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For our teachers



Overall, and ultimately, mathematical methods
are necessary for philosophical progress. . .

— Hannes Leitgeb

There is no mathematical substitute for philosophy.
— Saul Kripke

P R E FA C E

In formal epistemology, we use mathematical methods to explore the
questions of epistemology and rational choice. What can we know? What
should we believe and how strongly? How should we act based on our
beliefs and values?

We begin by modelling phenomena like knowledge, belief, and desire
using mathematical machinery, just as a biologist might model the fluc-
tuations of a pair of competing populations, or a physicist might model
the turbulence of a fluid passing through a small aperture. Then, we ex-
plore, discover, and justify the laws governing those phenomena, using
the precision that mathematical machinery affords.

For example, we might represent a person by the strengths of their
beliefs, and we might measure these using real numbers, which we call
credences. Having done this, we might ask what the norms are that govern
that person when we represent them in that way. How should those
credences hang together? How should the credences change in response
to evidence? And how should those credences guide the person’s actions?
This is the approach of the first six chapters of this handbook.

In the second half, we consider different representations—the set of
propositions a person believes; their ranking of propositions by their
plausibility. And in each case we ask again what the norms are that govern
a person so represented. Or, we might represent them as having both
credences and full beliefs, and then ask how those two representations
should interact with one another.

This handbook is incomplete, as such ventures often are. Formal epis-
temology is a much wider topic than we present here. One omission, for
instance, is social epistemology, where we consider not only individual
believers but also the epistemic aspects of their place in a social world.
Michael Caie’s entry on doxastic logic touches on one part of this topic,
but there is much more. Relatedly, there is no entry on epistemic logic, nor
any on knowledge more generally. There are still more gaps.

These omissions should not be taken as ideological choices. This material
is missing, not because it is any less valuable or interesting, but because we
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failed to secure it in time. Rather than delay publication further, we chose
to go ahead with what is already a substantial collection. We anticipate a
further volume in the future that will cover more ground.

Why an open access handbook on this topic? A number of reasons. The
topics covered here are large and complex and need the space allowed
by the sort of 50 page treatment that many of the authors give. We also
wanted to show that, using free and open software, one can overcome a
major hurdle facing open access publishing, even on topics with complex
typesetting needs. With the right software, one can produce attractive, clear
publications at reasonably low cost. Indeed this handbook was created on
a budget of exactly £0 (≈ $0).

Our thanks to PhilPapers for serving as publisher, and to the authors:
we are enormously grateful for the effort they put into their entries.

R. P. & J. W.
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1
P R E C I S E C R E D E N C E S Michael G. Titelbaum

I am more confident than not that I will go in to my office tomorrow. I’m
not certain that I will go, and I haven’t even hit the point of believing that
I will: it is the summer, I have no courses to teach or students to meet,
I may wake up tomorrow and decide it’s not worth the effort. But I’m
more confident that I will go than I am that I won’t. If I had to place my
confidence on a scale of 0 to 100, I’d put it somewhere above 50.

Credences are numerical degrees of confidence. While they could be
expressed as percentages—between 0 to 100, inclusive—it has become
customary to measure them on a scale from 0 to 1. Credences are also often
called “degrees of belief,” though that name may hold the connotation
that they are a species of ordinary, qualitative belief.

It’s better to think of credence not as a kind of qualitative belief, but in-
stead as a member of the same family as qualitative belief. That family—the
family of doxastic attitudes—also includes certainty, disbelief, suspension
of belief, and probably comparative confidence as well. The members
of this family have a variety of commonalities. For example, we tend to
think of credences as taking the same sorts of objects as outright beliefs.
Many authors take these objects to be propositions, and so classify both
credences and beliefs as propositional attitudes. I will follow that trend
here, but if you think beliefs are adopted towards something other than
propositions (sentences, perhaps?), you will be inclined to the same view
about credences.

The theory of credences was developed to address a number of philo-
sophical problems. One was the proper interpretation of “probability”
locutions. If I say, “The probability that I’ll go to the office tomorrow is
over 50%,” what does this mean, and what are the truth-conditions for my
utterance? A number of interpretations of probability have been offered
and defended (some of which we will discuss in Section 1.6), and it’s not
clear that every use of the term “probability” should be interpreted the
same way. But one prominent suggestion, the “subjective interpretation of
probability,” is that probability statements express the speaker’s degree of
confidence in a proposition. So my utterance expresses a confidence over
0.5 that I shall go to the office.

Yet even if “probability” statements rarely—or never—express an agent’s
degrees of confidence, such degrees of confidence may still exist, and have
philosophical work to do. Degrees of belief play a prominent role in
traditional decision theory, the classic formal approach to rational choice
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2 michael g . titelbaum

(about which more in Section 2.2). Credences also figure in Bayesian
confirmation theory (Section 2.1), an account of evidential support rivaling
other statistical approaches such as frequentism and likelihoodism. And
they can be applied to such further topics as coherentism, Inference to the
Best Explanation, and social epistemology (Section 2.3).

So if we grant that credences exist, what exactly does it take to possess
one? In line with contemporary behaviorist approaches in psychology, de
Finetti (1937/1964) defined the degree of belief assigned to an event by
an individual as the rate at which she’d bet that it would occur (more
about the details in Section 2.2). But as was typical with operationalism,
this definition ran into problems when, say, an agent displayed inconstant
betting behaviors over time, and so was difficult to assign a particular cre-
dence to. Nowadays we may grant than an agent with a particular degree
of belief will, if rational, display particular betting behavior (Christensen,
2004). But we also tend to think of this normative connection less as a
definition of credence and more as one aspect of what it is to possess a de-
gree of confidence. Just as our account of qualitative belief has progressed
beyond behaviorism to a broader functionalism, we think of credence as a
multi-faceted mental state with descriptive and normative connections to
a wide variety of behaviors and other attitudes.

Besides their connections to desires, intentions, and decisions contem-
plated in action theory and decision theory, credences are connected to
other varieties of doxastic attitudes (not to mention emotions, sensations,
and memories). If comparative confidence is a distinct type of mental state,
it clearly is connected to credence: I am more confident of P than Q just in
case my credence in P is higher than my credence in Q. As for qualitative
attitudes, certainty is often identified with credence 1 in a proposition
(though see Section 1.7 below). There must also be links between credence
and outright belief: if I believe P, my credence in P should be higher than
my credence in ∼P.

Can we find a fully general connection between credence and outright
belief? Some authors (e.g., Holton, 2014) maintain that to the extent there
are any credences, to possess credence x in P is just to hold an outright
belief that the probability of P is x. Yet it’s difficult to find a single concept
of probability that applies to every proposition to which an agent might
assign a degree of belief. And it seems agents (such as children) can be
more or less confident of propositions without possessing a concept of
probability. Moreover, whatever concept of probability we select, it seems
conceivable for an agent to adopt a degree of confidence in the proposition
that P has probability x. (We’ll see a further technical difficulty with
the credence-as-outright-belief theory in Section 1.2.) Most theorists now
hold that the numerical value of a credence is an attribute of the attitude
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adopted towards a proposition, not part of the content of the proposition
towards which that attitude is adopted.1

Going in the other direction, the “Lockean Thesis”2 takes outright belief
just to be credence above a particular threshold. The threshold credence is
usually lower than 1 (belief need not be certainty) but well above 1/2, and
may depend on contextual parameters. The main objection to the Lockean
Thesis is that one can describe rationally acceptable credence distributions
which, by way of the thesis, generate rationally unacceptable patterns of
belief. In the Lottery Paradox (Kyburg, 1961) an agent assigns to each
ticket in a lottery a low credence that it will win, while assigning a high
credence (perhaps certainty) that some ticket will win. For any Lockean
threshold less than 1, we can arrange the numbers so that the agent winds
up believing of each ticket that it will lose, while believing that some ticket
will win—a logically inconsistent overall set of beliefs. Similarly, in the
Preface Paradox (Makinson, 1965), an author has high confidence in each
claim made in her book while also being confident that at least one of
those claims is false. Via the Lockean Thesis this becomes belief in each
conjunct of a conjunction coupled with disbelief in that conjunction.

How, then, to relate credence and outright belief in general? The most
radical possibility is to deny either the existence of beliefs or the existence
of credences. More conservatively, one could offer a reduction of one
category to the other, or at least a principle of descriptive supervenience.
Alternatively, one could grant that while beliefs and credences appear in a
variety of configurations in actual agents, normative principles specify how
they’d align in a rational agent. The current consensus is that something
beyond just the Lockean Thesis would be required to make either of these
approaches work; recent attempts to articulate belief-credence principles
can be found in Leitgeb (2017), Douven (2012), and Lin and Kelly (2012).

On the other hand, one could concede that beliefs and credences are
both genuine kinds of mental states an agent can possess, there are some
ways in which they interact (or interact if one is rational), but no systematic
general principles are available. While this stance is available to strong
realists about beliefs and credences, it is especially attractive to theorists
who read belief and credence ascriptions as convenient, simplifying models
of a highly complex cognitive system. The belief-model and the credence-
model are each effective and efficient in different circumstances, and may
be applied toward different ends. In that case, it would be unsurprising if
no universal translation from one to the other were available.

1 Moss (2018) takes the numerical value to be part of a credence’s content, but takes credal
objects to be more complicated than simple propositions.

2 Locke (1689/1975, Bk. IV). See also Foley (1993) for discussion.
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1 rational constraints on credence

Once we understand what a credence is, the next question is what it takes
for a set of credences to be rational.

1.1 The Probability Axioms

The most generally-accepted rational credence norms are Kolmogorov’s
(1933/1950) axioms. Suppose we have a language L of propositions, which
starts with a finite set of atomic propositions and then closes them under
the standard truth-functional connectives. Define a real-valued function c
over L representing the credence values an agent assigns the propositions
in L.3 The precise, real-number values that c assigns each proposition are
the “precise credences” of this entry’s title; I’ll discuss alternative formal
approaches in Section 5 below.

Given this setup, Kolmogorov’s axioms become the following.

Non-Negativity. For any X ∈ L, c(X) ≥ 0.

Normality. For any tautology T ∈ L, c(T) = 1.

Finite Additivity. For any mutually exclusive X, Y ∈ L,
c(X ∨Y) = c(X) + c(Y).

Mathematicians often call these the probability axioms, and call any distribu-
tion satisfying them a probability function. Probabilism is the position that
rational credences form a probability function; in other words, rational
credences satisfy the Kolmogorov axioms.4

The probability axioms set 0 ≤ c(X) ≤ 1 for every X ∈ L. Probabilism
also entails a number of intuitive constraints on rational credence. Here’s
one example.

◦ For any X ∈ L, c(∼X) = 1− c(X).

Suppose you assign a high confidence that anthropogenic global warming
has occurred. This constraint requires you to assign a low confidence
that no anthropogenic warming has occurred. And should you become
more confident that anthropogenic warming has occurred, this constraint

3 While I will consider languages containing propositions, other authors describe credences
as distributed over sentences, or sets of possible worlds, or sets of events, etc.

4 Probabilism is often described as the doctrine that rational agents have credences satisfying
the probability axioms, or (if that’s considered too unrealistic) that ideally rational agents
have probabilistic credences. Both of these formulations make agents (real or ideal) the
targets of evaluation. Strictly speaking, I prefer to evaluate credences (or sets of credences)
for rationality, rather than agents. But for ease of locution I will largely treat the two as
interchangeable here.
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will require your confidence in that proposition’s negation to decrease
accordingly.

Some other intuitive constraints following from the Kolmogorov axioms.

◦ For any contradiction F ∈ L, c(F) = 0.

◦ For any X, Y ∈ L (mutually exclusive or otherwise),

c(X ∨Y) = c(X) + c(Y)− c(X & Y).

◦ For any X, Y ∈ L, if X � Y then c(Y) ≥ c(X).

◦ For any logically equivalent X, Y ∈ L, c(X) = c(Y).

◦ For any finite set of mutually exclusive X1, . . . , Xn ∈ L,

c(X1 ∨ . . . ∨ Xn) = c(X1) + . . . + c(Xn).

The last bulleted constraint has an important consequence when an agent
considers a partition—a set of propositions whose members are mutually
exclusive and jointly exhaustive. Because the disjunction of a partition’s
elements is a tautology, probabilism demands that the credences assigned
to elements of a partition sum to 1.

A further important consequence of probabilism is that credences are
strongly extensional. If an agent is certain that two propositions X and
Y have the same truth-value (that is, if c(X ≡ Y) = 1), then for the sake
of calculating credences X and Y might as well be logically equivalent.
For instance, any credence equation or inequality in which X appears
would remain true were any of its Xs replaced with Ys. Any difference in
meaning, modal profile, etc. is irrelevant to probability once truth-values
are established to be identical.

