probability that it will rain or snow?
c. True or false: given the information provided about Cheryl’s

fair betting rates, there is a way to make a Dutch book against
her.

6. Silvio can’t find his keys. He suspects they’re either in his car or
in his apartment. His personal probability is 6/10 that they’re in
one of those two places. But he searched his car top to bottom
and didn’t find them, so his personal probability that they’re in
his car is only 1/10. On the other hand, his apartment is messy
and most of the time when he can’t find something, it’s buried
somewhere in the apartment. So his personal probability that the
keys are in his apartment is 3/5. Explain how to make a Dutch
book against Silvio.

7. Suppose my personal probability for rain tomorrow is 30%, and
my personal probability for snow tomorrow is 40%. Suppose
also that my personal probability that it will either snow or rain
tomorrow is 80%. Explain how to make a Dutch book against
me.

8. Piz’s personal probability that Pia is a basketball player is 1/4.
His probability that she’s a good basketball player is 1/3. Explain
how to make a Dutch book against Piz.

9. Consider these two statements:
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i. If someone’s degrees of belief violate a law of probability, then
they can be Dutch booked.

ii. If someone can be Dutch booked, then their degrees of belief
violate a law of probability.

Which one of the following is correct?

a. Only (i) is true.
b. Only (ii) is true.
c. Both (i) and (ii) are true.
d. Neither is true.

10. Suppose A and B are compatible propositions. True or false: if
someone has personal probabilities Pr(A & B) = Pr(A ∨ B), then
they can be Dutch booked.

11. Suppose a fair coin will be flipped twice. You and I have flipped
this coin many times before, so we know that it is fair. But Frank
doesn’t know about our experiments; in fact he suspects the coin
is not fair. His personal probabilities are as follows:

Pr(H1 & H2) = 3/10,

Pr(H1 & T2) = 2/10,

Pr(T1 & H2) = 2/10,

Pr(T1 & T2) = 3/10.

Assume we can only make two bets with Frank, a bet on H1 and
a bet on H2. The stake for each bet must be $1. What is the most
we can win from him in a Dutch book? In other words, what is
the maximum amount we can guarantee we will win from him?
(Note that this is different from the maximum we might win from
him if we get lucky with the coin flips.)

a. $1
b. $0.50
c. $0.40
d. $0: we cannot make a Dutch book against Frank





18 The Problem of Priors

When my information changes, I alter my
conclusions. What do you do, sir?

—attributed to John Maynard Keynes

The last two chapters showed how Bayesians make personal probabil-
ities objective. They can be quantified using betting rates. And they
are bound to the laws of probability by Dutch books.

But what about learning from evidence? Observation and evidence-
based reasoning are the keystones of science. They’re supposed to sep-
arate the scientific method from other ways of viewing the world, like
superstition or faith. So where do they fit into the Bayesian picture?

18.1 Priors & Posteriors

When we observe something new, we change our beliefs. A doctor
sees the results of her patient’s lab test and concludes he doesn’t have
strep throat after all, just a bad cold.

In Bayesian terms, the beliefs you have before a change are called
your priors. We denote your prior beliefs with the familiar operator Pr.
Your prior belief about hypothesis H is written Pr(H). The new beliefs
you form based on the evidence are called your posteriors. We write
Pr∗ to distinguish them from what you believed before. So Pr∗(H) is
your posterior belief in H.

What’s the rule for changing your beliefs? When you get new evi-
dence, how do you go from Pr(H) to Pr∗(H)? Let’s start by thinking
about an example.

Imagine you’re about to test a chemical with litmus paper to deter-
mine whether it’s an acid or a base. Before you do the test, you think
it’s probably an acid if the paper turns red, and it’s probably a base if
the paper turns blue. Suppose the paper turns red. Conclusion: the
sample is probably an acid.

So your new belief in hypothesis H is determined by your prior
conditional belief. Before, you thought H was probably true if E is true.
When you learn that E in fact is true, you conclude that H is probably
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true.

Conditionalization. When you learn new evidence E, your posterior
probability in hypothesis H should match your prior conditional
probability:

Pr∗(H) = Pr(H | E).

For example, imagine I’m going to roll a six-sided die behind a screen
so you can’t see the result. But I’ll tell you whether the result is odd or
even. Before I do, what is your personal probability that the die will
land on a high number (either 4, 5, or 6)? Let’s assume your answer is
Pr(H) = 1/2.

Also before I tell you the result, what is your personal probability
that the die will land on a high number given that it lands on an even
number? Let’s assume your answer here is Pr(H | E) = 2/3.

Priors Posteriors

1 2 3 4 5 6 1 2 3 4 5 6

0

1/6

1/3
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Figure 18.1: Prior vs. posterior probabil-
ities in a die-roll problem. H = the die
landed 4, 5, or 6. E = the die landed
even. Pr(H) = 1/2, Pr∗(H) = 2/3.

Now I roll the die and I tell you it did in fact land even. What is your
new personal probability that it landed on a high number? Following
the Conditionalization rule, Pr∗(H) = Pr(H | E) = 2/3.

We learned how to use Bayes’ theorem to calculate Pr(H | E). If we
combine Bayes’ theorem with Conditionalization we get:

Pr∗(H) = Pr(H)
Pr(E | H)

Pr(E)
.

Because this formula is so useful for figuring out what conclusion to
draw from new evidence, the Bayesian school of thought is named
after it. Bayesian statisticians use it to evaluate evidence in actual sci-
entific research. And Bayesian philosophers use it to explain the logic
behind the scientific method.1 1 We learned part of this story back in

Chapter 10.

18.2 The Principle of Indifference

Bayes’ theorem provides an objective guide for changing your personal
probabilities. Given the prior probabilities on the right hand side, you
can calculate what your new probabilities should be on the left. But
where do the prior probabilities on the right come from? Are there any
objective rules for determining them? How do we calculate Pr(H), for
example?

Let’s go back to our example where I roll a die behind a screen.
Before I tell you whether the die landed on an even number, it seems
reasonable to assign probability 1/2 to the proposition that the die will
land on a high number (4, 5, or 6). But what if someone had a different
prior probability, like Pr(H) = 1/10?

That seems like a strange opinion to have. Why would they think
the die is so unlikely to land on a high number, when there are just
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as many high numbers as low ones? On the other hand, if you don’t
know whether the die is fair, it is possible it’s biased against high
numbers. So maybe they’re on to something. And notice, assign-
ing Pr(H) = 1/10 doesn’t violate the laws of probability, as long as
they also assign Pr(∼H) = 9/10. So we couldn’t make a Dutch book
against them.

Where do prior probabilities come from then? How do we decide
whether to start with Pr(H) = 1/2 or Pr(H) = 1/10? Here is a very
natural proposal.

The Principle of Indifference dates back
to the very early days of probability the-
ory. In fact, Laplace seems to have
thought it was the central principle of
probability.

For a long time it was known by a dif-
ferent name: “The Principle of Insuffi-
cient Reason.” The idea was that, with-
out any reason to think one outcome
more likely than another, they should all
get the same probability.

In 1921 it was renamed “The Principle
of Indifference” by economist John May-
nard Keynes (1883–1946). The idea be-
hind the new name is that you should be
indifferent about which outcome to bet
on, since they all have the same proba-
bility of winning.

The Principle of Indifference. If there are n possible outcomes, each out-
come should have the same prior probability: 1/n.

In the die example, there are six possible outcomes. So each would
have prior probability 1/6, and thus Pr(H) = 1/2:

Pr(H) = Pr(4) + Pr(5) + Pr(6)

= 1/6 + 1/6 + 1/6

= 1/2.

Here’s one more example. In North American roulette, the wheel
has 38 pockets, 2 of which are green: zero (0) and double-zero (00).
If you don’t know whether the wheel is fair, what should your prior
probability be that the ball will land in a green pocket?
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Figure 18.2: A North American roulette
wheel

According to the Principle of Indifference, each space has equal
probability, 1/38. So Pr(G) = 1/19:

Pr(G) = Pr(0) + Pr(00)

= 1/38 + 1/38

= 1/19.

18.3 The Continuous Principle of Indifference

So far so good, but there’s a problem. Sometimes the number of pos-
sible outcomes isn’t a finite number n, it’s a continuum. Suppose you
had to bet on the angle the roulette wheel will stop at, rather than just
the colour it will land on. There’s a continuum of possible angles, from
0◦ to 360◦. It could land at an angle of 3◦, or 314.1◦, or 100π◦, etc.

So what’s the probability the wheel will stop at, say, an angle be-
tween 180◦ and 270◦? Well, this range is 1/4 of the whole range of
possibilities from 0◦ to 360◦. So the natural answer is 1/4. Generaliz-
ing this idea gives us another version of the Principle of Indifference.

Principle of Indifference (Continuous Version). If there is an interval of pos-
sible outcomes from a to b, the probability of any subinterval
from c to d is:

d− c
b− a

.
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Figure 18.3: The continuous version of
the Principle of Indifference: Pr(H) is
the length of the c-to-d interval divided
by the length of the whole a-to-b inter-
val.

The idea is that the prior probability of a hypothesis H is just the
proportion of possibilities where H occurs. If the full range of possi-
bilities goes from a to b, and the subrange of H possibilities is from c
to d, then we just calculate how big that subrange is compared to the
whole range.

18.4 Bertrand’s Paradox

Unfortunately, there’s a serious problem with this way of thinking. In
fact it’s so serious that the Principle of Indifference is not accepted
as part of the modern theory of probability. You won’t find it in a
standard mathematics or statistics textbook on probability.

What’s the problem? Imagine a factory makes square pieces of pa-
per, whose sides always have length somewhere between 1 and 3 feet.
What is the probability the sides of the next piece of paper they man-
ufacture will be between 1 and 2 feet long?

Applying the Principle of Indifference we get 1/2:

d− c
b− a

=
2− 1
3− 1

=
1
2

.

That seems reasonable, but now suppose we rephrase the question.
What is the probability that the area of the next piece of paper will be
between 1 ft2 and 4 ft2? Applying the Principle of Indifference again,
we get a different number, 3/8:

d− c
b− a

=
4− 1
9− 1

=
3
8

.

But the answer should have been the same as before: it’s the same
question, just rephrased! If the sides are between 1 and 2 feet long,
that’s the same as the area being between 1 ft2 and 4 ft2.

Figure 18.4: Joseph Bertrand (1822–1900)
presented this paradox in 1889. He used
a different example though. Our ex-
ample, which is easier to understand,
comes from Bas van Fraassen.

So which answer is right, 1/2 or 3/8? It depends on which dimen-
sion we apply the Principle of Indifference to: length vs. area. And
there doesn’t seem to be any principled way of deciding which dimen-
sion to use. So we don’t have a principled way to apply the Principle
of Indifference.

Here’s a video explaining Bertrand’s
paradox thanks to wi-phi.com:There’s nothing special about the example of the paper factory, the

same problem comes up all the time. Take the continuous roulette
wheel. Suppose the angle it stops at depends on how hard it’s spun.
The wheel’s starting speed can be anywhere between 1 and 10 miles
per hour, let’s suppose. And if it’s between 2 and 5 miles per hour, it
lands at an angle between 180◦ and 270◦ degrees. Otherwise it lands
at an angle outside that range.

http://www.wi-phi.com/video/bertrands-paradox
http://www.wi-phi.com/video/bertrands-paradox
http://www.wi-phi.com/video/bertrands-paradox
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If we apply the Principle of Indifference to the wheel’s starting
speed we get a probability of 1/3 that it will land at an angle between
180◦ and 270◦:

d− c
b− a

=
5− 2

10− 1
=

1
3

.

But we got an answer of 1/4 when we solved the same problem be-
fore. Once again, what answer we get depends on how we apply the
Principle of Indifference. If we apply it to the final angle we get 1/4, if
we apply it to the starting speed we get 1/3. And there doesn’t seem
to be any principled way of deciding which way to go.

More realistic and serious examples are also commonplace, the sorts
of things a practicing scientist deals with all the time. Imagine an
object is rolling downhill, with 10 meters to go before it reaches the
bottom. Its velocity is between 1 meter per second and 3 meters per
second. What’s the probability it will reach the bottom in the next 5
seconds?

It will only get there in time if its velocity is at least 2 meters per
second. So the probability is 1/2, right?

Well, consider the ball’s energy instead of its velocity. Energy can
be defined in terms of mass and velocity, according to the equation
E = mv2/2, where m is the object’s mass and v is its velocity. Suppose
our ball’s mass is 1 kilogram, so m = 1. That means its energy is some-
where between 1/2 and 9/2. We said it will reach the bottom within 5
seconds just in case the velocity is at least 2 meters per second, which
corresponds to energy 2. So, according to the Principle of Indifference,
the probability it has enough energy to reach the bottom in time is:

9/2− 2
9/2− 1/2

=
5
8

.

Which is the right answer then, 1/2 or 5/8? If you’re trying to land
a space shuttle, or predict the likely outcome of a medical treatment,
this kind of thing really matters.