We can illustrate probabilism with Kyburg’s Lottery example from page
3. Given a lottery with, say, 100 tickets, introduce a language whose atomic
propositions are W1 through W100 (with Wi indicating that ticket i wins the
lottery). If the lottery is fair, an agent might assign c(Wi) = 1/100 for each
Wi. From our first intuitive consequence of the probability axioms, we then
have c(∼Wi) = 99/100; the agent is highly confident of each ticket that it
will not win. However, assuming no more than one ticket can win, our
final intuitive consequence listed above yields:

c(W1 ∨ . . . ∨W100) = c(W1) + . . . + c(W100) = 1. (1)

So our agent is certain some ticket will win, as intuitively she ought to
be.5

5 Notice that none of this solves the Lottery Paradox, which brings full beliefs into the lottery
picture. My goal is just to illustrate how probabilism is compatible with and supportive of
a natural account of rational credences in the lottery case. A similar illustration could be
given for Makinson’s Preface example.
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While proofs in the probability calculus usually proceed from Kol-
mogorov’s axioms, practical problem-solving is often made easier by work-
ing with state-descriptions. Define a literal to be an atomic proposition
of L or its negation, then define a state-description in L to be a maximal
consistent conjunction of its literals. Every noncontradictory X ∈ L then
has a unique disjunctive normal form, a disjunction of state-descriptions
logically equivalent to X.6

Carnap (1950) makes repeated use of the fact that a distribution c
over L satisfies the probability axioms just in case it assigns: (1) non-
negative values to L’s state-descriptions summing to 1; (2) for every
noncontradictory X, a value equal to the sum of the values assigned to the
state-descriptions in X’s disjunctive normal form; and (3) a value of 0 to
every contradictory proposition.7

This result is handy in two ways. First, we can completely characterize
any probability distribution over L by specifying the values it assigns to L’s
state-descriptions. Second, given partial information about a probability
distribution, we can determine what this information says about the values
assigned to state-descriptions, then from there work out the values of (or
constraints on the values of) other propositions.

For example, suppose I tell you that Bob is certain of P ⊃ Q, and is twice
as confident of P as ∼P. It immediately follows that Bob’s confidence in
∼Q is less than or equal to 1/3. Why? Well, the disjunctive normal form
equivalent of ∼Q is (P &∼Q)∨ (∼P &∼Q). Since Bob is certain of P ⊃ Q,
the first disjunct receives credence 0, so for Bob c(∼Q) = c(∼P &∼Q).
But since c(P) + c(∼P) = 1, and c(P) = 2 · c(∼P), we have c(∼P) = 1/3.
The disjunctive normal form equivalent of ∼P is (∼P & Q) ∨ (∼P &∼Q).
By Non-Negativity Bob’s credence in the first disjunct must be greater
than or equal to 0, so the second disjunct receives a credence less than or
equal to 1/3.8

Finally, with the notion of a probability function in hand we can define
the notion of an expectation. Suppose we have a numerical quantity for
which many values are possible. To calculate an agent’s expectation for
that quantity, we multiply each value times the agent’s credence that the
quantity will take that value, then sum over all the values available. For
example, if I’m 10% confident that I’ll go into my office two days this

6 To make the disjunctive normal form unique, we require literals to appear in a state-
description in some canonical order (perhaps alphabetical, if the propositions are desig-
nated by letters), and then we require state-descriptions to appear in disjunctive normal
forms in a canonical order as well.

7 I have never been able to discover whether this result was original to Carnap or not. I
would sincerely welcome any e-mails demonstrating its historical provenance!

8 For more on the mathematical theory underlying this approach, and for a Mathematica
routine that will solve many probability problems once they are reduced to algebra using
state-descriptions, see Fitelson (2008).
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week, 60% confident that I’ll go in just one day, and 30% confident that I
won’t go in at all, then my expectation for the numbers of days I’ll go into
my office this week is:

0.10 · 2 days + 0.60 · 1 day + 0.30 · 0 days = 0.8 days. (2)

1.2 The Ratio Formula

So far we have discussed unconditional credence—an agent’s degree of
confidence that a particular proposition is true in light of her current
understanding of what the world is like. We may also inquire after an
agent’s conditional credence in proposition X given Y; this is the agent’s
credence in X upon making the additional assumption that Y. Notice that
Y may be a proposition in which the agent currently has low unconditional
credence. In asking for her credence in X given Y, we ask her to set aside
her current actual opinion about Y, temporarily add Y to the stock of
propositions she takes to be true, then assess X in light of this enhanced
suppositional set.9

An agent’s conditional credence in X given Y is denoted c(X |Y), and
is usually taken to be governed by the Ratio Formula.

Ratio Formula. For any X, Y ∈ L with c(Y) > 0,

c(X |Y) = c(X & Y)
c(Y)

.

The Ratio Formula can be read as either a descriptive truth or as a norma-
tive requirement. On the former approach, an agent’s conditional credence
X given Y takes a particular value just in case her unconditional credences
in X & Y and Y stand in that ratio. This reading is most natural if one wants
to reduce one type of credence to the other: one could hold that to have a
conditional credence just is to have unconditional credences standing in a
particular ratio; or one could hold that conditional credences are basic and
unconditional credences are a proper subset of those.10 Alternatively, one
could see conditional credence as just another type of doxastic attitude on
equal footing with unconditional credences, then read the Ratio Formula

9 Notice that we are discussing indicative, not subjunctive, conditional credences. The
supposition Y is to be added to the agent’s current set of assumptions about the world, with
the resulting suppositional set assumed to be consistent. Most discussions of conditional
credence concern the indicative form. For a treatment of subjunctive conditional credences,
see Joyce (1999).

10 From the Kolmogorov axioms and Ratio Formula, it follows that for any X ∈ L, c(X) =
c(X |T). So unconditional credences can be thought of as conditional credences conditional
on a tautology. See Easwaran (this volume) for more.
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as a rational requirement on how conditional and unconditional credences
should align.11

Note that as I’ve defined the Ratio Formula, it remains silent when the
agent assigns the condition (proposition Y) a credence of 0. We will return
to credences conditional on credence-0 propositions in Section 1.7.

Combining the Ratio Formula and Kolmogorov’s Axioms yields the
handy Law of Total Probability.

Law of Total Probability. For any X, Y1, . . . , Yn ∈ L such that the
Y1, . . . , Yn form a finite partition,

c(X) = c(X |Y1) · c(Y1) + . . . + c(X |Yn) · c(Yn).

The Law of Total Probability calculates the unconditional credence of X
as a weighted average of X’s credences conditional on members of the
Y-partition, weighted by the unconditional credences in the Ys.12

To illustrate once more with our lottery scenario, suppose B is the
proposition that our agent will benefit from the outcome of the lottery. She
holds tickets 1 through 3, so is sure to benefit if they win. Also, her sister
holds the very last ticket (ticket 100), and the agent is 1/2 confident that
her sister will share the winnings should that ticket come in. Applying
the Law of Total Probability (and recalling that Wi is the proposition that
ticket i will win), the agent’s credence that she will benefit is

c(B) = c(B |W1) · c(W1) + c(B |W2) · c(W2) + c(B |W3) · c(W3)

+ c(B |W4) · c(W4) + . . . + c(B |W100) · c(W100)

= 1 · 1/100 + 1 · 1/100 + 1 · 1/100

+ 0 · 1/100 + . . . + 1/2 · 1/100

= 0.035.

(3)

Conditional credence also plays a crucial role in the notion of credal
relevance. When 0 < c(Y) < 1, all of the following inequalities are equiva-
lent:

c(X |Y) > c(X), (4)

c(X) > c(X | ∼Y), (5)

c(Y | X) > c(Y), (6)

c(Y) > c(Y | ∼X), (7)

c(X & Y) > c(X) · c(Y). (8)

11 For a discussion of how conditional credences interact with an agent’s credences in
conditionals, see Briggs (this volume).

12 Put another way, the Law of Total Probability requires an agent’s unconditional credence
in X to equal her expectation of her credence in X conditional on the true element of the
Y-partition.
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When these inequalities hold, we say that Y is positively relevant to X
on the agent’s credence function. (Since positive relevance is a symmetric
relation, we may also say that X is positively relevant to Y.) Another way
to put this is that the agent takes X and Y to be positively correlated.
Replacing the greater-thans with less-thans describes when Y is negatively
relevant to X (or negatively correlated with X) on an agent’s credences.
On the other hand, when c(X & Y) = c(X) · c(Y) (or any of the other
inequalities above becomes equality), we say that X is irrelevant to Y for
the agent, or probabilistically independent of Y.

These relevance relations are relative to an agent’s credences; they reflect
which propositions she assesses as relevant to each other given her current
understanding of the world. But we can also temporarily enhance her
current set of suppositions about the world, and see whether any relevance
relations change. This takes us from a notion of unconditional relevance
to conditional relevance. Y is relevant to X conditional on Z just in case

c(X |Y & Z) > c(X | Z). (9)

For each of the inequalities above, a corresponding characterization of
conditional relevance can be given by adding Z as a condition to the
expressions on each side.

The notion of conditional relevance underlies a crucial notion in the
philosophy of science: screening off. We say that Z screens off X from
Y when X and Y are unconditionally dependent but the following two
equalities hold:

c(X |Y & Z) = c(X | Z), (10)

c(X |Y &∼Z) = c(X | ∼Z). (11)

In other words, X and Y are independent conditional on each of Z and
∼Z. In a screening-off situation, supposing either Z or ∼Z makes the
correlation between X and Y disappear.13

To illustrate one application of this concept, Reichenbach (1956) argues
that a common cause screens off its effects from each other. Suppose X is
the proposition that my newspaper reports that the Yankees won last night,
Y is the proposition that your newspaper reports that the Yankees won
last night, and Z is the proposition that the Yankees actually won. On the
one hand, while I remain ignorant of Z it would be rational for me to treat
X as relevant to Y. X provides information about Z, and therefore also
provides information about Y. But once the truth-value of Z is established,
X and Y lose the ability to say anything about each other; X and Y become

13 This definition generalizes to the case in which Z is a random variable capable of taking a
variety of values zi. Screening off then occurs when X and Y are unconditionally correlated,
but become independent conditional on each proposition of the form Z = zi.
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independent conditional on any supposition about Z. Thus Z will screen
off X from Y on my credence function.

A proximal cause will also screen off its effect from a distal cause. (Imag-
ine Y states the final score of last night’s Yankees game, Z is the proposition
that the Yankees won, and X is the proposition that my newspaper reports
that they won.) In general, probabilistic correlations (conditional and un-
conditional) can provide useful evidence about the causal relations among
a set of variables. Some philosophers have even defined causality in terms
of probabilistic relations. For more on all of this, see Hitchcock (2012).

One final point about conditional credences. Earlier (p. 2) I mentioned
the theory that a credence of x in P is just the outright belief that the
probability of P is x. There I noted a number of problems for that theory;
now we can add that the theory seems to lack a good way of understanding
conditional credence. A conditional credence c(P |Q) of x cannot be read
as a qualitative belief in the proposition “If Q, then the probability of P is
x,” nor can it be read as the belief that “The probability of ‘If Q, then P’ is
x.” This was established by a series of triviality results initiated by Lewis
(1976).14 For instance, Lewis’ work shows that if we assume c(P |Q) = x
just in case p(Q→ P) = x for some suitable notion of probability p and
some indicative conditional →, then it follows that every proposition is
probabilistically independent from every other! This is obviously absurd. A
conditional credence just isn’t a credence—or a belief—about a conditional.

1.3 Updating by Conditionalization

The rational constraints on credence listed to this point have been
synchronic—when they relate multiple credences, all the credences related
are held at the same time. The degree of belief literature has also proposed
a number of diachronic constraints, governing relations among credences
assigned at different times.

Suppose we have two times, ti and tj, with the latter occurring after the
former. Let ci and cj be the agent’s credence functions at these two times.
The most traditional, well-established, and well-known diachronic credal
constraint is Conditionalization.

Conditionalization. If E ∈ L represents everything the agent learns
between ti and tj, then for any X ∈ L, cj(X) = ci(X | E).

The intuitive idea of Conditionalization is simple. Suppose that at ti you
don’t know whether E is true. I ask you to hypothetically suppose E
(temporarily add it to your stock of assumptions about what the world is
like), then ask for your conditional credence in X given this supposition.

14 For the recent state of the art in this area, see Hájek (2011) and Fitelson (2015).
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You offer some number. Then, between ti and tj, you learn that E is
actually true (and learn nothing else besides). If I now ask you at tj for
your unconditional credence in X, it seems you should offer the same
number you reported as a conditional credence before. After all, the set of
real-world conditions against which you’re assessing X is the same at both
times; it’s just that at ti you were supposing E as a fact about the world,
while at tj you know E to be true.

Conditionalization integrates nicely with our other credal constraints.
For instance, if ci satisfies the Kolmogorov axioms and ci(E) > 0, then
conditionalizing yields a cj distribution that satisfies the axioms as well. So
if an agent begins with a probability distribution and repeatedly updates
by conditionalizing, she is guaranteed to respect probabilism on an ongo-
ing basis. The probability axioms and Ratio Formula also make updating
by conditionalization cumulative and commutative. If you conditionalize
successively on E and then E′, this yields the same result as conditional-
izing just once on E & E′, which means it also yields the same result as
conditionalizing on E′ followed by E.

For a conditionalizing agent, current credences interact in an interesting
way with predictions about future credences. Suppose an agent is certain at
ti that her tj credences will be formed by conditionalizing on a proposition
she will learn from some particular finite partition. (Perhaps she will
conduct an experiment between ti and tj, and the propositions in the
partition represent all of its possible outcomes.) Assuming she meets a few
other plausible side-conditions, such an agent will satisfy the Reflection
Principle.

Reflection Principle. For any X ∈ L, ci(X | cj(X) = r) = r.

This principle, introduced by van Fraassen (1984), sets the agent’s ti un-
conditional credence in X equal to her ti expectation of her unconditional
tj credence in X.15 Notice that although a cj appears in the righthand
expression, the principle governs synchronic credal interactions: it relates
the agent’s ci credences in X to her ci credences about her future credences
in X. Given (again) a few side-conditions, Reflection may be derived from
the Kolmogorov axioms, the Ratio Formula, and the agent’s certainty that
she will update by conditionalizing on some member of a particular parti-
tion. Van Fraassen, however, argues in the opposite direction: he provides
independent motivation for Reflection, then views Conditionalization as
a derivable consequence. For more on the arguments in each direction,
and the specific side-conditions required, see Weisberg (2007) and Briggs
(2009).

15 To see why, return to our formulation of the Law of Total Probability on page 8, and
let each Yi there assert that the agent’s unconditional tj credence in X will take some
particular real value r.
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When an agent repeatedly updates by Conditionalization, she often
finds herself calculating the value of c(X | E). This calculation can be
streamlined by a famous theorem.

Bayes’ Theorem. For any X, E ∈ L with non-zero c-values,

c(X | E) = c(E | X) · c(X)

c(E)
.

Bayes’ Theorem has proved so central to the application of Conditional-
ization that theorists who work with degrees of belief are often called
“Bayesians” (or “subjective Bayesians,” or “Bayesian epistemologists”). In a
moment I’ll describe why Bayes’ Theorem is so useful. But first, it’s worth
noting that Bayes’ Theorem is indeed a theorem, easily derivable from the
Kolmogorov Axioms and Ratio Formula.16 Bayesianism has generated a
great deal of controversy, especially among statisticians. But the contro-
versial claim in Bayesianism isn’t that Bayes’ Theorem is true. Everyone
agrees that the theorem follows from the Kolmogorov Axioms, and that if
an agent is going to generate new credences over time by conditionaliz-
ing, then the theorem provides a handy tool for calculating post-update
credences from pre-update credences. The controversy is whether agents
should really update their credences by conditionalizing, and whether
scientific inference is best understood as a series of conditionalizations.

Setting this controversy aside, why is the particular analysis of c(X | E)
in Bayes’ Theorem so useful? Consider a scientific context, in which a
theorist has a finite partition of hypotheses H1, . . . , Hn about what’s going
on with some phenomenon. The theorist plans to run an experiment that
she hopes will discriminate among the hypotheses. At time ti, before she
has run the experiment, the theorist has a set of unconditional credences ci,
which we call her priors. The theorist runs the experiment between ti and tj,
and let’s suppose the observation she makes is represented by proposition
E. Given this new evidence, Conditionalization helps her calculate her
credences at tj, which we call her posteriors.

Suppose we’re interested in the theorist’s confidence in some particular
hypothesis Hm after the experimental results come in. Applying Condi-
tionalization, Bayes’ Theorem, and then the Law of Total Probability to the
denominator of Bayes’ Theorem, we derive:

cj(Hm) =
ci(E | Hm) · ci(Hm)

ci(E | H1) · ci(H1) + . . . + ci(E | Hn) · ci(Hn)
. (12)

16 The theorem is traditionally attributed to the Reverend Thomas Bayes. Though Bayes never
published the theorem, Richard Price found it in his notes and published it after Bayes’
death in 1761. Pierre-Simon Laplace rediscovered the theorem independently later on, and
was responsible for much of its early popularization.
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Consider the components of the right-hand fraction one at a time. First, we
have a number of expressions of the form ci(Hx). These are the theorist’s
priors in the various hypotheses. Presumably going into the experiment
she has some unconditional levels of confidence in the hypotheses she is
considering; these supply the priors in question. Then we have expressions
of the form ci(E | Hx). An agent’s conditional credence in an experimental
result E given some hypothesis Hx is called her likelihood for that evidence
on that hypothesis. A well-defined scientific hypothesis should make a
prediction for how the theorist’s experiment will come out, or at least
should assign probabilities to various possible outcomes. These inform
the theorist’s likelihoods for various experimental outcomes (such as E)
on the various hypotheses she entertains. Thus Bayes’ Theorem allows the
theorist to form a posterior opinion about each hypothesis Hm that she
entertains, based on the evidence she’s received, her unconditional priors
in the hypotheses, and her ti likelihoods—elements that are plausibly all
easily to hand.

1.4 Jeffrey Conditionalization

Statisticians and philosophers of science often worry that Conditional-
ization allows a scientist’s final verdict on a hypothesis to be influenced
by her initial credence in that hypothesis—her personal degree of belief
in the hypothesis before any evidence came in. Epistemologists worry
about Conditionalization’s conception of evidence. It seems that for Con-
ditionalization to work, it must be possible to identify some proposition
E representing everything the agent learns between ti and tj. Moreover,
the agent must become certain of E between ti and tj, because updating
the agent’s credence in E itself using Conditionalization yields cj(E) = 1.
Finally, once an agent becomes certain of some proposition, subsequent
updates by Conditionalization will retain that certainty forever.17

Conditionalization therefore seems to embody a conception of learning
on which what is learned is explicitly summarizable in propositional form,
becomes certain, and is retained ever after. To epistemologists, this is
reminiscent of foundationalist approaches to evidence abandoned decades
ago. It also violates the Regularity Principle, which deems it irrational for
an agent to assign absolute certainty to an empirical proposition. (After
all, what evidence could ever make you entirely certain that some empirical
claim was true?)

To address these problems, Richard C. Jeffrey offers an updating rule
that generalizes Conditionalization to allow for learning experiences in

17 It’s easy to show that if an agent conditionalizes on E between ti and tj, she will have
cj(E) = 1, and then if she conditionalizes on some other evidence between tj and tk, she
will still have ck(E) = 1 as well.
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which no certainties are gained. He introduces his rule using the following
example.

The agent inspects a piece of cloth by candlelight, and gets the
impression that it is green, although he concedes that it might
be blue or even (but very improbably) violet. If G, B, and V
are the propositions that the cloth is green, blue, and violet,
respectively, then the outcome of the observation might be that,
whereas originally his degrees of belief in G, B, and V were .30,
.30, and .40, his degrees of belief in those same propositions
after the observation are .70, .25, and .05. (Jeffrey, 1965, p. 154)

Discussing the example, Jeffrey writes:

If there were a proposition E in [the agent’s] preference ranking
which described the precise quality of his visual experience in
looking at the cloth, one would say that what the agent had
learned from the observation was that E is true. . . . But there
need be no such proposition E in his preference ranking; nor
need any such proposition be expressible in the English lan-
guage. . . . The description ‘The cloth looked green or possibly
blue or conceivably violet,’ would be too vague to convey the
precise quality of the experience. . . . It seems that the best we
can do is to describe, not the quality of the visual experience
itself, but rather its effects on the observer, by saying, “After
the observation, the agent’s degrees of belief in G, B, and V
were .70, .25, and .05.” (Jeffrey, 1965, pp. 154–5)

Jeffrey proposed an updating rule he called “probability kinematics”;
nowadays everyone calls it “Jeffrey Conditionalization.” The rule applies
when an agent’s experience impinges on her credences by altering her
degree of belief distribution across a particular finite partition in L; any
other changes in her credences are caused by the changes to this partition.
If the originating partition is B1, . . . , Bn, then Jeffrey’s rule is as follows.

Jeffrey Conditionalization. For any A ∈ L,

cj(A) = ci(A | B1) · cj(B1) + . . . + ci(A | Bn) · cj(Bn).

Jeffrey did not mean to rule out the possibility that some learning occurs
by certainty acquisition. He just wanted to allow for the possibility of
other types of learning experiences as well. So in the case where one of
the Bm goes to certainty (and therefore every other member of the parti-
tion goes to credence-0), Jeffrey Conditionalization reduces to traditional
Conditionalization.
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Let’s see how Jeffrey Conditionalization applies to Jeffrey’s cloth by
candlelight example. Suppose the agent is interested in the proposition
M, that the selected piece of cloth will match her couch. She’s certain
that anything violet will match, she’s certain anything green will not, and
she’s 50% confident that a blue cloth will match. (The match depends
on the specific shade of blue.) Let ti be the time before she inspects the
cloth by candlelight. Using the Law of Total Probability and the initial
unconditional credences Jeffrey provides, we have

ci(M) = ci(M | G) · ci(G) + ci(M | B) · ci(B) + ci(M |V) · ci(V)

= 0 · .30 + 0.5 · .30 + 1 · .40 = 0.55.
(13)

Jeffrey also provides the agent’s unconditional credences in G, B, and V at
tj, after the inspection. With these values, Jeffrey Conditionalization yields

cj(M) = ci(M | G) · cj(G) + ci(M | B) · cj(B) + ci(M |V) · cj(V)

= 0 · .70 + 0.5 · .25 + 1 · .05 = 0.175.
(14)

The glimpse by candlelight increases the agent’s confidence that the cloth
is green and decreases her confidence that the cloth is violet, so the Jeffrey-
prescribed posterior that the cloth will match decreases.

Notice how this change in credence is effected. The agent’s visual
experience changes her credences by directly altering her distribution
across the cloth-color partition. Any changes to other propositions in
the agent’s language (such as M) are downstream effects of this direct
alteration. Yet the dependencies between these downstream propositions
and the color propositions remain unaltered: changing the agent’s opinions
about the color of the cloth doesn’t change how confident she is that
particular colors will match the couch. This is why the same conditional
credences appear in both the ci(M) and the cj(M) calculations.

Against the background of the Kolmogorov axioms and Ratio Formula,
Jeffrey Conditionalization is equivalent to the following condition.

Rigidity. For any A ∈ L and any Bm, cj(A | Bm) = ci(A | Bm).

In a Jeffrey Conditionalization, experience alters an agent’s credences
across the B-partition. The agent’s credences in other propositions con-
ditional on the Bms don’t change. So the agent sets her posteriors by
adopting unconditional credences in the Bms from experience, copying
over her old conditional credences, then applying the Law of Total Proba-
bility to calculate her unconditional credences in non-B propositions.

1.5 Further Rational Requirements

We have now seen a variety of putative rational constraints on credence: the
probability axioms, the Ratio Formula, the Reflection Principle, Regularity,
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and the diachronic rules of Conditionalization and Jeffrey Conditionaliza-
tion. Yet there are infinitely many credence distributions (and sequences
of credence distributions over time) compatible with these constraints. Are
all of those distributions rationally permissible? Some of them are quite
strange, and unintuitive—for instance, some assign very high credence to
skeptical scenarios; some will lead agents to reason counter-inductively.

One extreme position about the strength of rational constraints is some-
times called “Objective Bayesianism.” This position endorses the Unique-
ness Thesis (Feldman, 2007; White, 2005) that given any body of evidence,
there is exactly one credence distribution rationally permitted to any agent
with that body of total evidence. At the other extreme, what we might
call “Extreme Subjective Bayesians” hold that any probabilistic credence
distribution is rationally permissible. In between are “Moderate Subjective
Bayesians,” who hold that there are some rational constraints beyond the
ones we’ve described, but not enough to generate a unique permissible
distribution in every case.

What might these further rational constraints be? A constraint that
might considerably narrow the field of what’s rationally permissible is the

Principle of Indifference. If an agent has no evidence favoring any
possibility in a partition over any other, then she should assign equal
credence to each element of the partition.18

The traditional objection to this principle is that it seems to give conflicting
advice when we repartition the same space of possibilities. Following van
Fraassen (1989), suppose I tell you that a cube has been produced from a
factory, and its side length is between 0 and 1 meter. Given the paucity of
further evidence, if I ask how confident you are that the side length is less
than 0.5 meters, the Principle of Indifference seems to require a credence of
1/2. But if I now ask how confident you are that the volume (which must
be between 0 and 1 cubic meter) is less than 0.5 cubic meters, the Principle
of Indifference also seems to require a credence of 1/2. Since a side length
of 0.5 meters corresponds to a volume of 0.125 cubic meters, the only way
to assign both these credences consistently with the probability axioms is
to be absolutely certain that the volume in cubic meters is not between
0.125 and 0.5!19

Another family of putative rational constraints has a member we’ve
already seen. The Reflection Principle directs us to set our current uncon-

18 The basic idea here dates back at least to Laplace (1814/1995), who saw it as an application
of what Bernoulli (1713) called the “principle of insufficient reason.”

19 A more technically-sophisticated cousin of the Principle of Indifference is Jaynes’ (1957a,
1957b) Maximum Entropy Principle. This principle applies more naturally over infinite
partitions, and adapts well to a variety of forms of evidence. Yet it still succumbs to
partition variance problems, and also conflicts with updating by conditionalization in
particular cases. See Seidenfeld (1986).
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ditional credence in a proposition equal to what we’re certain it will be in
the future—or if we’re not certain of our future credences, equal to our
expectation of what they will be. This principle directs us to defer to the
opinions of our future self as if she were some sort of expert. But of course
there are other experts in the world, such as contemporaries who we think
have better judgment or information than ourselves. Following the lead
of the Reflection Principle, Elga (2007) suggests that if ce is the credence
distribution of an agent we consider an expert, then for any X ∈ L (or at
least any X in the expert’s area of expertise) we should assign

c(X | ce(X) = r) = r. (15)

Thinking more metaphorically, an “expert” distribution worthy of our
deference need not even be an agent. It may be rational to align our
credences with certain objective numerical values in the universe. This
brings us to the topic of direct inference principles.