18.5 The Problem of Priors

There is no accepted solution to Bertrand’s paradox.
Some Bayesians think it shows that prior probabilities should be

somewhat subjective. Your beliefs have to follow the laws of probabil-
ity to avoid Dutch books. But beyond that, you can start with whatever
prior probabilities seem right to you. (The Principle of Indifference
should be abandoned.)

Others think the paradox shows that Bayesianism is too subjective.
The whole idea of “prior” and “posterior” probabilities was a mis-
take, say the frequentists. Probability isn’t a matter of personal beliefs.
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There are objective rules for using probability to evaluate a hypothesis,
but Bayes’ theorem is the wrong way to go about it.

So what’s the right way, according to frequentism? The next two
chapters introduce the frequentist method.

Exercises

1. Suppose a carpenter makes circular tables that always have a di-
ameter between 40 and 50 inches. Use the Principle of Indiffer-
ence to answer the following questions. (Give exact answers, not
decimal approximations.)

a. What is the probability the next table the carpenter makes will
have a diameter of at least 43 inches?

b. What is the probability the next table the carpenter makes will
have either a diameter between 41 and 42 inches, or between
47 and 49 inches?

c. Recalculate the probabilities from parts (a) and (b), but this
time apply the Principle of Indifference to circumference in-
stead of diameter. Does this change what answers you get?

d. Recalculate the probabilities from parts (a) and (b), but this
time apply the Principle of Indifference to area instead of di-
ameter. Does this change what answers you get?

2. Joe spends his afternoons whittling cubes that have a side length
between 2 and 10 centimeters. Use the Principle of Indifference to
answer the following questions. (Give exact answers, not decimal
approximations.)

a. What is the probability that Joe’s next cube will have sides at
least 6 centimeters long?

b. What is the probability Joe’s next cube will either have sides
shorter than 4 centimeters or longer than 7 centimeters?

c. Recalculate the probabilities from parts (a) and (b), but this
time apply the Principle of Indifference to the area of each
face, rather than the length of each side. Does this change
what answers you get?

d. Recalculate the probabilities from parts (a) and (b), but this
time apply the Principle of Indifference to volume. Is the result
the same or different compared to the answers from parts (a),
(b), and (c)?

3. Joel is in New York and he needs to be in Montauk by 4:00 to meet
Clementine. He boards a train departing at 3:00 and asks the
conductor whether they’ll be in Montauk by 4:00. The conductor
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says the train will arrive some time between 3:50 and 4:12, but
she refuses to be more specific.

a. According to the Principle of Indifference, what is the proba-
bility that Joel will be in Montauk in time to meet Clementine?

After thinking it over, Joel realizes that his odds may actually be
better than that. It’s a 60 mile trip to Montauk, so the train must
travel at an average speed between a and b miles per hour.

b. What are a and b?
c. How fast must the train travel to get to Montauk by 4:00?
d. According to the Principle of Indifference, what is the proba-

bility that the train will travel fast enough to get to Montauk
by 4:00?

4. A factory makes triangular traffic signs. The height of their signs
is always the same as the width of the base. And the base is
always between 3 and 6 feet.

a. According to the Principle of Indifference, what is the proba-
bility that the next sign produced will be between 5 and 6 feet
high?

b. Explain how to reformulate the problem in part (a) so that the
probability given by the Principle of Indifference changes.

c. Explain the challenge that cases like this pose for the theory of
personal probability. What do critics of Bayesianism say these
examples demonstrate about prior probabilities?

5. A factory makes circular dartboards whose diameter is always
between 1 and 2 feet.

a. According to the Principle of Indifference, what is the proba-
bility that the next dartboard produced will have a diameter
between 1 and 5/3 feet?

b. If we reformulate part (a) in terms of the dartboard’s area,
what is the probability given by the Principle of Indifference
then? (Reminder: the area of a circle with diameter d is A =

π/4× d2.)
c. Explain the challenge that cases like this pose for the theory of

personal probability. What do critics of Bayesianism say these
examples demonstrate about prior probabilities?

6. Some bars water down their whisky to save money. Suppose
the proportion of whisky to water at your local bar is always
somewhere between 1/2 and 2. That is, there’s always at least 1
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unit of whisky for every 2 units of water. But there’s never more
than 2 units of whisky for every 1 unit of water. Suppose you
order a “whisky.”

a. According to the Principle of Indifference, what is the prob-
ability that it will be mostly whisky? (“Mostly” means more
than half.)

b. What is the maximum possible proportion water to whisky?
c. What is the minimum possible proportion water to whisky?
d. Now calculate the probability that your drink will be less than

1/2 water again, but this time apply the Principle of Indiffer-
ence to the proportion of water to whisky. Is the result the
same or different?

7. True or false: if someone’s personal probabilities violate the Prin-
ciple of Indifference, then they can be Dutch booked.



19 Significance Testing

. . . it’s really more intelligent to be able to
simplify things than to complicate them. Even if

some people think it makes you look stupid.
—Eugenia Cheng

How do we evaluate a hypothesis, according to frequentism? The
short answer is, we look for things that would be too much of a coin-
cidence if the hypothesis were true.

19.1 Statistical Significance

Suppose we flip a coin ten times and it lands heads every single time.
That would be too much of a coincidence if the coin were fair. So the
hypothesis that it is fair has been tested, and failed. Conclusion: the
coin is biased toward heads.

Or imagine we divide a thousand patients with Disease X into two,
equal-sized groups. We give the first group Drug Y, the second group
gets a placebo. After a month, 90% of the patients who got the drug
are cured, compared to only 10% of the patients who didn’t. That
would be too much of a coincidence if the drug were ineffective. So
the hypothesis that Drug Y has no effect has been tested, and it has
failed the test. Conclusion: Drug Y helps cure Disease X.

That’s the rough idea behind the most popular frequentist approach
to hypothesis testing. Now let’s take a closer look.

Suppose your friend likes to do magic tricks. Their favourite trick
involves flipping a special coin and predicting how it will land. You’re
curious how the trick is done, and you suspect the coin is biased. So
you flip it 100 times to see what happens. It lands heads 67 out of 100
times. Does that mean the coin is biased after all? Or is 67 heads out
of 100 flips within the realm of plausibility for a fair coin?
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Figure 19.1: The probability of getting k
heads out of 100 flips of a fair coin.

Figure 19.1 shows the probability for each number of heads we
might get, if the coin is fair. Notice how unlikely 67 heads is, com-
pared to say 50 heads, or even compared to 60 heads. So it seems like
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a stretch to just write off our 67 heads as a coincidence. Plausibly, the
coin is biased toward heads.

What if we’d gotten only 65 heads though? Or just 60? At what
point do we just say, “oh well, that’s a normal outcome for a fair coin”?

A common convention is to draw the line at 95% probability. If a
coin is fair, then 95% of the time it will land heads between 40 and
60 times out of 100 tosses. That’s not obvious by the way: I used a
computer to find that 40-to-60 range. But we’ll come back to these
calculations in a bit.
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Reject Don't reject Figure 19.2: In 95% of cases, a fair coin
will land heads between 40 and 60 times
out of 100 flips. If the number of heads
falls outside that range, we conclude the
coin is not fair.

The key idea for now is this. The hypothesis that the coin is fair
fails the test if the number of heads falls outside the 40-to-60 range. As
Figure 19.2 illustrates, we’ll reject the fair hypothesis if the outcome of
our experiment is one of the red ones.

We call the result of an experiment statistically significant when
it falls outside the 95% range. So the red outcomes in Figure 19.2 are
statistically significant, the blue ones are not.

Figure 19.3: Ronald A. Fisher (1890–
1962) was a key figure in establishing the
ideas behind statistical significance.

The idea behind this terminology is that a red outcome tells us
something about our hypothesis that the coin is fair. In particular
it tells us something negative: the hypothesis is not looking good. Be-
cause 67 heads would be a big coincidence if the hypothesis were true.

19.2 Levels of Significance

But why should we choose 95% probability as our cutoff? Why not
90%, or 99%?

In fact we don’t have to make 95% the cutoff. In some sciences it’s
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customary to make 99% the cutoff instead, or even 99.9%.
To be explicit about what cutoff we’re using, we describe the result

as statistically significant at such-and-such a level. For example, if we’re
using the 95% cutoff, we say the result is significant at the .05 level.
And if we’re using the 99% cutoff, we say the result is significant at
the .01 level. And so on.
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Figure 19.4: In 99% of cases, a fair coin
will land heads between 37 and 63 times
out of 100 flips.

Different sciences have different conventions about where to put
the cutoff. Social sciences like psychology typically use the 95% cutoff.
Only when the outcome of a study is significant at the .05 level is
the hypothesis rejected. But medical and physical sciences often use a
stricter cutoff like 99%. A finding has to be significant at the .01 level
to disprove a hypothesis then.

There’s nothing special or magical about the 95% and 99% cutoffs,
though. So why have scientists adopted these conventions? This is a
deep and important question, with no easy answer.

But part of the answer is that it’s actually just kind of a historical
and mathematical accident. Before computers, it was hard to calculate
significance levels exactly. There’s a trick though for estimating the
95% and 99% cutoffs, which we’ll learn in the next section. So scientists
adopted these conventions before computers came along, partly just
because they were easy to work with. And now they’ve kind of just
stuck.

We’ll come back in the next chapter for a deeper look at the question
of where to put the cutoff for statistical significance. But, for now, let’s
learn a quick and easy way of finding the 95% and 99% cutoffs.

19.3 Normal Approximation

You may have noticed that the probabilities in our hundred-flips ex-
periment look a lot like the famous “bell curve.” In fact they line up
almost perfectly, as Figure 19.5 illustrates.
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Figure 19.5: A bell curve (red) overlayed
on the true probabilities (blue).

The normal distribution has a compli-
cated mathematical formula. You don’t
need to know it for this book, but if
you’re curious it’s on Wikipedia.

The bell curve’s official name is the normal distribution. And it
has some very handy mathematical properties, which make it easy to
estimate when the number of heads falls outside the 95% range. Two
features of the normal distribution are required for the calculation.

The symbol µ is from Greek and is called
mu (rhymes with stew). It looks like the
English letter u, but it actually corre-
sponds to the letter m, as in mean. It
helps to picture it as a cursive m, written
very sloppily by someone in a hurry.

First we need to know where the bell is located: where is it centred?
This is called the mean, written µ for short. In our example µ = 50.
That’s the most likely outcome for 100 flips of a fair coin. The general
formula is

µ = np,

where n is the number of tosses, and p is the probability of heads on
each toss. So in our example np = (100)(1/2) = 50.

Second, how wide is the bell? This is called the standard deviation,
or σ for short. The Greek symbol σ is called sigma. It

corresponds to the English letter s, as in
standard deviation.

https://en.wikipedia.org/wiki/Normal_distribution
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The formula for σ is a bit mysterious:

σ =
√

np(1− p).

Deriving this formula is pretty advanced, so we’ll have to just take it
on faith. We only need to understand that the larger the standard devi-
ation, the wider the bell. Figure 19.6 gives some examples to illustrate.
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Figure 19.6: Four bell curves with the
same mean of 50, but different standard
deviations. The larger the standard de-
viation, the wider the bell.

Applying the formula for standard deviation to our example, we
get:

σ =
√
(100)(1/2)(1/2)

= 5.

Now for the punchline: we can use the numbers µ and σ to get a
pretty accurate estimate of the 95% cutoff.

Mathematicians have proved that about 95% of the time, the number
of heads will be within the range µ± 2σ. In our example 2σ = (2)(5) =
10, so µ± 2σ is the range from 40 to 60. Notice how this is the same as
the computer-based answer we used earlier.

For a 99% cutoff we just multiply σ by 3 instead of 2. In other words,
99% of the time the number of heads will be within the range µ± 3σ.
In our example 3σ = (3)(5) = 15, so µ± 3σ is the range from 35 to 65.

Actually, the range µ ± 3σ covers about
99.7% of cases, not just 99%. Still, if a
case falls outside the 99.7% range, then
it falls outside the 99% range. For sim-
plicity, we’ll ignore that extra .7 in this
book.

We got 67 heads in our experiment, which falls outside the 35-to-
65 range. So our result wasn’t just significant at the .05 level. It was
significant at the .01 level too.

19.4 The 68-95-99 Rule

There are actually three cutoffs we can estimate with this method. The
one we haven’t talked about is 68%, because it’s not used much in
actual practice. But the general rule is:

• With about 68% probability, the number of heads will be in the
range µ± σ.

• With about 95% probability, the number of heads will be in the
range µ± 2σ.

• With about 99% probability, the number of heads will be in the
range µ± 3σ.

This is called The 68-95-99 Rule. We can illustrate it with a diagram
like Figure 19.7.

It’s customary to use k for the number of heads we actually get in
our experiment. So we can also state the rule formally like this:

Pr(µ− σ ≤ k ≤ µ + σ) ≈ .68,

Pr(µ− 2σ ≤ k ≤ µ + 2σ) ≈ .95,

Pr(µ− 3σ ≤ k ≤ µ + 3σ) ≈ .99.
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Figure 19.7: The 68-95-99 Rule

19.5 Binomial Probabilities

When do the true probabilities closely match the normal distribution,
though? A lot of the time, actually. But we’ll just focus on one common
case.