1.6 Direct Inference Principles

Page 1 briefly mentioned interpretations of probability—proposals for the
meaning of “probability” locutions. For example, the classical interpreta-
tion, dating back at least to Laplace (1814/1995), defined probability as the
number of favorable outcomes of a process divided by the total number of
outcomes possible. Later, the frequency theory of probability (associated
most closely with von Mises, 1928/1957), read probability as the frequency
with which an outcome would occur were a particular process repeated
many times.20

My task here is not to assess these notions of probability as proposals in
the theory of meaning, or in the theory of probability. Instead, I want to
ask what these notions have to do with rational credence. Many Bayesians
have endorsed principles of direct inference: principles carrying the agent
from information about some notion of probability to specific credences
in specific events. For example, it might be that if I’m certain a particular
type of experimental setup produces a particular type of outcome with
frequency x, then when an experiment of that type is to be run, I should
have credence x that it will yield an outcome of that type. This would be a
principle of direct inference from frequency facts to credences in outcomes.

Frequency-to-credence principles face notorious difficulties, even when
sketched out as roughly as I’ve just done. For one, a single event (I go

20 The previous section introduced one usage of “Objective/Subjective Bayesian” terminology.
That usage should be carefully distinguished from another usage that often comes up in the
literature about interpretations of probability. In that literature, “Subjective Bayesianism”
describes the position that in everyday talk, “probability” always refers to or expresses
subjective credences. “Objective Bayesianism,” on the other hand, holds that probability
talk refers to something beyond the subject, such as frequencies or chances.
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in to my office tomorrow) can be classed as the outcome of a variety of
experiment types (choosing whether to go in on a summer day, choosing
whether to go in on a Tuesday, etc.), which may yield different frequencies
and therefore different credal recommendations. (This is one version of
the “reference class problem.”21) Also, if we tried to use this principle as a
general credence-setting strategy, we’d have trouble with experiments that
look to be unrepeatable. Before the Large Hadron Collider was switched
on, newspapers prominently reported physicists’ degrees of belief that
doing so would destroy the Earth. It’s difficult to align such credences
with the frequency with which switching on the collider would cause
global destruction; in the event of such destruction, the switching-on only
occurs once.

It may therefore be preferable to link rational credence with “objective
chance.” As a notion of probability, chance is objective, in the sense that its
value is determined by the physical makeup of an experimental apparatus.
Chance may also be applied to events that occur only once. A frequency-
to-credence principle recommends credence 1/6 that a fair die roll will
come up 3 on the grounds that repeating the roll will yield 3 one-sixth of
the time. The objective chance theorist recommends 1/6 on the grounds
that a fair die is physically constituted in a particular manner (equally
weighted on each side, etc.). This would remain true even if the die had
never been rolled before, and was guaranteed to be destroyed after the roll
in question.

The most famous direct inference principle linking credence and chance
is Lewis’ (1980) Principal Principle. Very roughly, and skipping over a
great many details,22 the Principal Principle directs an agent to set

c(A | Ch(A) = x) = x, (16)

unless she possesses inadmissible evidence relevant to A. Here Ch(A) = x
is the proposition that the objective chance of A is x. So—setting aside
the matter of inadmissible evidence for a moment—if the agent is certain
that, say, a particular die has a 1/6 chance of coming up 3, the Principal
Principle will set her credence in 3 at 1/6. If, on the other hand, the agent
knows the die is biased, but splits her credence evenly between the number
3’s having a 1/10 chance and a 1/5 chance of coming up, the Law of Total
Probability will combine with the Principal Principle to yield:

c(3) = c(Ch(3) = 1/10) · c(3 | Ch(3) = 1/10)

+ c(Ch(3) = 1/5) · c(3 | Ch(3) = 1/5)

= 1/2 · 1/10 + 1/2 · 1/5

= 0.15.

(17)

21 See Hájek (2007) for many more versions.
22 See Meacham (2010) for some of those details.
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In other words, her credence that the die will come up 3 is her expectation
of the objective chance of getting a 3. We can therefore think of the Principal
Principle as an expert deference principle in which the expert is objective
chance.

The key innovation of Lewis’ Principal Principle is its treatment of ev-
idence the agent takes to be relevant to the outcome of a chance event.
Lewis divides such evidence into two sorts: admissible evidence is evi-
dence that the agent takes to be relevant to the outcome because it affects
her opinion of the objective chance of the event. For example, information
about the weighting of the die is admissible with respect to the outcome
of the roll—it affects how the agent thinks the roll will come out by way
of affecting what the agent thinks are the chances of a 3. Inadmissible
evidence affects the agent’s opinion in some other way. For instance, if a
confederate tells her how the roll came out, this affects the agent’s opinion
of whether it came out 3, but not by making her think the chances of a 3
were any different going in. Lewis’ insight was that chance facts about an
outcome screen off admissible information relevant to that outcome. So if
E is admissible, the Principal Principle also gives us:

c(A | Ch(A) = x & E) = c(A | Ch(A) = x) = x. (18)

Admissible evidence relates to chances much the way a distal cause relates
to the proximal cause of an event.

1.7 Countable Additivity

Up to this point the examples we’ve considered have typically involved
only finitely many possibilities. But what if an agent considers a parti-
tion of infinitely many possible outcomes, and distributes her credence
equally among all of them? How can this be modeled in our Bayesian
epistemology?

To have a concrete example, let’s suppose that a positive integer has been
selected by some process, and our agent wants to assign equal credence to
each integer’s having been selected. Presumably that should be possible.
But what numerical value might that credence take? It’s easy to show that
the probability axioms prevent its being a positive real. For suppose the
agent assigns

r = c(1) = c(2) = c(3) = . . . . (19)

(Where c(1) is her credence that 1 was selected.23) For any positive real r,
there will exist a positive integer n such that r > 1/n. Now consider the

23 Notice we are now dealing with a language containing infinitely many atomic propositions.
While this is a change from our earlier setup, it’s not too difficult to manage, and is fairly
common in formal models.
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agent’s credence that the selected integer is between 1 and n (inclusive).
If you look back at the list of intuitive constraints following from the
Kolmogorov axioms (Section 1.1), the last principle on the bulleted list
will give us

c(1∨ 2∨ . . . ∨ n) = c(1) + c(2) + . . . + c(n) = r · n > 1, (20)

which violates the axioms.
What other options are available? One popular suggestion is that when

an agent assigns equal confidence to infinitely many possibilities, we
represent that level of confidence as a credence of 0. So we would say that
c(1) = c(2) = . . . = 0.

Using credence 0 in this way introduces a few problems. First, up
until this point we’ve conceived credence 1 as representing certainty in a
proposition, and credence 0 as certainty that the proposition is false. Now
we’ll have to allow an agent to assign c(P) = 0 even if the agent admits
P might be true, and c(∼P) = 1 even if the agent isn’t certain P is false.
And we’ll have to phrase the Regularity principle carefully: we may still
prohibit agents from assigning certainty to empirical propositions, but no
longer ban credences of 1 and 0 in such propositions.

Second, the Ratio Formula we’ve provided only relates the conditional
credence c(X |Y) to unconditional credences when c(Y) > 0. We’ll need
to expand this principle to handle cases in which c(Y) = 0 yet the agent
doesn’t rule Y out. For instance, our agent assigning equal credence to
the selection of each positive integer might assign c(2 | 2∨ 4) = 1/2, even
though c(2∨ 4) = c(2) + c(4) = 0.24

Third and most importantly, we’ll want a way to sum credences over
infinite disjunctions. Finite Additivity only covers disjunctions with finitely
many disjuncts—what if we want to calculate our agent’s credence that
the selected integer is even? A natural extension of Finite Additivity is the
following.

Countable Additivity. For any countable partition {Q1, Q2, Q3, . . .} ⊂
L,

c(Q1 ∨Q2 ∨Q3 ∨ . . .) = c(Q1) + c(Q2) + c(Q3) + . . . .

Countable Additivity is not only natural; it also allows us to establish a
very important constraint on credences.

Conglomerability. For any proposition P ∈ L and partition {Q1, Q2,
Q3, . . .} ⊂ L, c(P) is no greater than the largest c(P |Qi) and no less
than the least c(P |Qi).

24 One way to manage this situation is to take conditional credences as basic. See footnote 10

for more information.
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Given Conglomerability, the c(P |Qi) establish upper and lower bounds
on the value of c(P). This makes sense if you think of c(P) as a weighted
average of the credences the agent would assign to P conditional on all
the different possible Qi. And it’s especially important when the agent has
a partition {E1, E2, E3, . . .} of possible new pieces of evidence she might
receive before her next update. Assuming she plans to update by Condi-
tionalization, she knows that her future credence in P will be one of her
current c(P | Ei); Reflection then demands she satisfy Conglomerability.25

The Conglomerability/Countable Additivity package is attractive. But
it’s inconsistent with assigning a credence of 0 to each positive integer in
our example. The reason is simple: given Countable Additivity, the agent’s
credence that any positive integer will be selected at all is the sum of her
credences in each individual integer. But the former value should be 1,
while the latter individual values are each 0. So advocates of Countable
Additivity have suggested instead that in this situation the agent assign
an infinitesimal value to each integer’s being selected. The infinitesimals
are an extension of the set of real numbers, defined to be greater than
0 but less than any given real number. Thus they don’t fall prey to the
problem of our Equation 20. At the same time, adding up infinitely many
infinitesimals can yield a real number, so we can maintain both Countable
Additivity and a credence of 1 that any integer will be selected at all.

Yet infinitesimals introduce difficulties of their own; for some of the
difficulties, and many of the mathematical details, see Hájek (2003, Section
5), Williamson (2007), Easwaran (2014), and Wenmackers (this volume).

2 applications of credence

I’ve presented the Bayesian study of credence as the study of a doxastic
attitude type, and what it takes to make such attitudes rational. This study
is valuable in its own right, as a contribution to epistemology and the
philosophy of mind. But historically it’s also been pursued to enhance our
understanding of other topics, some of which we’ll discuss in this section.

2.1 Confirmation Theory

A Bayesian epistemologist or philosopher of science studies justification
and evidential support by thinking about “confirmation.” The type of con-

25 Notice that my statement of Conglomerability doesn’t specify the cardinality of the
Qi partition. For finite partitions, Conglomerability can be proven from the standard
probability axioms. Adopting Countable Additivity extends Conglomerability to countable
partitions. For an agent who entertains larger disjunctions than that, Seidenfeld, Schervish,
and Kadane (manuscript) show that at each cardinality we need the relevant Additivity
principle to secure Conglomerability for partitions of that size.
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firmation studied is usually incremental, rather than all-things-considered;
when we say that “evidence E confirms hypothesis H,” we mean that E
provides at least some positive evidential support for H, not that it settles
the matter of H or even pushes H past some crucial threshold.26 For a
Bayesian, confirmation is also always relative to a probability distribu-
tion, and to a background corpus of propositions. Most commonly, the
probability distribution will be some agent’s credence function, and the
background corpus will be the total evidence informing that credence
function. (On a Conditionalization regime, the corpus is represented for-
mally by the set of all propositions X such that c(X) = 1.27) So we take a
given agent at a given time, and ask whether E confirms H for her, relative
to her credences and background corpus at that time.

Letting K represent a background corpus, and ck represent a probability
distribution informed by that corpus, Bayesian confirmation theory posits
that

E confirms H relative to ck just in case ck(H | E) > ck(H).

Bayesian confirmation is just positive probabilistic relevance relative to ck.
(Similarly, disconfirmation is usually defined as negative relevance relative
to ck.)

Though fairly simple, this theory of confirmation turns out to be surpris-
ingly subtle, powerful, and convincing. To illustrate—and fix the intended
notion of evidential support in the reader’s mind—suppose a fair die
has just been tossed, and you know nothing of the outcome. Perhaps in
accordance with the Principal Principle, some frequency principle, or even
the Principle of Indifference, you assign equal credence to each of the six
possible outcomes. Relative to your credence distribution and background
corpus, if you received evidence that the toss came up with a prime num-
ber, this would confirm for you that the toss came up odd. Why? Because
if you satisfy the Kolmogorov axioms and Ratio Formula, then you assign

2/3 = c(odd | prime) > c(odd) = 1/2. (21)

This doesn’t mean that prime evidence should make you certain the toss
came up odd, or even that it would justify you in believing the toss came
up odd. But if you update by Conditionalization, learning that the toss
came up prime would make you at least somewhat more confident that
the toss came up odd. Again, the confirmation here is incremental.

26 This contrasts with the way “confirms” is sometimes used in English, as when we speak
of a nominee’s being confirmed, or even a dinner reservation.

27 Notice that despite our suggestion in Section 1.7 that it might sometimes be interpreted
otherwise, I have gone back to treating credence 1 as representing certainty. To simplify
discussion, I will continue to do this going forward.
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This Bayesian theory of confirmation gives the confirmation relation
some interesting and intuitive formal properties.28

◦ If E �� E′ and H �� H′, then E confirms H just in case E′ confirms
H′.

◦ E confirms H just in case E disconfirms ∼H.

◦ If E & K � H but K 2 H, then E confirms H.

◦ If H & K � E but K 2 H, then E confirms H.

The first of these properties ensures that logical equivalents behave the
same within the confirmation relation. The second relates confirmation to
disconfirmation. The third and fourth properties29 specify how confirma-
tion relates to entailment. The third property tells us that entailment is a
form of confirmation; if E entails H jointly with K while K didn’t entail
H on its own, then E confirms H. As for the fourth property, it captures
the idea30 that a hypothesis which predicts an evidential observation (in
concert with one’s background corpus) is confirmed by that observation.

On the other hand, the Bayesian theory withholds from the confirmation
relation certain properties that are sometimes mistakenly ascribed to it.
Here are two examples.

◦ If E confirms both H and H′, then the set H, H′, K is logically consis-
tent.

◦ If X confirms Y and Y confirms Z, then X confirms Z.

The first of these properties is important to reject because we’re talking
about incremental confirmation. For example, in Jeffrey’s example in which
an agent inspects a piece of cloth by candlelight, his brief glimpse may
confirm that the cloth is green, while also confirming that it’s blue or
even that it’s violet. (Perhaps the glimpse disconfirms that the cloth is
red and disconfirms that it’s orange.) This is perfectly reasonable, despite
the fact that green, blue, and velvet are inconsistent hypotheses about the
color of the cloth. Similarly, in scientific settings the same observation may
confirm mutually exclusive theories from a partition, while at the same
time (perhaps) ruling others out.

The latter property is the supposed property of confirmation transitivity.
This is one of the most common mistakes made about confirmation, sup-
port, justification, and other related notions.31 Just because X confirms Y

28 In every one of these properties, the expressions “E confirms H” and “E disconfirms H”
should be followed by the phrase “relative to ck.” Going forward I’ll simplify locutions by
leaving the relativization to ck implicit whenever possible.

29 Both of which require a side-condition that the set {E, K, H} is logically consistent.
30 Familiar from hypothetico-deductivism (Crupi, 2016, Section 2).
31 Correcting this mistake has been a theme of the epistemology literature about epistemic

and justificatory closure. See, e.g., Dretske (1970), Davies (1998) and Wright (2003).
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and Y confirms Z does not mean that X confirms Z—even in the special
case when Y entails Z! To see why, imagine a card has been drawn at
random from a standard playing card deck. Information that the card is
a spade confirms (incrementally!) that the card is the Jack of Spades. But
information that the card is a spade does not even incrementally confirm
that the card is a jack.

Another common mistake is to conflate what Carnap (1962) called
“firmness” and “increase in firmness” accounts of confirmation.32 The
Bayesian account we’ve been discussing is an increase in firmness account.
A firmness account, on the other hand, says that E confirms H relative
to ck just in case ck(H | E) is high (where the necessary height may be
influenced by, say, contextual parameters). Among many other problems,
the firmness account errs by maintaining that E confirms H in cases when
ck(H | E) is high simply because the prior ck(H) is high. In fact, a firmness
account may say that E confirms H relative to ck even though ck(H | E) is
lower than ck(H) (as long as ck(H | E) is nevertheless high)! The Bayesian
account focuses on the relation between E and H—how E would alter the
agent’s opinion of H—rather than just on where that opinion would land
were E taken into account.

We can provide more information about E’s effect on the agent’s opinion
of H by measuring the degree of incremental confirmation. The simplest
way to measure confirmation is to calculate ck(H | E)− ck(H); this mea-
sure simply asks how much conditionalizing on E would increase the
agent’s confidence in H. Yet as a measure of E’s bearing on H, this simple
difference has some drawbacks. For example, the degree to which E can
confirm H will be limited by the value of ck(H). If, say, ck(H) = 0.99, then
even if E entails H, the maximal degree to which it can confirm H will
be 0.01. Bayesian confirmation theory thus has a considerable literature
proposing and assessing alternative measures of confirmational strength;
see Crupi (2016, Section 3.4) for a recent summary and references.

One upshot of the literature on measuring confirmation is a new ap-
proach to “solving” traditional paradoxes of confirmation. For example,
we usually think that universal generalizations are confirmed by their
positive instances. The hypothesis that all ravens are black is typically
confirmed by the evidence that a particular raven is black.33 In symbols,
(∀x)(Rx ⊃ Bx) is confirmed by Ra & Ba. But now suppose we discover an
item that is a non-black non-raven. The evidence ∼Ba &∼Ra is a positive

32 Carnap was well-acquainted with this mistake, having made it himself in the first 1950

edition of his Logical Foundations of Probability.
33 I say “typically” because it is possible to generate a deviant background corpus against

which it would be reasonable for the observation of a black raven to disconfirm that all
ravens are black. (For examples, see Swinburne, 1971, and Rosenkrantz, 1977, Chapter 2.)
The generation of the paradox doesn’t rely on such deviant corpora, so we will set them
aside for the rest of the discussion.
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instance of the generalization (∀x)(∼Bx ⊃ ∼Rx), so it should confirm that
generalization. Yet the latter generalization is (by contraposition) logically
equivalent to our former one. So by the first property of confirmation
I endorsed above, ∼Ba &∼Ra should confirm that all ravens are black.
This is Hempel’s (1945) famous “Paradox of the Ravens,” which seems to
generate the absurd conclusion that a hypothesis about the color of ravens
may be confirmed by the observation of a white shoe.

Recently, a number of Bayesian confirmation theorists have conceded
that perhaps a white shoe does confirm that all ravens are black—it’s
just that observing a white shoe confirms this hypothesis much less than
observing a black raven would.34 Fitelson and Hawthorne (2010), for
instance, specify conditions on ck such that as long as these conditions are
met, evidence of a black raven will confirm the ravens hypothesis much
more strongly than evidence of a non-black non-raven, on virtually every
proposed measure of confirmation in the literature. It’s highly plausible
that most of us in the real world have credence distributions satisfying
Fitelson and Hawthorne’s conditions, accounting for our intuitions about
the asymmetry of favoring in this case. Similar approaches have been taken
to the problem of irrelevant conjunction (Hawthorne & Fitelson, 2004) and
Goodman’s (1955) grue paradox (Chihara, 1981; Eells, 1982).

2.2 Decision Theory

Since this handbook contains an extensive article on decision theory
(Thoma, this volume), I will give only a brief sketch here. In formal
decision theory, an agent is confronted with a decision problem, repre-
sented by a partition of acts she may perform. Once she performs an
act, some outcome will occur, and the agent values different outcomes to
different degrees. These valuations are represented by a utility function,
which assigns real-number utilities to each possible outcome. (The key
assumption about utilities is that they measure value uniformly—the agent
takes each added unit of utility to be as valuable as the next. The same is
not true of money; your first dollar may be much more valuable to you
than your billionth.)

So what’s difficult about that—shouldn’t the agent just choose the act
leading to the most valuable outcome? The trouble is that the agent may
be uncertain which acts will lead to which outcomes. Put another way,
the agent may be unsure what state the world is in, and the outcome that
follows her decision may depend both on the act she chooses and on the
remaining state of the world. For example, suppose I’m trying to decide
whether to go into my office tomorrow. I know that if I go, it may be quiet

34 Though the idea dates all the way back to Hosiasson-Lindenbaum (1940).
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and peaceful there, in which case I’ll get a great deal of writing done,
which is an outcome I highly value. On the other hand, there may be loud
construction happening outside my office window, in which case I’ll dally
on the internet and get no writing done, an outcome to which I assign little
utility. Since I don’t know the state of construction around my building
tomorrow, it’s unclear to me which available act (go into the office, stay
home) correlates with which outcomes, complicating my decision.

The standard solution to this problem is to have the agent assign an
expected value to each available act. An agent’s expected value for an act
is her expectation for the amount of utility that will accrue if she performs
the act—calculated using her credences that various states of the world
obtain. Given a decision between two acts, a rational agent prefers the act
to which she assigns the higher expected value (and is indifferent in case
of ties). We can thus use her credence and utility assignments to develop a
preference ordering over the acts available to her in any decision problem.

For example, suppose I assign a utility of 100 to a day of peaceful writing
at my office, but a utility of 0 to spending the day there with construction
going on. If I’m 40% confident there’ll be no construction tomorrow, my
expected utility of going into the office is

EU(go to office) = c(no construction) · u(peaceful writing)

+ c(construction) · u(wasted day)

= 0.40 · 100 + 0.60 · 0
= 40,

(22)

where the function u designates the amount of utility I assign to a given
outcome. Given this expected utility for going to the office, I should prefer
to stay home only if I expect doing so to yield me a utility greater than 40.

We can prove that if an agent sets her preferences by maximizing
expected utility, her preference ordering over acts will satisfy various
intuitive conditions, commonly known as the “preference axioms.” For
example, her preferences will be asymmetric (she never prefers both A to
B and B to A) and transitive (if she prefers A to B and B to C, then she
prefers A to C).

As I said, I’m going to avoid the many subtleties of developing a full-
blown decision theory. One crucial concern is cases in which the agent’s
act may be correlated with the state of the world. Evidential decision
theorists (Jeffrey, 1965) respond by working with the agent’s credence in a
state conditional on her performing a particular act, while causal decision
theorists (Gibbard & Harper, 1978; Lewis, 1981; Joyce, 1999; Weirich, 2012)
consider the agent’s credence that her act will cause a particular state to
obtain. Another concern is modeling risk-averse agents—such as an agent
who prefers a guaranteed payout with utility 1 to a fair coin flip on which
heads yields a prize with utility 3 (Allais, 1953; Buchak, 2013).
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There is, however, one more notion from decision theory that we’ll need
in what follows: fair betting price. Consider a proposition P and a betting
slip that guarantees its possessor $1 if P turns out to be true. How much is
that betting slip worth to you? That depends how confident you are that P
obtains. If you’re certain of P, that slip is worth $1 to you. If you’re certain
P is false, the slip is worth nothing. In between, the more confident you
are of P, the more value you assign to the betting slip.

To be more precise, your expected value in dollars of the fair betting
slip is c(P) · $1. We call this your fair betting price for this gamble on P. In
general, if a bet pays out $X dollars when P is true, your fair betting price
for the bet is

c(P) · $X. (23)

What does it mean to say this is your fair betting price? Suppose someone
offers to sell you a betting slip that pays off on P. Your fair betting price
is the price at which you’d expect to break even on such an investment.
Assuming you value money linearly (so that each additional cent confers
the same amount of additional utility on you), decision theory says that
you should be willing to purchase the betting slip for any amount lower
than your fair betting price, and indifferent about buying it at exactly your
fair betting price. Conversely, if you possess such a slip, you should be
willing to sell it for any amount above your fair betting price.

2.3 Other Applications

Historically, confirmation and decision theory have been major drivers
of Bayesianism’s development and the two most common applications to
which the approach has been put. But the Bayesian theory of credences
has been applied to many other philosophically significant topics as well.
Here are a few examples.

◦ Probabilities have been used to measure when the propositions in a
set cohere. Coherentism about justification has then been evaluated
by asking whether coherence among propositions makes it rational
to invest a higher credence in each of them. See Shogenji (1999),
Bovens and Hartmann (2003), Huemer (2011), and Olsson (2017).

◦ It’s been debated whether an agent who updates by conditional-
ization will thereby increase her credence in the hypothesis that
best explains evidence observed. Van Fraassen (1989) argues that
Bayesianism is incompatible with Inference to the Best Explanation.
Replies have been offered by, inter alia, Okasha (2000), Lipton (2004),
Weisberg (2009), and Henderson (2013).
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◦ Elga (2007) argues that when an agent discovers that an epistemic
peer has assigned different credences than her based on the same
evidence, that agent should move her credences closer to her peer’s.
A great deal of debate has ensued about whether such conciliation-
ism is the rational response to peer disagreement. Christensen (2009)
presents a useful survey that is unfortunately now outdated; Chris-
tensen and Lackey (2013) is a more recent collection. (Though plenty
has been published on the subject since then!)

◦ The peer disagreement controversy intersects with broader questions
about the rational response to higher-order evidence—evidence con-
cerning whether one has responded rationally to one’s evidence. New
essays on higher-order evidence and its connection to disagreement
may be found in Rasmussen and Steglich-Petersen (forthcoming).

◦ Peer disagreement is also an aspect of social epistemology, which has
considered for decades how groups and individuals should combine
the opinions of multiple experts to form a coherent single view. The
literature on probabilistic opinion pooling dates back at least to Boole
(1952). More recent discussions, with copious additional references,
include Bradley (2007), Russell, Hawthorne, and Buchak (2015), and
Easwaran, Fenton-Glynn, Hitchcock, and Velasco (2016).