Suppose a certain kind of event will be repeated over and over, and
there are two possible outcomes. If the probabilities of these two out-
comes stay the same from repetition to repetition, and the repetitions
are independent of one another, then the probabilities are called bino-
mial.

Binomial probabilities are very common. We saw that they apply
to flips of a fair coin. Another example could be patients in a drug
study who either get better or don’t. Or subjects in a psychology study
answering yes/no questions on a survey. Or respondents to a poll
about a political race.

If the event is repeated enough times, the binomial probabilities
will closely match the bell curve. But you have to be careful: the more
extreme the probability in your hypothesis, the larger the study will
need to be. If the probability p is close to either 0 or 1, the normal
approximation won’t be very good without a pretty large number of
trials n.

Suppose for example your hypothesis is that the coin is heavily bi-
ased toward tails: p = 0.05, to be exact. Then we see from Figure 19.8
that we need a sample of around n = 50 before the normal approxima-
tion starts to become reasonably accurate. Whereas n = 30 is already
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quite accurate for p = 0.5.

n = 10 n = 20 n = 30 n = 40 n = 50
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Figure 19.8: When p is close to 0 or 1,
we need a larger n to make the normal
approximation accurate.In general, the more extreme the value of p is, the larger we need n

to be for the approximation to be accurate. But if you do a big enough
study, the 68-95-99 rule will give a reliable estimate.

19.6 Significance Testing

The method of evaluating hypotheses we’ve been explaining is called
significance testing. Here is the general recipe for significance testing
with binomial probabilities.

1. State the hypothesis you want to test: the true probability of out-
come X is p. This is called the null hypothesis.1 1 Why “null”? Because our default as-

sumption is usually that things are ran-
dom, until we discover a pattern. We as-
sume our sequence of heads/tails is ran-
dom unless our observations prove oth-
erwise; we assume a drug has no bene-
fits unless we discover that it does; etc.
So the default assumption is “null”: no
pattern, no effect. (It’s not great ter-
minology, but unfortunately we’re stuck
with it.)

2. Repeat the event over and over n times, and count the number of
times k you get outcome X.

3. Calculate µ = np and σ =
√

np(1− p).

4. Use the 68-95-99 rule to figure out how much of a coincidence
your finding k must be if the null hypothesis is true.

5. If it’s too much of a coincidence, conclude that the null hypothe-
sis is false. The true probability isn’t p.

Let’s do one more example for practice. A company named VisioPer-
fect makes “long-life” lightbulbs. According to their ads, 96% of their
bulbs outlast their competitors’ average lifespan.

This example is from page 205 of Ian
Hacking’s excellent textbook, An Intro-
duction to Probability & Inductive Logic.
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A magazine decides to run a test of 2, 400 VisioPerfect bulbs. They
find that 133 of them weren’t “long-life.” Is the result of this test bad
news for VisioPerfect? Are their ads just hype? Let’s test their claim.

The hypothesis we’re testing is that each bulb has probability .96 of
being long-life, which means it has probability p = .04 of being “short-
life.” The magazine found k = 133 short-life bulbs out of n = 2, 400.
Is this about what you’d expect if the ads are honest? Let’s start by
finding the center and width of our normal approximation:

µ = np = (2, 400)(.04) = 96,

σ =
√

np(1− p) =
√
(2, 400)(.04)(.96) = 9.6.

Then we use the 68-95-99 rule to figure out where k = 133 falls. In
this case the 99% range is 96± (3)(9.6), which is 67.2 to 124.8. Since
k = 133 falls outside this range, it’s a pretty far out result. It’s the kind
of thing you’d expect to happen less than 1% of the time if each bulb
really had a 96% chance of being long-life.

So VisioPerfect’s claim has failed our test: the results are significant
at the .01 level.

19.7 Warnings The American Statistical Association re-
cently released a statement to clarify the
ideas behind significance testing, and
prevent their misuse. It’s also the punch-
line of one of my favourite comics.

Significance testing is very confusing. So confusing that scientists,
and even statisticians, often misunderstand and misuse it. Dangerous
medical treatments have been approved and administered as a result.
Scientific careers have even been built on the misuse of significance
testing.

So what exactly does it mean for a result to be “significant at level
α”? It means exactly this:

The Greek letter α is called alpha and
corresponds to the English letter a. It’s
customarily used for significance levels,
I don’t know why.

þ If the hypothesis we are testing is true, then a result this unusual
was less than α likely to occur.

Notice how this is an if/then statement, where the if part supposes that
the hypothesis we’re testing is true. We’re considering what things
look like from the hypothetical point of view where the hypothesis is
true. Then we assess how probable various outcomes are, given that
assumption.

“What’s wrong with NHST [null hy-
pothesis significance testing]? Well,
among many other things, it does not
tell us what we want to know. . . ” —
Jacob Cohen

But notice, what we really want to know is the reverse thing. We
want to know: if we get k heads, then how likely is it the hypothesis is
true? You might think if the result is significant at the .05 level, then
the hypothesis is less than .05 probable. Not so!

þ Just because the outcome of an experiment is significant at the α

level doesn’t mean the probability of the hypothesis is α (or less
than α).

https://www.amstat.org/newsroom/pressreleases/P-ValueStatement.pdf
https://www.amstat.org/newsroom/pressreleases/P-ValueStatement.pdf
https://imgs.xkcd.com/comics/significant.png
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We learned back in Chapter 8 about how Pr(H | E) and Pr(E | H) are
different things. In fact they can be very different; one can be high and
the other low. The taxicab problem is one famous illustration. And it’s
a very common mistake to make a similar confusion with significance
testing.

We’ll deepen our understanding of this point in the next chapter.

Exercises

1. Suppose 20% of the marbles in an urn are green. We are going to
randomly draw 100 marbles, with replacement, and then count
the number of draws that are green.

Let’s use a normal distribution to approximate the probability of
getting k green balls.

a. What are µ and σ in the normal approximation?
b. Draw a rough graph of the corresponding normal curve.
c. The probability is about .68 that the number of green draws

will fall between a and b. What are a and b?
d. What are a and b for an approximate probability of .95?
e. What are a and b for an approximate probability of .99?
f. If you get fewer than the expected 20 greens, how few do you

have to get for the results to be significant at the .01 level?
(Assume the estimates above are accurate.)

g. If you get more than the expected 20 greens, how many do
you have to get for the results to be significant at the .01 level?
(Assume the estimates above are accurate.)

h. If you got one of these “significant” results in this experi-
ment, would you reject the hypothesis that the urn contains
20% green marbles? (This is a question about your personal
judgment.)

2. Suppose 60% of the marbles in an urn are green, and we are
going to randomly draw 150 marbles, with replacement.

a. What are µ and σ in the normal approximation?
b. Draw a rough graph of the corresponding normal curve.
c. The probability is about .95 that the number of green draws

will fall between a and b. What are a and b?
d. What are a and b for an approximate probability of .99?
e. If you do the 150 draws and you only get 80 greens, is that

significant at the .05 level? (Assume the estimates above are
accurate.)
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f. If instead you do the 150 draws and you only get 70 greens, is
that significant at the .05 level? (Assume the estimates above
are accurate.)

g. Would you reject the hypothesis that the urn contains 60%
green marbles if you only got 70 green draws?

3. Dr. Colbert claims to have a miraculous new weight-loss product.
According to him, 75% percent of people who use it lose weight.
But the Ministry of Health is suspicious so they run a study. They
recruit 192 subjects to try Dr. Colbert’s new treatment. 135 of
them lose weight.

Use a normal approximation to assess Dr. Colbert’s claim:

a. What are µ and σ in the normal approximation?
b. Fill in the blanks: the results of the study are significant at the

.05 level if the number of subjects who lose weight is either
smaller than _____ or greater than _____.

c. Fill in the blanks: the results of the study are significant at the
.01 level if the number of subjects who lose weight is either
smaller than _____ or greater than _____.

d. Are the results of the Health Canada study significant at the
.05 level? Are they significant at the .01 level?

e. True, false, or not enough information: given the results of
the study, the probability that Dr. Colbert’s product works as
advertised is less than .05.

4. Your professor says 80% of the class passed the midterm, but
that seems high since the test was so hard. So you ask all the
people sitting in your row if they passed: 4 of them did, 3 didn’t.
Since you didn’t pass either, that’s a pass-rate of only 50% in your
sample.

Use a normal approximation to answer the following questions:

a. Is your finding significant at the .05 level?
b. Is it significant at the .01 level?
c. True or false: given your findings, the probability that your

professor’s claim is true is at least .05.

5. Suppose you arrange seven dates next week, one for each night of
the week. You ask each date the same question: which was your
favourite grade, out of grades 1 through 8? Your first and last
dates both give the same answer as you: [insert your favourite
grade here]. Is this result significant? Check both the .05 and .01
levels using a normal approximation.
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As a null hypothesis, assume that each person’s answer is inde-
pendent (including yours), and that each person is equally likely
to name any one grade as any other (including you).

6. Suppose 10% of all wine bottles have corks (instead of screw-
tops). A restaurant opens 400 random bottles in a month and
counts the number that are corked.

Use a normal distribution to approximate the probability that the
restaurant will open k corked bottles.

a. What are µ and σ in the normal approximation?
b. The probability is about .68 that the number of corked bottles

will fall between a and b. What are a and b?
c. What are a and b for an approximate probability of .95?
d. What are a and b for an approximate probability of .99?

The restaurant wants the head waiter to avoid serving corked
bottles since they’re more expensive. So they offer her a bonus if
fewer than the expected number of corked bottles gets opened,
provided the results are significant at the .01 level. On the other
hand they’ll fire her if more than the expected number of corked
bottles gets opened, assuming the results are significant at the .01
level.

e. How few corked bottles have to be opened for the head waiter
to get the bonus? How many corked bottles have to opened
for the head waiter to lose her job? (Assume the estimates
above are accurate.)

7. A few years ago Arkansas passed a law sparking a debate about
a new treatment. The treatment is supposed to help a person’s
pregnancy continue under conditions that usually end it.

Normally under those conditions, only about 40% of people’s
pregnancies continue. But in a small case study, six pregnant
people were given the new treatment, and four of them continued
their pregnancies.

Critics say this result is not significant: it doesn’t show the treat-
ment has an effect. (If you’re curious, you can read more about
the controversy here.)

Use a normal approximation to assess this criticism. The null
hypothesis is that the treatment has no effect, so each of the six
pregnancies has a 0.4 chance of continuing.

a. What are µ and σ in the case study?

http://www.theatlantic.com/health/archive/2015/03/abortion-reversal-arizona/388880/
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b. Are the results of the case study significant at the .05 level?
(Assume the normal approximation is accurate.)

c. Suppose a much larger study were done, with 150 subjects
getting the treatment, and two-thirds of them continuing their
pregnancies. What would µ and σ be then? Would the results
be significant at the .01 level?

8. Medical researchers are testing a new cancer treatment. Ordinar-
ily, a patient’s chance of going into remission is only 1/10. The
null hypothesis is that the drug will have no effect on patients’
chances of going into remission.

They select 100 patients at random and give each one the new
treatment. The result: 18 of them go into remission.

a. What are µ and σ in a normal approximation here?
b. According to the normal approximation, is the result signifi-

cant at the .01 level?
c. True or false: the fact that the result is significant at the .05

level tells us that the null hypothesis is less than .05 probable.
d. True or false: the fact that the result is significant at the .05

level tells us that, if the null hypothesis is true, then the result
was .05 probable.

9. You’ve seen Gonzo the Great doing magic tricks with a coin. You
suspect he’s using a biased coin, so you sneak into his dressing
room and steal the coin.

Your hypothesis is that the coin has a 8/10 bias toward heads.
You flip it 100 times and it comes up heads 65 times.

a. What are µ and σ in the normal approximation here?
b. According to the normal approximation, is the result signifi-

cant at the .01 level?
c. Explain, in terms of frequencies, what it means for a result to

be “significant at the .01 level.”

10. Suppose the registrar has a list of all the student numbers from
a class, but they’ve lost the data that says which class it is. They
know it’s either Philosophy 101 or Economics 101. But they have
no idea which of those two it is: the two hypotheses are equally
probable, 50%.

If it’s Philosophy 101, then 40% of the students are philosophy
majors. If it’s Economics 101, then only 25% of the class are
philosophy majors.
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The registrar picks ten student numbers from the list at random
and looks up the students’ majors. The result: all ten of them are
philosophy majors.

a. Suppose our null hypothesis is that the list is for Philosophy
101. What are µ and σ in the normal approximation? (You
may use a decimal approximation here.)

b. Is the result significant at the .01 level for this null hypothesis?
c. Suppose our null hypothesis is that the list is for Economics

101. What are µ and σ in the normal approximation then?
(You may use a decimal approximation here.)

d. Is the result significant at the .01 level for this null hypothesis?