3 arguments for credal constraints

Many of the constraints on credences presented in Section 1 have an
intuitive claim on being rationally required. It’s just plausible that the
more confident you are it will rain tomorrow, the less confident you should
be that it won’t rain. But can we provide arguments for the various rational
constraints? Here I’ll survey three historically-significant approaches to
arguing for rational constraints on credence.

3.1 Representation Theorem Arguments

In Section 2.2 I suggested that if an agent has credence and utility functions,
decision theory can combine these to determine her rational preferences
among acts. But decision theory can also work in the opposite direction.
Suppose I observe an agent make a number of decisions over her life-
time. Assuming these choices express her preferences among acts, I can
construct credence and utility functions for her that would rationalize
such preferences if she is an expected utility maximizer. I might then use
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these credence and utility functions to predict choices she’ll make in the
future.35

We can prove that as long as an agent’s preferences are rational, she can
be represented as maximizing expected utility by combining credence and
utility functions. More precisely, a representation theorem shows that given
a preference ordering over acts satisfying certain preference axioms, there
exists a utility function and a probabilistic credence function on which
those preferences maximize expected utility. Since there are many different
versions of decision theory, there are many sets of preference axioms, and
so many different representation theorems.36 But typically the preference
axioms can be divided up into two sorts: substantive constraints such
as the asymmetry and transitivity requirements I mentioned earlier; and
what Suppes (1974) calls “structure axioms” specifying that the preference
ordering is complete, has acts available at a variety of levels of preference,
etc. (Structure axioms are usually considered a convenience to make the
theorems cleaner and the proofs easier.)

Representation theorems can be highly useful. For instance, economists
engaged in rational choice theory often model market participants as
maximizing expected utility based on a utility function and a probabilistic
credence function. A representation theorem assures us that as long as
an agent remains rational—in the sense of making choices that satisfy
the preference axioms—her behavior will continue to conform to such a
model.

Yet there’s a big step from arguing that rational agents can be modeled as
employing a probabilistic credence function to arguing that rational agents
actually possess probabilistic credence functions (Hájek, 2009; Meacham &
Weisberg, 2011). We can begin to see the problem by noting that an agent’s
preferences will often underdetermine her utility and credence distribu-
tions. That is, if all we know is an agent’s preferences, there are (infinitely)
many different pairs of utility and credence functions that will generate
that preference ordering by maximizing expected utility. Moreover, many
of those pairs feature credence functions that don’t satisfy the probability
axioms. Standard representation theorems prove only that if an agent’s
preferences satisfy the axioms, there exists a corresponding credence/utility
pair in which the credence function satisfies the probability rules. This
hardly shows that rationality requires probabilistic credences.

35 We can think of this as a formalization of the folk deployment of a “theory of mind.”
I watch what you do, I surmise what you want and what you believe, then I let that
information guide my interactions with you going forward.

36 Representation theorems were inspired by early, suggestive results in Ramsey (1931). The
first rigorous representation theorem of the type we’re discussing is in Savage (1954).
(Though see also von Neumann and Morgenstern, 1947.) A representation theorem for
evidential decision theory appears in Jeffrey (1965), while Joyce (1999) proves one for
causal decision theory.
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Matters can be improved with a representation theorem based on some
ideas Lara Buchak and I came up with together. (A sketch of a proof
appears in the Appendix.) This theorem shows that if an agent’s pref-
erences satisfy various preference axioms, and she maximizes expected
utility, then her credence function must be a positive scalar transformation
of a probability distribution. In other words, her credences will be non-
negative, they will be finitely additive, they will assign the same value to
every tautology, and that value will be greater than the value assigned
to contradictions. A credence function like this will have all the same
properties as a probabilistic function, except that the maximal value it
assigns to tautologies may be some positive number other than 1. Yet
nothing substantive hangs on whether we measure credence on a 0 to 1
scale or instead, say, a percentage scale from 0 to 100.

Still, even the improved theorem assumes that the agent’s credences
and utilities interact with preferences through the maximization of ex-
pected utility. Zynda (2000) notes that there are many other mathematical
quantities combining credence and utility that an agent could choose to
maximize. So to argue for probabilism (or something close to it) using one
of these representation theorems, we need to assume not only that ratio-
nality requires satisfying the preference axioms, but also that it requires
maximizing expected utility.

3.2 Dutch Book Arguments

As with representation theorems, an inspiration for Dutch Book arguments
can be found in Ramsey’s (1931), in which he commented,

These are the laws of probability, which we have proved to be
necessarily true of any consistent set of degrees of belief. . . .
If anyone’s mental condition violated these laws, his choice
would depend on the precise form in which the options were
offered him, which would be absurd. He could have a book
made against him by a cunning better and would then stand
to lose in any event. (p. 84)

Suppose, for instance, that I am both 0.7 confident that I will go to
my office tomorrow and 0.7 confident that I will not. Now consider two
betting slips—one that pays a dollar if I go to the office, and another that
pays a dollar if I don’t go to the office. Given my credences, my fair betting
price for each of these slips is $0.70. That means I’m willing to pay up to
$0.70 for each of them. So suppose I buy both, at a price of $0.70 each. I’ve
now spent a total of $1.40, and no matter what happens tomorrow, I will
only make $1. My non-probabilistic credence distribution has made me



precise credences 31

susceptible to a combination of bets on which I will lose $0.40, come what
may!

De Finetti (1937/1964) proved that if an agent’s credences violate the
probability axioms, a set of bets exists such that if the agent purchases
each of them at her fair betting price, she will lose money in every possible
world. For unknown reasons, such a set of bets is called a “Dutch Book.”
The proof works by going through each of the axioms one at a time, and
showing how to construct a Dutch Book against an agent who violates
the relevant axiom. Moreover, we can establish what Hájek (2009) calls
a “Converse Dutch Book Theorem,” showing that if an agent satisfies the
probability axioms, no Dutch Book of the types described in de Finetti’s
proof can be constructed against that agent.

Other proofs show how to construct Dutch Books against agents who
violate the Reflection Principle (van Fraassen, 1984), the Principal Principle
(Howson, 1992), Regularity (Kemeny, 1955; Shimony, 1955), and Countable
Additivity (Adams, 1962). We can also construct what is known as a “Dutch
Strategy” against any agent who violates Conditionalization (Teller, 1973,
reporting a result of David Lewis’) or Jeffrey Conditionalization (Armendt,
1980; Skyrms, 1987b). A Dutch Strategy is not strictly speaking a particular
set of bets guaranteed to give the agent a sure loss; instead, it’s a strategy
for placing bets with the agent in which certain bets are placed at an initial
time, then future bets are placed depending on what the agent learns after
that time. Still, the idea of a Dutch Strategy is that no matter what happens
(and no matter what the agent learns), if she purchases the bets at her fair
betting prices when they’re offered, she’ll face a net loss come what may.

Avoiding Dutch Books and Dutch Strategies seems an important advan-
tage for the probabilistic agent. Still, can we argue that rationality forbids
susceptibility to Dutch Strategies and Books? One problem is that the
negative effects of violating probabilism highlighted by Dutch Books seem
oddly practical. We might have thought that the Kolmogorov axioms pro-
vided constraints of theoretical (rather than practical) rationality on agents’
credences. Yet here we’re arguing for those axioms by pointing to financial
consequences of violating them. Moreover, it’s unclear how seriously we
should take those potential consequences. Are non-probabilistic agents
ever really going to face the precise set of bets that would expose them to a
Dutch Book? And what if the non-probabilistic agent has read about Dutch
Books, and decides that instead of changing her credences, she’ll just be
more cautious in her betting behavior? In the example above concerning
my going to the office, I might pay $0.70 for the bet that pays off if I go
into the office, but then refuse to buy the second bet because I see a Dutch
Book coming. In that case I’ll still have non-probabilistic credences, but
will manage by practical strategizing to avoid the prospect of a sure loss.
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Taking a cue from the second sentence of the Ramsey quote above, a
number of authors have tried to “depragmatize” Dutch Book arguments.
Skyrms writes that “For Ramsey, the cunning bettor is a dramatic device and
the possibility of a dutch book a striking symptom of a deeper incoherence”
(Skyrms, 1987a, p. 227, emphases mine). For these authors,37 susceptibility
to Dutch Book merely brings out an underlying inconsistency in the agent’s
credences—the inconsistency of evaluating the same thing different ways
depending on how it’s presented.

Return to my bets on whether I’ll go into the office tomorrow. Given my
0.7 confidence that I’ll go, my fair betting price for a bet that pays $1 if I go
and nothing otherwise is $0.70. So I value that bet at $0.70; if I’m offered
the opportunity to purchase that bet at any lower amount—say, $0.50—I’d
consider that a favorable deal. On the other hand, my 0.7 confidence that I
won’t go gives me a fair betting price of $0.70 for a bet that pays $1 if I
don’t go and nothing if I do. So I would consider it unfavorable to sell that
bet at any price less than $0.70—for instance, $0.50. Yet buying the first
bet at $0.50 and selling the second bet at $0.50 are the exact same transaction;
each one would net me $0.50 if I go to the office and lose me $0.50 if I
don’t. So do I view that transaction favorably or not? One of my credences
suggests I view it favorably, while the other demands I don’t. How those
credences evaluate those bets reveals the conflict between them.38

Still, even depragmatized Dutch Book arguments make potentially con-
troversial assumptions. First, we’re assuming that a rational agent’s fair
betting prices equal her expected payouts—an assumption that might fail
for risk-averse agents. And second, to construct a Dutch Book against some
violations of Finite Additivity, we need to assume a “package principle”—
that a rational agent’s fair betting price for a combination of two bets
equals the sum of her betting prices for each bet considered singly. Each of
these assumptions would follow easily if we assumed that rational agents
always choose to maximize expected utility. But if we could assume that,
we’d already have a representation-theorem argument for something very
close to probabilism (Section 3.1).39 So it’s unclear why the detour through
cunning bettors would be required.

37 See also Armendt (1992), Christensen (2004), and Howson and Urbach (2006).
38 Notice that I wouldn’t have this problem if I satisfied the probability calculus by, say,

assigning credence 0.7 that I’ll go and credence 0.3 that I won’t. In that case I’ll look
favorably on buying the first bet at $0.50 and also look favorably on selling the second one
at $0.50, so my evaluations will harmonize.

39 In fact, the representation theorem proof in the appendix closely mirrors the structure of
traditional Dutch Book theorems for probabilism.
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3.3 Accuracy Arguments

In his 1998, James M. Joyce sets out to provide a “nonpragmatic vin-
dication of probabilism” that would explicitly avoid invoking practical
consequences in its defense of the probability axioms as rational con-
straints on credence. His work builds on mathematical results from de
Finetti (1974) and Rosenkrantz (1981), but uses those results to construct a
new kind of argument.

Joyce’s key idea is that from a point of view of pure theoretical rationality,
agents should aim to make their credences as accurate as possible. How
might we measure the accuracy of a credence function? Historically, one
option had been to focus on calibration. Function c is perfectly calibrated
if, for every 0 ≤ x ≤ 1, when we look at all the propositions in L to which
c assigns credence x, the fraction of those propositions that are true is
exactly x. If I’m perfectly calibrated, exactly half of the propositions to
which I assign credence 1/2 are true, exactly a third of the propositions to
which I assign credence 1/3 are true, etc.

Van Fraassen (1983) and Shimony (1988) argue for probabilism by show-
ing that in order for a credence distribution to be embeddable in larger and
larger systems approaching perfect calibration, that credence distribution
must satisfy the probability axioms. This might stand as a good argument
for probabilism, except that calibration has some intuitively undesirable
features as a measure of accuracy. For example, consider two agents who
assign credences to four propositions as in Table 1. I hope you’ll agree

A B C D

Agent 1 0.5 0.5 0.5 0.5

Agent 2 1 1 0.01 0

Truth-values T T F F

Table 1: Two credence assignments

that intuitively, Agent 2’s credences are much more accurate (close to the
truth) than Agent 1’s. Yet Agent 1 is perfectly calibrated—exactly half the
propositions to which she assigns credence 1/2 are true—while Agent 2 is
not.

Our intuitions about accuracy work by looking at each credence assign-
ment one at a time, assessing how accurate that credence is given the
truth-value of the proposition, and then aggregating those local accuracy
assessments across all the propositions. Yet calibration works with global
features of a probability distribution, which (as we’ve just seen) can lead
to distorting effects.
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So Joyce uses a gradational accuracy approach instead. On this approach,
we select a scoring rule to measure how far each individual credence
assignment to a proposition is from the truth about that proposition.
Intuitively, when proposition P is true, higher credences in P are more
accurate; when P is false, lower credences are better. We can formalize
this by having a function I that assigns 1 to P if it’s true and 0 if it’s false,
then measuring how far c(P) is from I(P). Historically, it’s been popular
to measure this distance as

(I(P)− c(P))2. (24)

Notice that this measurement increases the farther you are from the truth;
so it’s a measure of credal inaccuracy. A rational agent aiming to be
as accurate as possible should look to minimize this quantity for each
proposition. Globally, she should look to minimize the sum of this quantity
across all the propositions she entertains. (This sum is commonly known
as the Brier score, named for meteorologist George Brier’s discussion of it
in his 1950.)

Joyce shows that if we use the Brier score to measure accuracy, then
any non-probabilistic credence distribution will be accuracy-dominated
by another, probabilistic distribution over the same set of propositions.
That is, if you take an agent whose credences over some language vio-
late the probability axioms, there will be another, probabilistic credence
distribution over the same language that has a more accurate Brier score
than hers in every possible world. When the nonprobabilistic agent considers
that alternative distribution, she will know that it’s more accurate than
hers, even without knowing anything about which possible world is actual.
Joyce argued that for an agent to maintain her nonprobabilistic distribu-
tion, despite this information that another distribution was certainly more
accurate, would be irrational. And since the same situation will confront
any agent whose credences violate the probability axioms, this constitutes
an argument for probabilism.40

Related accuracy arguments have been offered for a variety of other
Bayesian norms: Conditionalization (Greaves & Wallace, 2006; Briggs &
Pettigrew, forthcoming), the Principal Principle (Pettigrew, 2013), the
Principle of Indifference (Pettigrew, 2014), Reflection (Easwaran, 2013),
and Conglomerability (Easwaran, 2013).

There are two main concerns in the literature about these accuracy
arguments. First, there’s a general concern about assessing the rationality
of credences by measuring their distance to the truth. The gradational
accuracy approach evinces a sort of epistemic consequentialism, in which

40 Importantly, the same kind of argument cannot be run against probabilism. A credence
function that satisfies the probability axioms will not be accuracy-dominated in the manner
Joyce describes by any other function (probabilistic or otherwise).
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attitudes aim for some outcome (in this case, truth), and are evaluated by
how well they approximate that goal. Just as teleological approaches to
normativity have aroused suspicion in ethics and other areas of philosophy,
the gradational accuracy program has been criticized by such authors as
Greaves (2013), Berker (2013), and Carr (2017).

Second, among those who accept the gradational accuracy program,
there’s a concern about how to select an appropriate scoring rule for
measuring accuracy. Maher (2002) suggests that instead of using the Brier
score, we might gauge the distance between an individual credence c(P)
and a truth-value I(P) by calculating

|I(P)− c(P)|. (25)

Historically, the Brier score was favored over this absolute-value score
because the former is a “proper” scoring rule while the latter is not. To
understand the difference, suppose a six-sided die has just been rolled,
and we have two characters who do not yet know the outcome. Our
first character, Chancey, assigns credence 1/6 to each of the possible
outcomes. Our second character, Pessimist, assigns credence 0 to each
outcome. Chancey’s credence function satisfies the probability axioms,
while Pessimist’s does not.

Now suppose each of our characters calculates an expected inaccuracy
value for herself and for the other person. To give an example of how this
works, suppose Chancey calculates an expected inaccuracy value for her
own distribution using the Brier score. To do so, Chancey considers each of
the six possible worlds available (that is, each of the six possible outcomes
of the die roll), evaluates what her Brier score would be in that possible
world, multiplies by her credence that that possible world is actual, then
sums across all the possibilities. If, for instance, the die roll comes up 3,
Chancey’s Brier score will be

(I(1)− c(1))2 + (I(2)− c(2))2 + (I(3)− c(3))2

+ (I(4)− c(4))2 + (I(5)− c(5))2 + (I(6)− c(6))2

= (0− 1/6)2 + (0− 1/6)2 + (1− 1/6)2

+ (0− 1/6)2 + (0− 1/6)2 + (0− 1/6)2

= 1/36 + 1/36 + 25/36 + 1/36 + 1/36 + 1/36

= 30/36

= 5/6.

(26)

A bit of reflection will show that this is Chancey’s Brier score in each
of the six possible worlds. So her expected Brier score across all those
worlds is also 5/6. In the meantime, I’ll leave it to the reader to calculate
that Pessimist’s expected Brier score is 1. Since higher scores mean more
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inaccuracy—and less accuracy—Chancey expects her credences to be more
accurate than Pessimist’s when the Brier score is used to calculate accuracy.

Exactly the opposite happens if we use the absolute-value measure.
Again, I’ll leave it to the reader to calculate that Chancey’s expected
absolute-value score is 5/3, while Pessimist’s is again 1. So by the lights
of the absolute-value score, the nonprobabilistic Pessimist is expected to
be more accurate than the probabilistic Chancey.

Proper scoring rules are rules on which a probabilistic agent will never
expect some other agent to be more accurate than herself. The Brier
score is one of many proper scoring rules, while the absolute-value score
is improper. In general, it seems irrational for an agent to hold onto a
credence distribution when she expects some other agent’s credences
to be more accurate than her own (Lewis, 1971). So a theorist who has
already accepted that probabilistic distributions are rational has good
reason to work with proper scoring rules rather than improper ones. The
accuracy-based arguments for Conditionalization, the Principal Principle,
the Indifference Principle, etc. mentioned above all confine themselves to
working with proper scoring rules.

Predd et al. (2009) show that Joyce’s accuracy-dominance argument
for probabilism could be run using any proper scoring rule. Yet in the
context of an argument for probabilism, favoring proper scoring rules over
improper ones seems question-begging. Proper scoring rules are defined
as those on which probabilistic distributions are rated more expectedly
accurate than the alternatives. Unless you have an antecedent reason to
think probabilistic distributions should come out looking better than the
alternatives, this is no reason to prefer a proper score.41

4 arguments against credal constraints

Having surveyed some arguments in favor of various rational constraints
on credences, what are the arguments against these constraints? Of course
there are many, and they multiply over time. Here I will focus on a
handful that have generated insightful discussion and interesting positive
responses.

4.1 The Problem of Logical Omniscience

Savage (1967) famously considered the plight of “a person required to
risk money on a remote digit of π.” His concern was that according to
the Normality axiom, an agent is required to assign certainty to every
tautology in her language L. Arguably, the fact that a given digit of π

41 Though there may be other reasons. See, e.g., Joyce (2009) and Pettigrew (2016).
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takes a particular value is a tautology.42 So according to probabilism, a
rational agent should be certain of all the digits of π. Yet this seems too
much for rationality to demand of any real agent.

Savage’s discussion initiated a literature on what is known as “the
problem of logical omniscience.” I actually think there are multiple, related
problems here, which we might label as follows.43

Credal Completeness. Probabilism requires an agent to assign a cre-
dence to each proposition in her language.

Logical Discernment. Probabilism forbids an agent from assigning a
credence other than 1 to any tautology.

Logical Learning. A probabilistic agent will never pass from a lower
credence in a tautology to a higher credence.

The problem of Credal Completeness is that the probability axioms
require an agent to assign a credence to every proposition in her language.
For instance, Non-Negativity says that every X ∈ L receives some non-
negative credence value. Even in a language with finitely many atomic
propositions, closure under truth-functional connectives will generate a
language of infinite size. Yet it seems not only impossible for a finite agent
to assign that many credences, but also inadvisable under Harman’s (1986)
principle of Clutter Avoidance.

Clutter Avoidance. One should not clutter one’s mind with trivialities.

Yet we can slightly alter our formalism so that it no longer demands credal
completeness and evades clutter avoidance concerns. The idea is to require
not that an agent’s credence distribution actually satisfy the probability
axioms, but only that it be extendable to a distribution that does. In other
words, we permit an agent to adopt a partial credence distribution that
assigns numerical values to only some of the propositions in L, but we
require that there be some possible way of assigning values to the rest of
L so that the resulting full distribution satisfies the axioms. This approach
recovers intuitive results such as the stricture that if an agent assigns
credences to both P and ∼P, those credences must sum to 1. But it will
not fault an agent if she fails to adopt attitudes towards P, ∼P, or both.

Moving to partial distributions avoids the problem of Credal Com-
pleteness, but leaves the problem of Logical Discernment intact. It seems

42 If your views about logicism in the philosophy of mathematics entail that facts about
digits of π are not tautologies, we can always substitute in a conditional whose antecedent
is various arithmetic axioms and whose consequent reports a digit of π. Or we can work
instead with some highly complex logical truths.

43 The “Logical Learning” label is common in the literature; I invented the other two labels
for our discussion here.
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perfectly rational for me to assign credence 1/10 that the trillionth digit of
π is a 2. Yet any credence distribution—partial or complete—containing
that assignment is not extendable to a probabilistic distribution. It’s either
a tautology that the billionth digit is a 2, or it’s a tautology that the billionth
digit isn’t, so probabilism either demands that I assign that proposition a
credence of 1 or demands that I assign it a credence of 0. Whichever is the
true demand, it seems a bit too demanding, since I don’t have any good
way to figure out which demand it is.

Before considering responses to this problem of Logical Discernment,
let’s quickly consider Logical Learning. The following credal sequence
seems quite reasonable: I assign credence 1/10 that the trillionth digit
of π is a 2, Talbott (1991) tells me that it is indeed a 2, so my credence
that it is dramatically increases (perhaps all the way to 1). It seems in
this case that I have learned a logical truth, and my credal increase is
a rational response to that learning episode. Yet a traditional Bayesian
system will not approve of this response, or be able to usefully model it,
since a probabilistic system countenances only credence distributions (at
any time) that assign that proposition a value of 1.

If we solved the Logical Discernment problem by building a Bayesian
theory that allowed rational credences in tautologies other than 1, pre-
sumably that theory would also allow increases and decreases in such
credences. So there’s hope that a solution to Logical Discernment would
open up a solution to Logical Learning.

How, then, might we model a Bayesian agent without perfect logical
discernment? Responding to Savage, Hacking (1967) suggests we identify
a proposition as “personally possible” for an agent if the agent doesn’t
know it’s false. We then adjust Normality to demand certainty only in
propositions whose negations are personally impossible, and Finite Ad-
ditivity to apply only when P & Q is personally impossible. This allows
an agent to be ignorant of arbitrarily many logical truths, and therefore
less-than-certain of those truths.

Yet this approach creates three problems. The first is formal. Hacking
works with credence distributions over sentences, and he’s free to treat
whatever sentences he wants as personally possible or impossible. But if
we think of those sentences as representing underlying propositions, and
those propositions in turn as representing underlying sets of possibilities,
it seems natural to ask what possibilities an agent entertains when she
entertains as personally possible that which is logically impossible. To
address this sort of gap, Hintikka (1975) constructs a semantics admit-
ting of logically impossible worlds, which can enter into the content of
propositions in just the manner of classical possible worlds.

A second, intuitive problem is that Hacking’s approach allows for arbi-
trarily large amounts of logical non-omniscience—nothing in Hacking’s
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formalism indicts an agent who assigns less-than-certainty to P ∨ ∼P,
as long as that agent doesn’t know the proposition is true. Bjerring and
Skipper (manuscript) complain Hacking’s formalism is so permissive that
in sacrificing logical omniscience, it fails to capture any rational require-
ment of basic logical competence. They make similar complaints about a
framework from Garber (1983), and various formalisms developed using
Hintikka’s semantics.

Finally, it’s important to see what a Bayesian system loses when it’s
redefined in terms of personal rather than logical possibility. If an agent
fails to know that P &∼P is impossible, then by Hacking’s lights she need
not apply Finite Additivity to P and ∼P. As a result, such an agent may
assign P and ∼P credences summing to more than 1. She may increase her
credence in P without decreasing her credence in ∼P. In our relevance-
based theory of confirmation, she may not see P as disconfirming ∼P. And
when she selects actions by maximizing expected epistemic utility, she
may violate the preference axioms in a variety of ways. In other words, the
very features and applications that make Bayesianism a plausible picture
of rationality begin to dissolve once logical discernment requirements are
loosened.

So perhaps we should go in the other direction? A number of theorists
have begun to wonder if logical omniscience requirements are not an
annoying side-effect of our epistemic formalisms, but instead a hint from
those formalisms about the underlying normative domain. Smithies (2015)
argues that certainty in logical truths is in fact a requirement of rationality;
Titelbaum (2015) and Littlejohn (2018) advocate related positions.

4.2 The Problem of Old Evidence

Clark Glymour initiated the Old Evidence debate with a famous example.

Scientists commonly argue for their theories from evidence
known long before the theories were introduced. . . . The ar-
gument that Einstein gave in 1915 for his gravitational field
equations was that they explained the anomalous advance of
the perihelion of Mercury, established more than half a cen-
tury earlier. Other physicists found the argument enormously
forceful, and it is a fair conjecture that without it the British
would not have mounted the famous eclipse expedition of 1919.
Old evidence can in fact confirm new theory, but according to
Bayesian kinematics, it cannot. (Glymour, 1980, pp. 306–7)

We’ve already seen (Section 1.3 and Section 1.4) that a traditional Bayesian
models evidence acquisition as the gaining of certainties, which are then
retained. At the same time (Section 2.1), confirmation is understood as
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positive relevance. Combining these two approaches, we have a problem:
once an evidential proposition has been learned, it receives credence 1.
When c(E) = 1, c(H | E) = c(H) for any H ∈ L. So once an agent learns
something, that piece of information is confirmationally inert ever after.

Given these basic facts about Bayesianism, we can identify two chal-
lenges in Glymour’s story about Einstein. Christensen (1999) calls them the
“synchronic” and “diachronic” problems of old evidence.44 The diachronic
problem is about changes in credence. Over the course of 1915, Einstein
increased his confidence in the General Theory of Relativity (GTR), and
we think this had something to do with the perihelion of Mercury. Yet
it can’t be that Einstein increased his confidence because he learned of
the anomalous advance—he already knew about that well before 1915. So
what changed his opinion, and how can we reflect it in a Bayesian system?