11. Explain in your own words what it means for a result to be sig-
nificant at the .05 level. See if you can do it without looking back
over the text of this chapter.

12. Suppose we flip a coin 16 times, to test the null hypothesis that
its probability of landing heads is 1/10.

a. According to the 68-95-99 rule, if the null hypothesis is true
we should expect the number of heads to be between a and b
about 95% of the time. What are a and b?

b. There should be something strange about the answer you get
to part (a). What is it, and why did we get this strange result?
(Hint: look at Figure 19.8.)

13. Suppose we are testing the null hypothesis that 20% of the mar-
bles in an urn are green. We randomly draw 100 marbles, with
replacement, and count the number of green marbles, k. Accord-
ing to the normal approximation, which one of the following is
correct?

a. The result is not significant at the .01 level if k ≤ 32.
b. The result is not significant at the .01 level if k ≥ 8.
c. The result is significant at the .01 level if k = 10.
d. The result is significant at the .01 level if k > 32.

14. Suppose 200 people are lined up side-by-side, each one holding
a fair coin. Each person flips their coin 64 times; every time it
lands heads they step 1 meter forward, each time it lands tails
they step 1 meter backward. Use a normal approximation to
answer the following question: after everyone finishes their 64
steps, approximately how many people will be standing between
8 and 16 meters behind the starting line?
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15. Suppose we are testing the null hypothesis that a coin is fair:
p = 1/2. We do n flips and observe k heads; it turns out k is
greater than the expected mean µ = n/2. In fact k is more than
3 standard deviations above the mean: k > µ + 3σ. Which of the
following must be true then?

a. k > .7n
b. .7n ≥ k > .6n
c. .6n ≥ k > .55n
d. .55n ≥ k > .51n
e. Not enough information is given.

16. Your friend is testing the hypothesis that a coin tends to land
heads 40% of the time, with the tosses independent. They flip the
coin repeatedly, and 48% of the flips land heads. If this result is
statistically significant at the .05 level, they must have flipped the
coin more than n times. What is n? Use a normal approximation,
and give the highest value of n supported by the information
given.





20 Lindley’s Paradox

Inside every non-Bayesian, there is a Bayesian
struggling to get out.

—Dennis V. Lindley (quoted by E. T. Jaynes)

Significance testing is all about whether the outcome would be too
much of a coincidence for the hypothesis to be true. But how much
of a coincidence is too much? Should we reject a hypothesis when we
find results that are significant at the .05-level? At the .01-level?

20.1 Significance & Subjectivity

Critics say this decision is subjective. In the social sciences, researchers
have mainly adopted .05 as the cutoff, while in other sciences the con-
vention is to use .01. But we saw there’s nothing special about these
numbers. Except that they’re easy to estimate without the help of a
computer.

It makes a big difference what cutoff we choose, though. The lower
the cutoff, the less often a result will be deemed significant. So a lower
cutoff means fewer hypotheses ruled out, which means fewer scientific
discoveries.

Think of all the studies of potential cancer treatments being done
around the world. In each study, the researcher is testing the hypoth-
esis that their treatment has no effect, in the hopes of disproving that
hypothesis. They’re hoping enough patients get better in their study
to show the treatment genuinely helps. If just a few more patients im-
prove with their treatment compared to a placebo, it could just be a
fluke. But if a lot more improve, that means the treatment is probably
making a real difference.

The lower the significance level, the more patients have to improve
before they can call their study’s results “significant.” So a lower sig-
nificance level means fewer treatments will be approved by the medical
community.

That might seem like a bad thing, but it also has an upside. It means
fewer bogus treatments being adopted.



198 jonathan weisberg

After all, occasionally a study of a useless treatment will have lots of
patients improving anyway, just by luck. When that happens, the med-
ical community adopts a treatment that doesn’t actually work. And
there might be lots of studies out there experimenting with treatments
that don’t actually help. So if we do enough studies, we’re bound to
get flukey results in some of them, and adopt a treatment that doesn’t
actually work by mistake.

Medical treatments are often expensive,
painful, or dangerous. So it’s a serious
problem to approve ones that don’t actu-
ally help. Sometimes though it just leads
to silly dietary choices.

Suppose for example there are only two types of potential treatment
being studied. The useless kind just leave the patient’s recovery up to
chance: it’s a 50% shot. But the effective kind increase their chances of
recovery by 15%: they have a 65% chance of getting better with these
treatments.

Let’s also imagine we’re studying 200 different treatments, 160 of
which are actually useless and 40 of which are effective. Since we don’t
know which are which, we’ll run 200 studies, one for each treatment.
And just to make things concrete, let’s suppose each study has n = 100
subjects enrolled.

What will happen if our researchers set the cutoff for statistical sig-
nificance at .05? Only a few of the bogus treatments will be approved.
Just 5% of those studies will get flukey, statistically significant results.
And half of those will look like they’re harming patients’ chances of
recovery, rather than helping. So only 2.5% of the 160 bogus treatments
will be approved, which is 4 treatments.

But also, a good number of the genuine treatments will be missed.
Only about 85% will be discovered as it turns out: see Figure 20.1.

95%

missed discoveries

bogus "discoveries"

30 40 50 60 70 80

Figure 20.1: A significance cutoff of .05,
when running studies with 100 patients
in each. The red curve represents the
probable outcomes when studying use-
less treatments (50% chance of recovery),
the green curve represents the probable
outcomes when studying effective treat-
ments (65% chance of recovery).

https://xkcd.com/882/
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Figure 20.2: The results of our 200 stud-
ies. Green pills represent genuinely ef-
fective treatments, red pills represent
useless treatments. The dashed green
line represents the treatments we ap-
prove: only 34 out of 38 of these are gen-
uinely effective.

As a result, only about 89% of the treatments we approve will actu-
ally be genuinely effective. We can’t see this from Figure 20.1 because
it doesn’t show the base rates. We have to turn to the kind of reasoning
we did in the taxicab problem instead.

Figure 20.2 shows the results. Since 2.5% of the 160 useless treat-
ments (red pills) will be approved, that’s 4 bogus “discoveries.” And
since 85% of the 40 genuine ones (green pills) will be approved, that’s
about 34 genuine treatments discovered. So only about 34/38 ≈ 89%
of our approved treatments actually work.

We could improve this percentage by lowering the threshold for
significance to .01. But then only half of the genuine treatments would
be identified by our studies (Figure 20.3).

99%

missed discoveries bogus
"discoveries"

30 40 50 60 70 80

Figure 20.3: A significance cutoff of .01
when running studies with 100 patients
in each. The red curve represents the
probable outcomes when studying use-
less treatments (50% chance of recovery),
the green curve represents the probable
outcomes when studying effective treat-
ments (65% chance of recovery).

Figure 20.4 shows what happens now: about 95% of our approved
treatments will be genuine. We discover half of the 40 genuine treat-
ments, which is 20. And .005 of the 160 useless treatments is .8, which
we’ll round up to 1 for purposes of the diagram. So 20/21 ≈ .95 of
our approved treatments are genuinely effective.

Figure 20.4: With a stricter significance
cutoff of .01, we make fewer "bogus" dis-
coveries. But we miss out on a lot of gen-
uine discoveries too.

But we’ve paid a dear price for this increase in precision: we’ve
failed to identify half the treatments there are to be discovered. We’ve
missed out on a lot of potential benefit to our patients.

Notice, however, that if bogus treatments were rarer, the problem
wouldn’t be so pressing. For example, Figure 20.5 shows what would
happen if half the treatments being studied were bogus, instead of
80%. Then we could have stuck with the .05 threshold and still had
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very good results: we would discover about 85 genuine treatments and
only approved about 3 bogus ones, a precision of about 97%.

Figure 20.5: A significance cutoff of .05
does much better if the base rate is more
favourable.

There are two lessons here. First, lowering the threshold for sig-
nificance has both benefits and costs. A lower threshold means fewer
false discoveries, but it means fewer genuine discoveries too. Second,
the base rate informs our decision about how to make this tradeoff.
The more false hypotheses there are to watch out for, the stronger the
incentive to use a lower threshold.1

1 Is the real base rate low enough that
medical researchers actually need to
worry? Yes, according to some research.

20.2 The Role of Priors in Significance Testing

Bayesian critics of significance testing conclude that, when we choose
where to set the cutoff, we’re choosing based on our “priors.” We’re
relying on assumptions about the base rate, the prior probability of the
null hypothesis.

So, these critics say, frequentism faces exactly the same subjectivity
problem as Bayesianism. Bayesians use Bayes’ theorem to evaluate
hypothesis H in light of evidence E:

Pr(H | E) = Pr(H)
Pr(E | H)

Pr(E)
.

But we saw there’s no recipe for calculating the prior probability of H,
Pr(H). You just have to start with your best guess about how plausible
H is. Likewise, frequentists have to start with their best guess about
how many of the potential cancer treatments being studied are bogus,
and how many are real. That’s how we decide where to set the cutoff
for statistical significance.

From a Bayesian point of view, significance testing focuses on just
one term in Bayes’ theorem, the numerator Pr(E | H). We suppose the
hypothesis is true, and then consider how likely the sort of outcome
we’ve observed is. But Bayes’ theorem tells us we need more informa-
tion to find what we really want, namely Pr(H | E). And for that, we
need to know Pr(H), how plausible H is to begin with.

So significance testing is based on a mistake, according to Bayesian
critics. It ignores essential base rate information, namely how many
of the hypotheses we study are true. And this can lead to very wrong
results, as we learned from the taxicab problem in Chapter 8. Figure 20.6: Harold Jeffreys (1891–1989)

first raised the problem known as Lind-
ley’s paradox in 1939. Dennis Lindley
labeled it a paradox in 1957, hence the
name. It is sometimes called the Jeffreys-
Lindley paradox.

This critique of frequentism is sharpened by a famous problem
known as Lindley’s paradox.

20.3 Lindley’s Paradox
The tulip example is based on an exam-
ple from Henry Kyburg’s book Logical
Foundations of Statistical Inference. It also
appears in Howson & Urbach’s Scientific
Reasoning: A Bayesian Approach.

Suppose a florist receives a large shipment of tulip bulbs with the label
scratched off. The company that sent the shipment only sends two

https://www.doi.org/10.1038/nrd3439-c1
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kinds of shipments. The first kind contains 25% red bulbs, the second
kind has 50% red bulbs.

The two kinds of shipment are equally common. So the store owner
figures this shipment could be of either kind, with equal probability.

To figure out which kind of shipment she has, she takes a sample
of 48 bulbs and plants them to see what colour they grow. Of the 48
planted, 36 grow red. What should she conclude?

Intuitively, this result fits much better with the 50% hypothesis than
the 25% hypothesis. So she should conclude she got the second, 50%
kind of shipment. It’s just a coincidence that well over half the bulbs
in her experiment were red.

But if she uses significance testing, she won’t get this result. In fact
she’ll get an impossible result. Let’s see how.

k = 36

0 10 20 30 40

# red bulbs

Figure 20.7: The result k = 36 out of n =
48 is easily statistically significant for the
null hypothesis p = .25.

Our florist starts by testing the hypothesis that 25% of the bulbs in
the shipment are red. She calculates µ and σ:

µ = np = (48)(1/4) = 12,

σ =
√

np(1− p) =
√
(48)(1/4)(3/4) = 3.

The 99% range is 12± (3)(3), or from 3 to 21. Her finding of k = 36 is
nowhere close to this range, so the result is significant at the .01 level.
She rejects the 25% hypothesis.

k = 36

0 10 20 30 40

# red bulbs

Figure 20.8: The result k = 36 out of n =
48 is also statistically significant for the
null hypothesis p = .5.

So far so good, but what if she tests the 50% hypothesis too? She
calculates the new µ and σ:

µ = np = (48)(1/2) = 24,

σ =
√

np(1− p) =
√
(48)(1/2)(1/2) ≈ 3.5.

So her result k = 36 is also significant at the .01 level! The 99% range
is 13.5 to 34.5, which doesn’t include k = 36. So she rejects the 50%
hypothesis also.

But now she has rejected the only two possibilities. There are only
two kinds of shipment, and she’s ruled them both out. Something
seems to have gone wrong!

How did things go so wrong? Figure 20.9 shows what’s happening
here. Neither hypothesis fits the finding k = 36 very well: it’s an
extremely improbable result on either hypothesis. This is why both
hypotheses end up being rejected by a significance test.

But one of these hypotheses still fits the finding much better than
the other. The blue curve (p = .25) flatlines long before it gets to
k = 36, while the red curve (p = .5) is only close to flatlining. So
the most plausible interpretation is that the shipment is half red bulbs
(p = .5), and it’s just a fluke that we happen to have gotten much more
than half red in our sample.
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k = 36

0 10 20 30 40
# red bulbs

Figure 20.9: An illustration of Lindley’s
paradox. The finding k = 36 doesn’t
fit well with either hypothesis, so both
are rejected. But it fits one of them (red)
much better than the other (blue). So the
red hypothesis is more plausible from an
intuitive perspective.

20.4 A Bayesian Analysis

Bayesians will happily point out the source of the trouble: our florist
has ignored the prior probabilities. If we use Bayes’ theorem instead
of significance testing, we’ll find that the store owner should believe
the second hypothesis, which seems right. 36 red bulbs out of 48 fits
much better with the 50% hypothesis than with the 25% hypothesis.

How do we apply Bayes’ theorem in the tulip example? First we
label our two hypotheses and the evidence:

H = 25% of the bulbs are red,

∼H = 50% of the bulbs are red,

E = Out of 48 randomly selected bulbs, 36 grew red.

Because the two kinds of shipment are equally common, the prior
probabilities of our hypotheses are:

Pr(H) = 1/2,

Pr(∼H) = 1/2.

So we just need to calculate Pr(E | H) and Pr(E | ∼H). That’s actually
not so easy, but with the help of a computer we get:

Pr(E | H) ≈ 4.7× 10−13,

Pr(E | ∼H) ≈ 2.5× 10−4.
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So we plug these numbers into Bayes’ theorem and get:

Pr(H | E) =
Pr(E | H)Pr(H)

Pr(E | H)Pr(H) + Pr(E | ∼H)Pr(∼H)

≈ (4.7× 10−13)(1/2)
(4.7× 10−13)(1/2) + (2.5× 10−4)(1/2)

≈ .000000002,

Pr(∼H | E) =
Pr(E | ∼H)Pr(∼H)

Pr(E | ∼H)Pr(∼H) + Pr(E | H)Pr(H)

≈ (2.5× 10−4)(1/2)
(2.5× 10−4)(1/2) + (4.7× 10−13)(1/2)

≈ .999999998.

Conclusion: the probability of the first hypothesis H has gone way
down, from 1/2 to about .000000002. But the probability of the second
hypothesis ∼H has gone way up from 1/2 to about .999999998! So we
should believe the second hypothesis, not reject it.

According to Bayesian critics, this shows that significance testing is
misguided. It ignores crucial background information. In this exam-
ple, there were only two possible hypotheses, and they were equally
likely. So whichever one fits the results best is supported by the evi-
dence. In fact, the second hypothesis is strongly supported by the evi-
dence, even though it fits the result quite poorly! Sometimes it makes
more sense to reconcile ourselves to a coincidence than to reject the
null hypothesis.

Exercises

1. Which of the following statements are true? Select all that apply.

a. The higher the cutoff for statistical significance, the more true
hypotheses will be discovered.

b. The higher the cutoff for statistical significance, the more false
hypotheses will be “discovered.”

c. The higher the cutoff for statistical significance, the more true
hypotheses will go undiscovered.

d. The higher the cutoff for statistical significance, the more false
hypotheses will be correctly rejected.

2. Suppose we have 1, 000 coins and we are going to conduct an
experiment on each one to determine which are biased. Each coin
will be tossed 100 times. In each experiment, the null hypothesis
is always that the coin is fair, and we will reject this hypothesis
when the results of the experiment are significant at the .05 level.

https://xkcd.com/1132/
https://xkcd.com/1132/


204 jonathan weisberg

Suppose half the coins are fair and half are not. Suppose also
that when a coin is unfair, the probability of getting a result that
is not statistically significant is 0.2.

a. How many fair coins should we expect will incorrectly end up
labeled “unfair.”

b. How many unfair coins should we expect will correctly end
up labeled “unfair.”

c. What percentage of the coins labeled “unfair” should we ex-
pect to actually be unfair?

3. Suppose we are going to investigate 1, 000 null hypotheses by
running an experiment on each. In each experiment, we will
reject the null hypothesis when the results are significant at the
.01 level.

Suppose 90% of our hypotheses are false. Suppose also that when
a null hypothesis is false, the results will not be statistically sig-
nificant 25% of the time.

a. How many false hypotheses should we expect will fail to be
rejected?

b. What percentage of the rejected hypotheses should we expect
to actually be false?

4. True or false: it is possible for the results of an experiment to be
significant at the .05 level even though the posterior probability
of the null hypothesis is Pr(H | E) = .99.

5. Suppose there are two types of urns, Type A and Type B. Type A
urns contain 1/5 black balls, the rest white. Type B urns contain
1/10 black balls, the rest white.

You have an urn that could be either Type A or Type B, you aren’t
sure. You think it’s equally likely to be Type A as Type B. So you
decide to use a significance test to find out.

Your null hypothesis is that it’s a Type A urn. You draw 25 mar-
bles at random, and 13 of them are black.

a. What are µ and σ in the normal approximation?
b. Is the result significant at the .01 level for this null hypothesis?
c. Suppose our null hypothesis had been instead that the urn is

Type B. What would µ and σ be then?
d. Is the result significant at the .01 level for the Type B hypothe-

sis?

6. Suppose the government is testing a new education policy. There
are only two possibilities: either the policy will work and it will
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help high school students learn to write better 3/4 of the time,
or it will have no effect and students’ writing will only improve
1/2 of the time, as usual.

The government does a study of 432 students and finds that,
under the new policy, 285 of them improved in their writing.

a. If the null hypothesis is that each student has a 1/2 chance
of improving, are the results of the study significant at the .01
level?

b. If the null hypothesis is that each student has a 3/4 chance
of improving, are the results of the study significant at the .01
level?

7. Lindley’s paradox occurs when a significance test will direct us
to reject the hypothesis even though the posterior probability of
the hypothesis Pr(H | E) is high. Describe your own example of
this kind of case.





A Cheat Sheet

Deductive Logic

Validity. An argument is valid if it is impossible for the premises to be
true and the conclusion false.

Soundness. An argument is sound if it is valid and all the premises are
true.

Connectives. There are three connectives: ∼ (negation), & (conjunc-
tion), and ∨ (disjunction). Their truth tables are as follows.

A B ∼A A & B A ∨ B

T T F T T
T F F F T
F T T F T
F F T F F

Logical Truth (Tautology). A proposition that is always true.

Contradiction. A proposition that is never true.

Mutually Exclusive. Two propositions are mutually exclusive if they
cannot both be true.

Logical Entailment. One proposition logically entails another if it is im-
possible for the first to be true and the second false.

Logical Equivalence. Two propositions are logically equivalent if they
entail one another.

Probability

Independence. Proposition A is independent of proposition B if B’s
truth or falsity makes no difference to the probability of A.
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Fairness. A repeating process is fair if each outcome has the same
probability and the repetitions are independent of one another.

Multiplication Rule. If A and B are independent then Pr(A & B) =

Pr(A)× Pr(B).

Addition Rule. If A and B are mutually exclusive then Pr(A ∨ B) =

Pr(A) + Pr(B).

Tautology Rule. If A is a tautology then Pr(A) = 1.

Contradiction Rule. If A is a contradiction then Pr(A) = 0.

Equivalence Rule. If A and B are logically equivalent then Pr(A) =

Pr(B).

Conditional Probability.

Pr(A | B) =
Pr(A & B)

Pr(B)
.

Independence (Formal Definition). A is independent of B if Pr(A | B) =
Pr(A) and Pr(A) > 0.

Negation Rule. Pr(∼A) = 1− Pr(A).

General Multiplication Rule. Pr(A & B) = Pr(A | B)Pr(B) if Pr(B) > 0.

General Addition Rule. Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A & B).

Law of Total Probability. If 1 > Pr(B) > 0 then

Pr(A) = Pr(A | B)Pr(B) + Pr(A | ∼B)Pr(∼B).

Bayes’ Theorem. If Pr(A), Pr(B) > 0 then

Pr(A | B) = Pr(A)
Pr(B | A)

Pr(B)
.

Bayes’ Theorem (Long Version). If 1 > Pr(A) > 0 and Pr(B) > 0 then

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B | A)Pr(A) + Pr(B | ∼A)Pr(∼A)
.

Decision Theory

Expected Monetary Value. Suppose act A has possible payoffs $x1, $x2, . . . , $xn.
Then the expected monetary value of A is defined:

E(A) = Pr($x1)× $x1 + Pr($x2)× $x2 + . . . + Pr(xn)× $xn.
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Expected Utility. Suppose act A has possible consequences C1, C2, . . . , Cn.
Denote the utility of each outcome U(C1), U(C2), etc. Then the
expected utility of A is defined:

EU(A) = Pr(C1)U(C1) + Pr(C2)U(C2) + . . . + Pr(Cn)U(Cn).

Measuring Utility. Suppose an agent’s best and worst possible out-
comes are B and W. Let U(B) = 1 and U(W) = 0. And sup-
pose Pr(B) is the lowest probability such that they are indifferent
between outcome O and a gamble with probability Pr(B) of out-
come B, and probability 1− Pr(B) of outcome W. Then, if the
agent is following the expected utility rule, U(O) = Pr(B).

Sure-thing Principle. If you would choose X over Y if you knew that E
was true, and you’d also choose X over Y if you knew E wasn’t
true, then you should choose X over Y when you don’t know
whether E is true or not.

Bayesianism

Measuring Personal Probability. Personal probabilities are measured by
fair betting rates, if the agent is following the expected value rule.
More concreteley, suppose an agent regards as fair a bet where
they win w if A is true, and they lose l if A is false. Then, if they
are following the expected value rule, their personal probability
for A is:

Pr(A) =
l

w + l
.

Dutch book. A Dutch book is a set of bets where each bet is fair ac-
cording to the agent’s betting rates, and yet the set of bets is
guaranteed to lose them money. Agents who violate the laws of
probability can be Dutch booked. Agents who obey the laws of
probability cannot be Dutch booked.

Principle of Indifference. If there are n possible outcomes, each outcome
should have the same prior probability: 1/n.

If there is an interval of possible outcomes from a to b, the prob-
ability of any subinterval from c to d is:

d− c
b− a

.

Frequentism

Significance Testing. A significance test at the .05 level can be described
in three steps.
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1. State the hypothesis you want to test: the true probability of
outcome X is p. This is called the null hypothesis.

2. Repeat the event over and over and count the number of times
k that outcome X occurs.

3. If the number k falls outside the range of outcomes expected
95% of the time, reject the null hypothesis. (Otherwise, draw
no conclusion.)

For a test at the .01 level, follow the same steps but check instead
whether k falls outside the range of outcomes expected 99% of
the time.

Normal Approximation. Suppose an event has two possible outcomes,
with probabilities p and 1− p. And suppose the event will be
repeated n independent times. We define the mean µ = np and
the standard deviation σ =

√
np(1− p). Let k be the number of

times the first outcome occurs. Then, if n is large enough:

• The probability is about .68 that k will be between µ− σ and
µ + σ.

• The probability is about .95 that k will be between µ− 2σ and
µ + 2σ.

• The probability is about .99 that k will be between µ− 3σ and
µ + 3σ.



B The Axioms of Probability

Theories and Axioms

In mathematics, a theory like the theory of probability is developed
axiomatically. That means we begin with fundamental laws or prin-
ciples called axioms, which are the assumptions the theory rests on.
Then we derive the consequences of these axioms via proofs: deductive
arguments which establish additional principles that follow from the
axioms. These further principles are called theorems.

In the case of probability theory, we can build the whole theory
from just three axioms. And that makes certain tasks much easier. For
example, it makes it easy to establish that anyone who violates a law
of probability can be Dutch booked. Because, if you violate a law of
probability, you must also be violating one of the three axioms that
entail the law you’ve violated. And with only three axioms to check,
we can verify pretty quickly that violating an axiom always makes you
vulnerable to a Dutch book.

The axiomatic approach is useful for lots of other reasons too. For
example, we can program the axioms into a computer and use it to
solve real-world problems. Or, we could use the axioms to verify that
the theory is consistent: if we can establish that the axioms don’t con-
tradict one another, then we know the theory makes sense. Axioms
are also a useful way to summarize a theory, which makes it easier to
compare it to alternative theories.

In addition to axioms, a theory typically includes some definitions.
Definitions construct new concepts out of existing ones, ones that al-
ready appear in the axioms. Definitions don’t add new assumptions to
the theory. Instead they’re useful because they give us new language
in which to describe what the axioms already entail.

So a theory is a set of statements that tells us everything true about
the subject at hand. There are three kinds of statements.

1. Axioms: the principles we take for granted.
2. Definitions: statements that introduce new concepts or terms.
3. Theorems: statements that follow from the axioms and the defi-



212 jonathan weisberg

nitions.

In this appendix we’ll construct probability theory axiomatically. We’ll
learn how to derive all the laws of probability discussed in Part I from
three simple statements.

The Three Axioms of Probability

Probability theory has three axioms, and they’re all familiar laws of
probability. But they’re fundamental laws in a way. All the other laws
can be derived from them.

The three axioms are as follows.

Normality. For any proposition A, 0 ≤ Pr(A) ≤ 1.

Tautology Rule. If A is a logical truth then Pr(A) = 1.

Additivity Rule. If A and B are mutually exclusive then Pr(A ∨ B) =

Pr(A) + Pr(B).

Our task now is to derive from these three axioms the other laws of
probability. We do this by stating each law, and then giving a proof of
it: a valid deductive argument showing that it follows from the axioms
and definitions.

First Steps

Let’s start with one of the easier laws to derive.

The Negation Rule. Pr(∼A) = 1− Pr(A).

Proof. To prove this rule, start by noticing that A ∨ ∼A is a logical
truth. So we can reason as follows:

Pr(A ∨∼A) = 1 by Tautology

Pr(A) + Pr(∼A) = 1 by Additivity

Pr(∼A) = 1− Pr(A) by algebra.

The little square indicates the end of the proof. Notice how each
line of our proof is justified by either applying an axiom or using basic
algebra. This ensures it’s a valid deductive argument.

Now we can use the Negation rule to establish the flipside of the
Tautology rule: the Contradiction rule.

The Contradiction Rule. If A is a contradiction then Pr(A) = 0.
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Proof. Notice that if A is a contradiction, then ∼A must be a tautology.
So Pr(∼A) = 1. Therefore:

Pr(A) = 1− Pr(∼A) by Negation

= 1− 1 by Tautology

= 0 by arithmetic.

Conditional Probability & the Multiplication Rule

Our next theorem is about conditional probability. But the concept of
conditional probability isn’t mentioned in the axioms, so we need to
define it first.

Definition: Conditional Probability. The conditional probability of A given
B is written Pr(A | B) and is defined:

Pr(A | B) =
Pr(A & B)

Pr(B)
,

provided that Pr(B) > 0.

From this definition we can derive the following theorem.

Multiplication Rule. If Pr(B) > 0, then Pr(A & B) = Pr(A | B)Pr(B).

Proof.

Pr(A | B) =
Pr(A & B)

Pr(B)
by definition

Pr(A | B)Pr(B) = Pr(A & B) by algebra

Pr(A & B) = Pr(A | B)Pr(B) by algebra.

Notice that the first step in this proof wouldn’t make sense if we
didn’t assume from the beginning that Pr(B) > 0. That’s why the
theorem begins with the qualifier, “If Pr(B) > 0. . . ”.

Equivalence & General Addition

Next we’ll prove the Equivalence rule and the General Addition rule.
These proofs are longer and more difficult than the ones we’ve done
so far.

Equivalence Rule. When A and B are logically equivalent, Pr(A) =

Pr(B).



214 jonathan weisberg

Proof. Suppose that A and B are logically equivalent. Then ∼A and
B are mutually exclusive: if B is true then A must be true, hence ∼A
false. So B and ∼A can’t both be true.

So we can apply the Additivity axiom to ∼A ∨ B:

Pr(∼A ∨ B) = Pr(∼A) + Pr(B) by Additivity

= 1− Pr(A) + Pr(B) by Negation.

Next notice that, because A and B are logically equivalent, we also
know that ∼A ∨ B is a logical truth. If B is false, then A must be false,
so ∼A must be true. So either B is true, or ∼A is true. So ∼A ∨ B is
always true, no matter what.

So we can apply the Tautology axiom:

Pr(∼A ∨ B) = 1 by Tautology.

Combining the previous two equations we get:

1 = 1− Pr(A) + Pr(B) by algebra

Pr(A) = Pr(B) by algebra.

Now we can use this theorem to derive the General Addition rule.

General Addition Rule. Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A & B).

Proof. Start with the observation that A ∨ B is logically equivalent to:

(A &∼B) ∨ (A & B) ∨ (∼A & B).

This is easiest to see with an Euler diagram, but you can also verify
it with a truth table. (We won’t go through either of these exercises
here.)

So we can apply the Equivalence rule to get:

Pr(A ∨ B) = Pr((A &∼B) ∨ (A & B) ∨ (∼A & B)).

And thus, by Additivity:

Pr(A ∨ B) = Pr(A &∼B) + Pr(A & B) + Pr(∼A & B).

We can also verify with an Euler diagram (or truth table) that A
is logically equivalent to (A & B) ∨ (A &∼B), and that B is logically
equivalent to (A & B) ∨ (∼A & B). So, by Additivity, we also have the
equations:

Pr(A) = Pr(A &∼B) + Pr(A & B).

Pr(B) = Pr(A & B) + Pr(∼A & B).
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Notice, the last equation here can be transformed to:

Pr(∼A & B) = Pr(B)− Pr(A & B).

Putting the previous four equations together, we can then derive:

Pr(A ∨ B) = Pr(A &∼B) + Pr(A & B) + Pr(∼A & B) by algebra

= Pr(A) + Pr(∼A & B) by algebra

= Pr(A) + Pr(B)− Pr(A & B) by algebra.

Total Probability & Bayes’ Theorem

Next we derive the Law of Total Probability and Bayes’ theorem.

Total Probability. If 0 < Pr(B) < 1, then

Pr(A) = Pr(A | B)Pr(B) + Pr(A | ∼B)Pr(∼B).

Proof.

Pr(A) = Pr((A & B) ∨ (A &∼B)) by Equivalence

= Pr(A & B) + Pr(A &∼B) by Additivity

= Pr(A | B)Pr(B) + Pr(A | ∼B)Pr(∼B) by Multiplication.

Notice, the last line of this proof only makes sense if Pr(B) > 0 and
Pr(∼B) > 0. That’s the same as 0 < Pr(B) < 1, which is why the
theorem begins with the condition: “If 0 < Pr(B) < 1. . . ”.

Now for the first version of Bayes’ theorem:

Bayes’ Theorem. If Pr(A), Pr(B) > 0, then

Pr(A | B) = Pr(A)
Pr(B | A)

Pr(B)
.

Proof.

Pr(A | B) =
Pr(A & B)

Pr(B)
by definition

=
Pr(B | A)Pr(A)

Pr(B)
by Multiplication

= Pr(A)
Pr(B | A)

Pr(B)
by algebra.
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And next the long version:

Bayes’ Theorem (long version). If 1 > Pr(A) > 0 and Pr(B) > 0, then

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(A)Pr(B | A) + Pr(∼A)Pr(B | ∼A)
.

Proof.

Pr(A | B) =
Pr(A)Pr(B | A)

Pr(B)
by Bayes’ theorem

=
Pr(A)Pr(B | A)

Pr(A)Pr(B | A) + Pr(∼A)Pr(B | ∼A)
by Total Probability.

Independence

Finally, let’s introduce the concept of independence, and two key the-
orems that deal with it.

Definition: Independence. A is independent of B if Pr(A | B) = Pr(A)

and Pr(A) > 0.

Now we can state and prove the Multiplication rule.

Multiplication Rule. If A is independent of B, then Pr(A & B) = Pr(A)Pr(B).

Proof. Suppose A is independent of B. Then:

Pr(A | B) = Pr(A) by definition

Pr(A & B)
Pr(B)

= Pr(A) by definition

Pr(A & B) = Pr(A)Pr(B) by algebra.

Finally, we prove another useful fact about independence, namely
that it goes both ways.

Independence is Symmetric. If A is independent of B, then B is indepen-
dent of A.

Proof. To derive this fact, suppose A is independent of B. Then:

Pr(A & B) = Pr(A)Pr(B) by Multiplication

Pr(B & A) = Pr(A)Pr(B) by Equivalence

Pr(B & A)

Pr(A)
= Pr(B) by algebra

Pr(B | A) = Pr(B) by definition.

We’ve now established that the laws of probability used in this book
can be derived from the three axioms we began with.



C The Grue Paradox

In Section 2.5 we noticed that many inductive arguments have a cer-
tain format.

All observed instances of X have been Y.
Therefore, all instances of X are Y.

All observed ravens have been black, so we expect all ravens to be
black. All observed emeralds have been green, so we expect all emer-
alds to be green. And so on.

It seems like a fundamental principle of scientific inquiry that we
expect the unobserved to resemble the observed. Philosophers call
this The Principle of Induction.

A Gruesome Concept

Figure C.1: Nelson Goodman (1906–
1988) discovered the grue paradox in the
1940s and ’50s.

But in the 1940s, Nelson Goodman discovered a problem with the Prin-
ciple of Induction. To illustrate the problem he invented a very curious
concept, grue.

There are two ways for an object to be grue. Some green things
are grue, but it depends on when we first encounter them. If our first
observation of a green object happens before the year 2050, then it’s
grue. So the Statue of Liberty is grue: it’s a green object that was first
observed before the year 2050 (long before).

But if our first encounter with a green object happens in the year
2050 or later, then it’s not grue. The same goes if we never observe it.
Objects on the far side of the universe that we’ll never see, or buried
deep underground, are not grue.

There is a second way for an object to be grue: some blue objects
are grue. Not the ones observed before 2050, though. Instead it’s the
ones that aren’t observed before 2050. If a blue object is observed for
the first time after 2049, or it’s never observed at all, then it’s grue. So
blue sapphires that won’t be mined before the year 2050 are grue, for
example.

As usual, it helps to have a diagram: see Figure C.2. Here is the
official definition of grue.
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Grue

GrueBlue

Green

Observed Before 2050 Not Observed Before 2050

Figure C.2: The definition of grue

Grue. An object is grue if either (a) it is green and first observed before
the year 2050, or (b) it is blue and not observed before 2050.

To test your understanding, see if you can explain why each of the fol-
lowing are examples of grue things: the $20 bill in my pocket, Kermit
the Frog, the first sapphire to be mined in 2050, and blue planets on
the far side of the universe.

Then see if you can explain why these things aren’t grue: fire en-
gines, the Star of India, and the first $20 bill to be printed in 2050.

Once you’ve got all those down, try this question: do grue objects
change colour in the year 2050? It’s a common mistake to think they
do.

But no, grue objects don’t change colour. The Statue of Liberty is
green and it always will be (let’s assume). So it’s grue, and always will
be, because it’s a green thing that was first observed before the year
2050. Part (a) of the definition of grue guarantees that.

The only way time comes into it is in determining which green
things are grue, and which blue things. If a green thing is first ob-
served before 2050, then it’s grue, ever and always. Likewise if a blue
thing is not first observed before 2050. Then it’s grue—and it always
has been!

The Paradox

Now ask yourself, have you ever seen a grue emerald? You probably
have. In fact, every emerald everyone’s ever seen has been grue.

https://en.wikipedia.org/wiki/Star_of_India_(gem)
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Why? Because they’re all green, and they’ve all been observed be-
fore the year 2050. So they’re all grue the first way—they all satisfy
part (a) of the definition. (Notice it’s an either/or definition, so you
only have to satisfy one of the two parts to be grue.)

So all the emeralds we’ve ever seen have been grue. Let’s apply the
Principle of Induction then:

All observed emeralds have been grue.
Therefore all emeralds are grue.

But if all emeralds are grue, then the first emeralds to be mined in
2050 will be grue. And that means they’ll be blue! They won’t have
been observed before 2050, so the only way for them to be grue is to
be blue.

We’ve reached the absurd conclusion that there are blue emeralds
out there, just waiting to be pulled out of the earth. Something has
gone off the rails here, but what?

Here’s another way to put the challenge. We have two “patterns” in
our observed data. The emeralds we’ve seen are uniformly green, but
they’re also uniformly grue. We can’t project both these patterns into
the future, though. They’ll contradict each other starting in 2050.

Now, obviously, common sense says the green pattern is the real
one. The grue “pattern” is bogus, and no one but a philosopher would
even bother thinking about it. But why is it bogus? What’s so special
about green?

Apparently the Principle of Induction has a huge hole in it! It says
to extrapolate from observed patterns. But which patterns?

Grue & Artificial Intelligence

Figure C.3: The same set of points inter-
preted two different ways

Patterns are cheap, as any data scientist will tell you. Given a bunch of
data points in an xy-plane, there are lots of ways to connect the dots.
Even if they all lie on a straight line, you could draw an oscillating
curve that passes through each point (Figure C.3). You can probably
think of even sillier curves that will fit all the points.

Designing a computer program that will know which patterns to
use and which to ignore is a big part of what machine learning experts
do. And it’s one reason humans are still essential to designing artificial
intelligence. Thanks to our experience, and our genetic inheritance, we
have lots of information about which patterns are likely to continue,
and which are bogus, like grue.

But how do we pass all that wisdom on to the machines? How do
we teach them the difference between green and grue, so that they can
take it from here and we can all go on permanent vacation?
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Disjunctivitis

Here’s one very natural answer. The problem with grue is that it’s
disjunctive: it’s defined using either/or. It suffers from what we might
call “disjunctivitis.”

But the beauty of Goodman’s puzzle is the neat way it exposes the
flaw in this answer. It allows us to make ‘green’ the disjunctive concept
instead! How? We start by building grue a friend, a concept to fill in
the missing spaces in our original diagram. We’ll call it bleen: see
Figure C.4.

Grue Bleen

Bleen GrueBlue

Green

Observed Before 2050 Not Observed Before 2050

Figure C.4: Defining bleen, a counter-
part to grue

Now we can define green in terms of grue and bleen.

Green. An object is green if either (a) it’s grue and first observed before
the year 2050, or (b) it’s bleen and not observed before 2050.

Notice how when we start with the odd language of grue and bleen,
and then define the familiar concept green, it’s the familiar concept
that comes out all disjunctive and artificial-seeming.

Maybe you’re thinking: you could define green that way, but that’s
not how it’s actually defined. In reality, we already understand the
concept of green, and we have to learn the concept of grue from its
disjunctive definition.

The problem is, that’s just a fact about us humans, not about the
concepts grue and green. That’s just the way we homo sapiens happen
to be built (or maybe socialized, or both).

Some bizarre species of alien could grow up thinking in grue/bleen
terms instead. And when they landed on Earth, we’d have to explain
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our green/blue language to them using an either/or definition. Then
they would be looking at us thinking: you guys have a very weird,
disjunctive way of thinking!

What could we say to them to establish the superiority of our way
of thinking? It’s been more than 70 years since Goodman first posed
this question. Yet no answer has emerged as the clear and decisively
correct one.

Time Dependence

Another natural answer to Goodman’s challenge is to say that grue is
defective because it’s time-dependent. It means different things de-
pending on the time an object is first observed.

But the same reversal of fortunes that toppled the “disjunctivitis”
diagnosis happens here. We can define green in terms of grue and
bleen. Then green becomes the time-dependent concept, not grue.

So we’re left in the same spot. We need some way of showing
that the “true” order of definition is the one we’re used to. By what
criterion can we say that green is more fundamental, more basic, than
grue?

The Moral

For another explanation of the grue
puzzle, check out this excellent Wi-Phi
video.

Goodman’s puzzle may seem just cute at first, a mere curiosity. But it
is actually quite profound.

In a way, the central question of this book is: what is the logic of
science? What are the correct rules of scientific reasoning?

The laws of probability seem like a good place to start. But that path
led us to a dead end at the problem of priors in Chapter 18. Perhaps
then we could start with the Principle of Induction instead? But then
we end up in another dead end, stopped by the grue paradox.

Just as Bertrand’s paradox stops us from using the Principle of In-
difference to answer the problem of priors, Goodman’s paradox stops
us from using the Principle of Induction.

There is even more to the similarity between these two paradoxes.
Both paradoxes are problems of “language dependence.” Depending
on what language we work in, rules like the Principle of Indifference
and the Principle of Induction give different recommendations. If we
apply the Principle of Indifference to length, we get one prior proba-
bility; if we apply it to area, we get another. If we apply the Principle
of Induction to green, we expect all emeralds to be green; if we apply
it to grue, we expect some to be blue.

To this day, we do not have an answer to the question: which lan-
guage is the right one to use, and why?

http://www.wi-phi.com/video/puzzle-grue
http://www.wi-phi.com/video/puzzle-grue
http://www.wi-phi.com/video/puzzle-grue
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Exercises

1. Suppose you have a large urn of emeralds, and you want to com-
pare the following two hypotheses:

H1 = all the emeralds in the urn are green,

H2 = all the emeralds in the urn are grue.

You draw 10 emeralds from the urn, and all 10 are green. As-
suming the two hypotheses have the same prior probability, how
do their posterior probabilities compare?

a. Pr(H1 | E) > Pr(H2 | E)
b. Pr(H1 | E) < Pr(H2 | E)
c. Pr(H1 | E) = Pr(H2 | E)

2. Suppose you are exploring the relationship between temperature
and pressure for a newly discovered gas. You have a sample of
the gas in a container where you can control the temperature.
So you try 8 different temperatures, and measure the pressure at
each temperature. The results look like the points in Figure C.3,
where the x-axis is temperature and the y-axis is pressure.

You want to compare two hypotheses about the true relation-
ship between pressure and temperature, portrayed with dashes
in Figure C.3:

H1 = the straight line,

H2 = the oscillating curve.

Assuming the two hypotheses have the same prior probability,
how do their posterior probabilities compare?

a. Pr(H1 | E) > Pr(H2 | E)
b. Pr(H1 | E) < Pr(H2 | E)
c. Pr(H1 | E) = Pr(H2 | E)

3. Write a short essay (3–4 paragraphs) explaining the grue paradox.
Your essay should include all of the following:

• a clear, accurate explanation of the Principle of Induction,
• a clear, accurate explanation of the concept grue,
• a clear, accurate explanation of the challenge grue poses for

the Principle of Induction, and
• a clear, accurate explanation of the “disjunctivitis” solution to

the paradox, and Goodman’s reply to that solution.



D The Problem of Induction

It’s tough to make predictions, especially about
the future.

—Yogi Berra

Many inductive arguments work by projecting an observed pattern
onto as-yet unobserved instances. All the ravens we’ve observed have
been black, so all ravens are. All the emeralds we’ve seen have been
green, so all emeralds are.

The assumption that the unobserved will resemble the observed
seems to be central to induction. Philosophers call this assumption the
Principle of Induction.1 But what justfies this assumption? Do we have 1 See Section 2.5 and Appendix C for

previous discussions of the Principle of
Induction.

any reason to think the parts of reality we’ve observed so far are a
good representation of the parts we haven’t seen yet?

Actually there are strong reasons to doubt whether this assumption
can be justified. It may be impossible to give any good argument for
expecting the unobserved to resemble the observed.

The Dilemma

We noted in Chapter 2 that there are two kinds of argument, inductive
and deductive. Some arguments establish their conclusions necessar-
ily, others only support them with high probability. If there is an argu-
ment for the Principle of Induction, it must be one of these two kinds.
Let’s consider each in turn.

Could we give an inductive argument for the Principle of Induc-
tion? At first it seems we could. Scientists have been using inductive
reasoning for millenia, often with great success. Indeed, it seems hu-
mans, and other creatures too, have relied on it for much longer, and
could not have survived without it. So the Principle of Induction has a
very strong track record. Isn’t that a good argument for believing it’s
correct?

Figure D.1: David Hume (1711–1776)
raised the problem of induction in 1739.
Our presentation of it here is somewhat
modernized from his original argument.

No, because the argument is circular. It uses the Principle of Induc-
tion to justify believing in the Principle of Induction. Consider that the
argument we are attempting looks like this:
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The principle has worked well when we’ve used it in the past.
Therefore it will work well in future instances.

This is an inductive argument, an argument from observed instances to
ones as yet unobserved. So, under the hood, it appeals to the Principle
of Induction. But that’s exactly the conclusion we’re trying to establish.
And one can’t use a principle to justify itself.

What about our second option: could a deductive argument estab-
lish the Principle of Induction? Well, by definition, a deductive argu-
ment establishes its conclusion with necessity. Is it necessary that the
unobserved will be like the observed? It doesn’t look like it. It seems
perfectly possible that tomorrow the world will go haywire, randomly
switching from pattern to pattern, or even to no pattern at all.

Maybe tomorrow the sun will fail to rise. Maybe gravity will push
apart instead of pull together, and all the other laws of physics will
reverse too. And just as soon as we get used to those patterns and
start expecting them to continue, another pattern will arise. And then
another. And then, just as we give up and come to have no expectation
at all about what will come next, everything will return to normal.
Until we get comfortable and everything changes again.

Thankfully, our universe hasn’t been so mischievous. We get sur-
prised now and again, but for the most part inductive reasoning is
pretty reliable, when we do it carefully. But we’re lucky in this re-
spect, is the point.

Nature could have been mischievous, totally unpredictable. It is not
a necessary truth that the unobserved must resemble the observed.
And so it seems there cannot be a deductive argument for the Principle
of Induction. Because such an argument would establish the principle
as a necessary truth.

The Problem of Induction vs. the Grue Paradox

If you read Appendix C, you know of another famous problem with
the Principle of Induction: the grue paradox. (If you haven’t read that
chapter, you might want to skip this section.)

The two problems are quite different, but it’s easy to get them con-
fused. The problem we’re discussing here is about justifying the Prin-
ciple of Induction. Is there any reason to believe it’s true? Whereas
the grue paradox points out that we don’t even really know what the
principle says, in a way. It says that what we’ve observed is a good
indicator of what we haven’t yet obsered. But in what respects? Will
unobserved emeralds be green, or will they be grue?

So the challenge posed by grue is to spell out, precisely, what the
Principle of Induction says. But even if we can meet that challenge,
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this challenge will remain. Why should we believe the principle, once
it’s been spelled out? Neither a deductive argument nor an inductive
argument seems possible.

Probability Theory to the Rescue?

The Problem of Induction is centuries old. Isn’t it out of date? Hasn’t
the modern, mathematical theory of probability solved the problem
for us?

Not at all, unfortunately. One thing we learn in this book is that the
laws of probability are very weak in a way. They don’t tell us much,
without us first telling them what the prior probabilities are. And as
we’ve seen over and again throughout Part III, the problem of priors
is very much unsolved.

For example, suppose we’re going to flip a mystery coin three times.
We don’t know whether the coin is fair or biased, but we hope to have
some idea after a few flips.

Now suppose we’ve done the first two flips, both heads. The Prin-
ciple of Induction says we should expect the next flip to be heads too.
At least, that outcome should now be more probable.

Do the laws of probability agree? Well, we need to calculate the
quantity:

Pr(H3 | H1 & H2).

The definition of conditional probability tells us:

Pr(H3 | H2 & H1) =
Pr(H3 & H2 & H1)

Pr(H2 & H1)
.

But the laws of probability don’t tell us what numbers go in the nu-
merator and the denominator.

The numbers have to be between 0 and 1. And we have to be sure
mutually exclusive propositions have probabilities that add up, accord-
ing to the Additivity rule. But that still leaves things wide open.

For example, we could assume that all possible sequences of heads
and tails are equally likely. In other words:

Pr(HHH) = Pr(THH) = Pr(HTH) = . . . = Pr(TTT) = 1/8.

Given that assumption, we get the result that Pr(H3 | H2 & H1) = 1/2.

Pr(H3 | H2 & H1) =
Pr(H3 & H2 & H1)

Pr(H2 & H1)

=
1/8

1/8 + 1/8
= 1/2.
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But that means the first two flips didn’t tell us anything about the
third! Even after we got two heads, the chance of another heads is still
stuck at 1/2, same as it was to start with.

We didn’t have to assume all possible sequences are equally likely.
We can make a different assumption, and get a different result.

Let’s try assuming instead that all possible frequencies of heads are
equally probable. In other words, the probability of getting 0 heads is
the same as the probability of getting 1 head, which is also the same as
the probability of getting 2 heads, and likewise for 3 heads. So we’re
grouping the possible sequences like so:

• 0 heads: TTT
• 1 head: HTT, THT, TTH
• 2 heads: HHT, HTH, THH
• 3 heads: HHH

Each grouping has the same probability, 1/4. And for the groups in the
middle, which have multiple members, we divide that evenly between
the members. So Pr(HTH) = 1/12, for example, but Pr(TTT) = 1/4.

This might seem a funny way of assigning prior probabilities. But
it actually leads to very sensible results; the same results as the Rule
of Succession in fact! For example, we get Pr(H3 | H2 & H1) = 3/4:

Pr(H3 | H1 & H2) =
Pr(H3 & H2 & H1)

Pr(H2 & H1)

=
1/4

1/4 + 1/12
= 3/4.

So, on this analysis, the first two tosses do tell us what to expect on
the next toss.

We’ve seen two different ways of assigning prior probabilities, which
lead to very different results. The first way, where we assume all pos-
sible sequences are equally likely, disagrees with the Principle of In-
duction. Our observations of the first two flips tell us nothing about
the next one. But the second way, where we assume all possible fre-
quencies are equally likely, agrees with with the Principle of Induction.
Observing heads on the first two does tell us to expect another heads
on the next one.

Both assumptions are consistent with the laws of probability. So
those laws don’t, by themselves, tell us what to expect. The laws of
probability only tell us what to expect once we’ve specified the prior
probabilities. The problem of induction challenges us to justify one
choice of prior probabilities over the alternatives.
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In the 280 years since this challenge was first raised by David Hume,
no answer has gained general acceptance.

Exercises

1. Suppose we do 100 draws, with replacement, from an urn con-
taining an unknown mixture of black and white balls. All 100
draws come out black. Which of the following is correct?

a. According to the laws of probability, the next draw is more
likely to be black than white.

b. According to the laws of probability, the next draw is more
likely to be white than black.

c. According to the laws of probability, the next draw is equally
likely to be black vs. white.

d. The laws of probability are consistent with any of the above
conclusions; it depends on the prior probabilities.

e. None of the above.

2. Write a short essay (3–4 paragraphs) explaining the problem of
induction. Your essay should include all of the following:

• a clear, accurate explanation of the Principle of Induction,
• a clear, accurate explanation of the dilemma we face in justify-

ing the Principle of Induction,
• a clear, accurate explanation of the challenge for the deductive

horn of this dilemma, and
• a clear, accurate explanation of the challenge for the inductive

horn of the dilemma.

3. A coin will be tossed 3 times, so the number of heads could
be 0, 1, 2, or 3. Suppose all 4 of these possibilities are equally
likely. Moreover, any two sequences with the same number of
heads are also equally likely. For example, Pr(H1 & H2 & T3) =

Pr(T1 & H2 & H3). Answer each of the following.

a. What is Pr(H2 | H1)?
b. What is Pr(H3 | H1 & H2)?

Now suppose we do 4 tosses instead of 3. The prior probabilities
follow the same rules: all possible numbers of heads are equally
likely, and any two sequences with the same number of heads
are equally likely.

c. If the first n tosses come up heads, what is the probability the
next toss will come up heads? In other words, give a formula
for Pr(Hn+1 | H1 & . . . & Hn) in terms of n.
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d. What if only k out of the first n tosses land heads, then what
formula gives the probability of heads on the next toss?

4. Suppose a computer program prints out a stream of A’s and B’s.
After observing the sequence A, A, B, we want to know the prob-
ability of an A next.

Our friend Charlie suggests we reason as follows. We are going
to observe 4 characters total. Before we observed any characters,
there were 5 possibilities: the total number of As could turn out
to be 0, 1, 2, 3, or 4. And all of these possibilities are equally
likely. So each has prior probability 1/5.

Some of these possibilities can be subdivided. For example, there
are 4 ways to get 3 A’s:

A, A, A, B
A, A, B, A
A, B, A, A
B, A, A, A

So each of these sequences gets 1/4 of 1/5, in other words prior
probability 1/20.

According to Charlie’s way of reasoning, what is the probability
the 4th character will be an A, given that the first 3 were A, A, B?

5. In this chapter we considered a coin to be flipped 3 times, with
the same prior probability for every possible sequence of heads/tails.
Now suppose the coin will be flipped some very large number
of times, n. And again suppose the prior probability is the same
for every possible sequence of heads/tails. Prove that no mat-
ter how many times the coin lands heads, the probability of
heads on the next toss is still 1/2. In other words, prove that
Pr(Hk+1 | H1 & . . . & Hk) = 1/2 no matter how large k gets.

6. Suppose a coin will be flipped 3 times. There are 23 = 8 possible
sequences of heads/tails that we might get. Find a way of as-
signing prior probabilities to these 8 sequences so that, the more
heads we observe, the less likely it becomes we’ll get heads on
the next toss. In other words, assign a prior probability to each
sequence so that Pr(H2 | H1) < Pr(H2) and Pr(H3 | H2 & H1) <

Pr(H3 | H1).

7. Suppose a coin will be flipped 4 times. Recall the two differ-
ent ways of assigning a probability to each possible sequence of
heads and tails discussed in the chapter:

• Scheme 1: all possible sequences have the same probability.
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• Scheme 2: all possible frequencies (numbers of heads) have the
same probability, and all sequences that share the same fre-
quency have the same probability.

According to each scheme, how probable is each of the following
propositions?

• A = All tosses will land the same way.

• B = The number of heads and tails will be the same.

Now answer the same question with 10 tosses instead of 4.





E Solutions to Selected Exercises

To understand God’s thoughts we must study
statistics, for these are the measure of His

purpose.
—attributed to Florence Nightingale

Chapter 1

Exercise 3. Prisoner A is incorrect. His chances of survival are still only
1/3. To see why, we can use the same tree as we did for the Monty
Hall problem, and just change the labels on the leaves from “Monty
Opens X” to “Guard Names X.”

Exercise 5. Option (a): 5/8.

Chapter 2

Exercise 1. (a) Invalid, (b) Valid, (c) Valid, (d) Valid, (e) Invalid, (f)
Valid.

Exercise 2. (a) Compatible, (b) Compatible, (c) Mutually Exclusive.

Exercise 3. False.

Exercise 5. Yes, it is possible.

Chapter 3

Exercise 1. (a) ∼A, (b) A & B, (c) A &∼B, (d) ∼A &∼B.

Exercise 2a. These are mutually exclusive: there’s only one row where
A & B is true, and A &∼B is false in that row.

Exercise 3b. These are logically equivalent: their final columns are iden-
tical, T T F F.

Exercise 4. The column for B & C is T F F F T F F F. The column for
A ∨ (B & C) is T T T T T F F F.
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Chapter 4

Exercise 1. (a) Independent, (b) Not Independent, (c) Independent, (d)
Not Independent.

Exercise 2. Option (d): All of the above.

Exercise 3. Option (e): None of the above.

Exercise 4. (a) Not a gambler’s fallacy, (b) Gambler’s fallacy.

Chapter 5

Exercise 1. This is a contradiction so its probability is 0.

Exercise 4. (a) 8/15, (b) 8/15, (c) No.

Exercise 5. (a) 0, (b) 1/6, (c) No.

Exercise 7. (a) Yes, (b) No, (c) No.

Exercise 8. 1/6.

Chapter 6

Exercise 2. (a) 1/2, (b) 2/7.

Exercise 5. (a) 9/70, (b) 9/140, (c) 1/30, (d) 1/60, (e) 17/210, (f) 27/34.

Exercise 6. 1/9.

Chapter 7

Exercise 1. (a) 3/13, (b) 10/13, (c) 4/13, (d) 4/13, (e) 10/13

Exercise 4. 17/32

Exercise 6. Yes:

Pr(A) = Pr((A & B) ∨ (A & C) ∨ (A & D)) by Equivalence

= Pr(A & B) + Pr(A & C) + Pr(A & D) by Addition

= Pr(A | B)Pr(B) + Pr(A | C)Pr(C) + Pr(A | D)Pr(D) by General Multiplication.

Exercise 8. (a) 1/13, (b) 4/51, (c) 4/663, (d) 4/663, (e) 8/663, (f) 1/221

Exercise 25. First observe that A & (A ∨ B) is equivalent to A. This
can be verified by a truth table or Euler diagram. We then reason as
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follows:

Pr(A | A ∨ B) =
Pr(A & (A ∨ B))

Pr(A ∨ B)
by definition

=
Pr(A)

Pr(A ∨ B)
by Equivalence

=
Pr(A)

Pr(A) + Pr(B)
by Addition.

Chapter 8

Exercise 1. 1/4

Exercise 3. 2/3

Exercise 5. 9/11

Exercise 7. The full formula is:

Pr(X | B) =
Pr(X)Pr(B | X)

Pr(X)Pr(B | X) + Pr(Y)Pr(B | Y) + Pr(Z)Pr(B | Z)
.

To derive this formula, start with the short form of Bayes’ theorem for
Pr(X | B). Then apply the version of LTP from Exercise 7.6 to the
denominator, Pr(B).

Exercise 8. 1/57

Exercise 11. 1/4

Chapter 9

Exercise 1. (a) 1/6, (b) 1/2, (c) 1/2.

Exercise 2. 81/85.

Exercise 5.

Pr(A | B & C) =
Pr(A & (B & C))

Pr(B & C)
by definition

=
Pr(A & (C & B))

Pr(C & B)
by Equivalence

= Pr(A | C & B) by definition.

Exercise 7. First note that Pr(C) = Pr((A & C)∨ Pr(∼A & C)) by Equiv-
alence, and thus by Addition we have Pr(∼A & C) = Pr(C)− Pr(A &
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C). We then reason as follows:

Pr(∼A | C) =
Pr(∼A & C)

Pr(C)
by definition

=
Pr(C)− Pr(A & C)

Pr(C)
by above

=
Pr(C)
Pr(C)

− Pr(A & C)
Pr(C)

by algebra

= 1− Pr(A & C)
Pr(C)

by algebra

= 1− Pr(A | C) by definition.

Chapter 11

Exercise 2. −$80.

Exercise 4. −$0.79.

Exercise 9. (a) $460 million, (b) $580 million, (c) $220 million, (d) no,
they won’t conduct the study because it would be a waste of $5, 000.
(The EMV of enacting the tax will be positive regardless of the study’s
findings. So doing the study won’t help them make their decision.)

Exercise 11. (a) −$60, (b) −$52.

Exercise 16. x = 888.

Exercise 22. Suppose that E(A) = $x. Let the possible payoffs of A be
x1, . . . , xn. Then:

E(Pay $x for A) = Pr($x1) · ($x1 − $x) + . . . + Pr($xn) · ($xn − $x)

= [Pr($x1) · $x1 − Pr($x1) · $x] + . . . + [Pr($xn) · $xn − Pr($xn) · $x]

= E(A)− [Pr($x1) · $x + . . . + Pr($xn) · $x]

= E(A)− $x [Pr($x1) + . . . + Pr($xn)]

= E(A)− $x

= 0.

Chapter 12

Exercise 2. (d)

Exercise 3. 3/5

Exercise 5. (a) 3/5, (b) 2/3.

Exercise 8. (a) 103/2, (b) 490/9, (c) 45/49.

Exercise 10. Suppose action A has only two possible consequences,
C1 and C2, such that Pr(C1) = Pr(C2) and U(C1) = −U(C2). Since
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Pr(C1) = Pr(C2) = 1/2, we have:

EU(A) = Pr(C1)U(C1) + Pr(C2)U(C2)

=
1
2

U(C1) +
1
2

U(C2)

= −1
2

U(C2) +
1
2

U(C2)

= 0.

Chapter 13

Exercise 1. (d)

Exercise 2. (a)

Exercise 3. (b)

Exercise 5. (c)

Exercise 6. (c)

Exercise 8. (d)

Chapter 14

Exercise 1. (d)

Exercise 2. (b)

Exercise 5. f (y) = ey. If we plug ey into log(x) we get y back: log(ey) =

y.

Exercise 8. (b)

Exercise 9. (c)

Chapter 16

Exercise 1. a) 7/10, b) 4/5, c) 2/3.

Exercise 3. (a) 5/6, (b) 1/3, (c) 2/5

Exercise 4. (a) 1/2, (b) 1/3, (c) 2/3, (d) 2/9

Chapter 17

Exercise 1. We make the following deals with Ronnie.

• He pays us $.40; we pay him $1 if A is true.
• He pays us $.70; we pay him $1 if A is false.
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Each of these deals is fair according to Ronnie because the betting rates
match his personal probabilities. For example, the expected value of
the first bet is 0:

($1− $.40)Pr(A)− $.40(1− Pr(A)) = ($.60)(4/10)− $.40(6/10) = 0.

But Ronnie must pay us $1.10 for these bets, and he will only get $1 in
return. Whether A is true or false, only one of the bets will pay off for
Ronnie. So his net “gain” will be $1− $1.10 = −$.10.

Exercise 2. We make the following deals with Marco.

• We pay him $0.30; he pays us $1 if X is true.
• We pay him $0.20; he pays us $1 if Y is true.
• He pays us $0.60; we pay him $1 if X ∨Y is true.

The explanation is similar to 17.1: each bet is fair according to Marco’s
personal probabilities, as can be checked by doing the expected value
calculations which come out to 0 for each one. But he pays us $.10
more up front than we pay him, and he can’t possibly win it back. If
he wins the third bet, we win one or both of the first two bets.

Exercise 8. We make the following deals with Piz.

• We pay him $1/4; he pays us $1 if Pia is a basketball player.
• He pays us $1/3; we pay him $1 if Pia is a good basketball player.

Again the deals are fair given his personal probabilities. And again he
pays us more up front than we pay him, money which he can’t win
back. If he wins the second bet, we win the first.

Chapter 18

Exercise 1. (a) 7/10, (b) 3/10, (c) same answers as before, (d) different
answers: 217/300 and 11/36.

Exercise 2. a) 1/2, b) 5/8, c) yes, different answers here: 2/3 and 21/32,
d) different again: 49/62 and 713/992.

Exercise 6. a) 2/3, b) 2/1, c) 1/2, d) different: 1/3 now

Chapter 19

Exercise 1. (a) µ = 20, σ = 4, (b) a bell curve centered at 20 and reaching
y ≈ 0 around x ≈ 8, (c) a = 16, b = 24, (d) a = 12, b = 28, (e)
a = 8, b = 32, (f) 7 or fewer, (g) 33 or more, (h) answers will vary.

Exercise 3. (a) µ = 144, σ = 6, (b) 132, 156, (c) 126, 162, (d) not signifi-
cant at either level, (e) false (more accurately, not enough information
is given to draw a conclusion either way).
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Exercise 8. (a) µ = 10, σ = 3, (b) no, (c) false, (d) false.

Exercise 9. (a) µ = 80, σ = 4, (b) yes, (c) if the null hypothesis is true,
and we repeated the experiment over and over, we would get a result
this far from the mean less than 1% of the time.

Exercise 11. If the null hypothesis is true, the probability of getting
a result this “extreme” (i.e. as improbable as this one, or even less
probable) is below .05.

Chapter 20

Exercise 1. (a) and (b)

Exercise 2. (a) 25, (b) 400, (c) 16/17 or about 94%.

Exercise 3. (a) 225, (b) 675/676 or about 99.9%.

Exercise 5. (a) µ = 5, σ = 2, (b) yes, (c) µ = 5/2, σ = 3/2, (d) yes.
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