The synchronic problem of old evidence comes up after 1915, when the
perihelion of Mercury has already had its effect on Einstein’s attitudes
toward GTR. Presumably even after 1915, Einstein would have cited the
perihelion advance of Mercury as a crucial piece of evidence supporting
GTR. Yet relative to Einstein’s credence function at that time—which
assigns 1 to the perihelion facts—those facts are not positively relevant to
GTR. So how can a Bayesian about confirmation interpret that evidential
support?

Proposals to solve the synchronic problem usually work by relativizing
confirmation to some probability function other than the agent’s current
credence distribution. Since the agent currently assigns c(E) = 1, E can’t
confirm anything relative to that current distribution. So we look for some
other relevant distribution that doesn’t assign 1 to E. For instance, we
might adopt a “historical backtracking” approach on which we look back
to some time when the agent wasn’t yet certain of E, and ask whether E
was positively relevant to H in her credence distribution at that time. But
this approach is limited for a number of reasons. For instance, Einstein
probably knew about the perihelion of Mercury long before he ever con-
sidered GTR. So if we backtrack to a time well before 1915 when he wasn’t
yet certain of E, we won’t be able to find any conditional or unconditional
credences he assigned to the relevant H at that time. And so we won’t be
able to say that E confirms H for Einstein now because at some time in
the past he assigned c(H | E) > c(H).

In light of this and other difficulties, Howson and Urbach (2006) ad-
vocate a “counterfactual backtracking” approach. Instead of looking to a
time in the past when the agent didn’t know E, we look to a close possible
world in which the agent knows everything she knows now except E. Well,

44 I’m using Christensen’s terminology because I find it the most helpful. But earlier, related
disambiguations of the problem of old evidence can be found in Garber (1983), Eells (1985),
and Zynda (1995).



precise credences 41

not quite everything—we will probably also want a world in which she
doesn’t know logical equivalents to E, immediate entailments of E, etc. But
Howson and Urbach (p. 300) have a technical proposal for identifying the
propositions that should be subtracted out. Setting the technical details
aside, Earman (1992, p. 123) worries this counterfactual approach will
suffer from similar defects to other counterfactual analyses; moving to a
non-actual world may have side-effects that spoil the analysis. For example,
the historical record suggests that Einstein was motivated to formulate
GTR in part to explain Mercury’s anomalous advance. So the closest possi-
ble world in which Einstein doesn’t know E yet still assigns credences to
H may be very far—and very different from our own—indeed.

Perhaps the best approach is to say that when an agent explains the
evidence supporting some hypothesis, the support she’s describing may be
relative not to her own personal credences but to some other probabilistic
distribution. That distribution may be one assumed pertinent by her
audience, or by a particular scientific community. Or if we are Objective
Bayesians (Section 1.5), it may be the objective distribution that determines
how all rational agents should set their credences. Maher (1996), for
instance, develops a proposal of the latter sort. Yet many details remain to
be resolved. For example, how does either a scientific community or an
objective rational distribution assign a prior probability to the proposition
that GTR expresses the physical laws of our universe?45

As for the diachronic problem of old evidence, the typical response is to
identify something other than learning of Mercury’s perihelion advance
that gave Einstein new confidence in GTR over the course of 1915. For
one, Einstein might have discovered sometime in 1915 not that Mercury’s
perihelion advances anomalously, but that GTR predicts such an anoma-
lous advance. Since it’s a logical fact that GTR (along with other empirical
information of which Einstein was already aware) entails the details of
the advance, this would be an instance of logical learning. So a Bayesian
implementation of this explanation will depend on the logical omniscience
issues discussed in Section 4.1.

Another possibility is that Einstein’s high confidence in GTR at the end
of 1915 was new because he hadn’t had any attitude towards GTR at the
beginning of 1915. Perhaps Einstein hadn’t yet conceived of GTR at the
beginning of 1915, so the language over which he assigned credences
at that time didn’t contain a proposition expressing GTR’s truth. This
approach would certainly explain why Einstein had a new, high credence
at the end of the year that he didn’t have at the beginning. But it probably
doesn’t generalize to all cases of confirmation by old evidence (and may not

45 Even if we wanted to use an Indifference Principle (Section 1.5) here, we’d need a partition
to divide our credence evenly across, and it’s difficult to determine what alternative sets
of physical laws should go into such a partition.
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even be historically accurate in Einstein’s case). Moreover, cases in which
agents add new propositions to their cognitive language pose another
challenge for Bayesianism. All of the updating norms we have considered
(Conditionalization, Jeffrey Conditionalization) work over a language
that remains fixed over time. The so-called “problem of new theories”
challenges us to build a formalism that allows an agent’s language to
change over time, and that places reasonable constraints on how the
agent’s credences should evolve across such changes.

Finally, we might focus on the fact that both versions of the problem
of old evidence seem to arise because Conditionalization treats acquiring
evidence as gaining certainties. If newly-acquired evidence didn’t go to
(and remain at) a credence of 1, then we wouldn’t have the problem that old
evidence always has credence 1 and therefore can’t be positively relevant to
anything. Suppose we adopt the Regularity principle (forbidding certainty
in empirical propositions), and mandate Jeffrey Conditionalization as the
rational updating scheme. Then evidence acquisition will increase credence
in particular propositions, but never send it to 1, and the problem of old
evidence will never arise.

Christensen (1999) pursues this approach and finds much to recommend
it, but eventually encounters a new difficulty. The problem of old evidence
is that acquiring a piece of evidence shouldn’t rob it of its ability to
confirm hypotheses. Generalizing this idea, we should agree that becoming
more confident in a piece of evidence shouldn’t affect the degree to which
it confirms a hypothesis. So Christensen seeks a confirmation measure
(Section 2.1) on which Jeffrey Conditionalizations that change c(E) don’t
affect E’s level of confirmation of H. He is unable to find a measure that
satisfies this constraint, meets other plausible formal conditions, and works
intuitively in examples.

4.3 Memory Loss and Context-sensitivity

Certainty acquisition and retention also pose other problems for a
Conditionalization-based updating framework. For instance, many of
us have the experience of gaining a piece of evidence one day and then
forgetting it a short time later. Yet if we are constant conditionalizers,
a proposition that achieves credence 1 at some time may never sink
to a lower credence later. So Conditionalization deems memory loss
irrational.46

46 Or at least, the version of Conditionalization we’ve been discussing deems memory loss
irrational, because it governs an agent’s updating across any arbitrary interval of times ti
to tj. One might embrace a more limited version of Conditionalization (compare Titelbaum,
2013a, Chapter 6) that applies only across intervals during which the agent’s information
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While this problem was recognized at least as far back as Levi (1987),
Talbott (1991) puts it particularly forcefully. He considers the response
that Bayesian rules are meant to model ideally rational agents—not ev-
eryday agents—“and an ideally rational agent would not be subject to
the fallibility of human memory.” (p. 141) For what it’s worth, I don’t see
why elephantine recall should make one agent more rational than another
(though see Carr, 2015), but the whole question may be sidestepped by an
ingenious example due to Arntzenius (2003). While I won’t work through
the details here, the upshot of Arntzenius’s example is that Conditionaliza-
tion indicts not only agents who actually forget evidence, but also agents
who suspect they might have forgotten evidence (even if they actually
haven’t). Surely we can’t require of ideally rational agents certainty in
the empirical proposition that they have never forgotten anything in their
lives!

Can we alter Conditionalization to allow for certainty loss? One popular
approach is to take advantage of a feature traditional Conditionalization
already displays. Suppose we have an agent who conditionalizes through-
out her entire life. As she gains evidence, she will accumulate certainties;
the total set of certainties she possesses at any time will represent her total
evidence at that time. Let’s refer to the proposition expressing the conjunc-
tion of all the agent’s evidence/certainties at time ti as Ei. If the agent is a
faithful conditionalizer, there will exist at least one regular47 probability
distribution ph such that for any time ti at which that agent assigns cre-
dences, and any proposition X in her language L, ci(X) = ph(X | Ei). In
other words, there exists a single function ph relating to every moment in
the agent’s life, such that her credence distribution at any moment can be
recovered by conditionalizing ph on her total evidence at that moment.

I’ll refer to this distribution ph as the agent’s hypothetical prior; it is
sometimes also called an “ur-prior” or an “initial credence distribution.”
This last moniker comes from thinking of ph as representing the agent’s
credences at some earliest moment in her life when she lacked any empiri-
cal certainties. Because conditionalization is cumulative and commutative,
if an agent did have such an initial moment in her life—before her first
update by Conditionalization—the credences she assigned at that time
would relate to her later opinions in the way that ph relates to ci. Yet it’s
difficult to imagine that any actual agent has ever had a moment when
she entirely lacked empirical information.

So I prefer to think of an agent’s hypothetical prior as a convenient
tool for separating out two influences on her credences. On the one hand,

strictly increases. In that case the problem would be that rather than deeming memory loss
irrational, the limited updating rule fails to give any guidance in memory loss cases at all.

47 By saying the distribution is “regular,” we mean that it assigns credence 1 only to logical
truths.
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there’s her evidence; on the other, there are her epistemic standards, which
encapsulate her principles and tendencies for interpreting evidence. The
agent’s total evidence changes over time, and is represented at time ti by Ei.
Yet as her evidence changes, she may retain a constant set of standards for
interpreting evidence, represented by her hypothetical prior ph. Applying
these standards to the agent’s total evidence at ti—by conditionalizing ph
on Ei—yields her credence distribution ci.48

This generally attractive picture is entailed by Conditionalization: if an
agent conditionalizes at every update, then her credences throughout her
life will be representable as faithful to a constant hypothetical prior. Yet
interestingly, the entailment does not run in the opposite direction. That
is, an agent may maintain fealty to a constant hypothetical prior even if
her updates do not always satisfy Conditionalization. For instance, it’s
possible that an agent could both gain and lose certainties between two
times ti and tj, and yet there still exists a single hypothetical prior ph such
that for every X ∈ L, ci(X) = ph(X | Ei) and cj(X) = cj(X | Ej).

We can therefore achieve a plausible diachronic model of agents who
both gain and lose certainties by generalizing Conditionalization not to
demand that an agent conditionalize between each earlier time ti and later
time tj, but instead to demand (whatever happens to her certainties) that
she set her credences in line with a constant hypothetical prior throughout
her life. This new diachronic norm generates plausible results for a number
of forgetting stories, such as those featured by Talbott. In cases where an
agent does strictly gain certainties between two times, it mimics the effects
of traditional Conditionalization. And in cases where an agent strictly loses
certainties between times, it gives us reverse-temporal Conditionalization.
That is, the agent’s earlier unconditional credences will equal her later
credences conditional on the information she lost. Thus forgetting becomes
like learning backwards in time.

Unfortunately, shifting to this new diachronic norm does not suffice
alone to address another problem with Conditionalization: the way it
treats context-sensitive information. Here I refer to “self-locating” claims
that change their truth-values across times, persons, and locations—such
as “Today is Tuesday,” “I am a sailor,” and “We are in Detroit.” For one
thing, to model these sorts of claims in our formalism we will need to
add to our language L something like what Lewis (1979) called “centered
propositions.” But even then, Conditionalization will face challenges. It
may be rational right now to be certain that it’s Tuesday, but that certainty
will not remain rational into perpetuity.

The context-sensitivity challenge is sometimes described as yet another
problem with Conditionalization’s certainty-retention. But even when
we shift to a diachronic norm that requires fealty only to a constant

48 Compare Schoenfield (2014) and Meacham (2016).



precise credences 45

hypothetical prior (and therefore allows for certainty loss), problems still
remain. This is because the Bayesian system was designed to model agents
whose evidence changed over time, but who used that evidence to evaluate
hypotheses with truth-values that were fixed targets.49 Adding in another
level of shiftiness generates complications for Conditionalization, Jeffrey
Conditionalization, and hypothetical priors.

A number of formal frameworks have been proposed to model credence
updates in context-sensitive propositions. Some retain Conditionalization,
some make use of hypothetical priors, but in every case new, additional
norms are required to capture the full range of phenomena. There isn’t
space to survey the various approaches here.50 But I will note that solving
the problem of updating self-locating beliefs may have important conse-
quences beyond fun philosophical thought-experiments like the Sleeping
Beauty Problem (Elga, 2000). For instance, fine-tuning arguments for the
existence of the multiverse, and debates about the proper interpretation
of quantum mechanics, may both turn on how agents should manage
credences in context-sensitive propositions.51

5 other confidence formalisms

In closing, I should note that there are a number of alternative formalisms
for modeling agents’ varying levels of confidence in claims. First, we can
think simply about whether an agent is more confident in one proposition
than another. Composing these comparisons together yields a confidence
ordering that may float free of any numerical assignments (see Konek,
this volume). A second approach, called “ranking theory” (Spohn, 2012;
Huber, this volume), attaches numbers to the confidence ranking but
works only with the structure of non-negative integers. Third, we can
employ a formal structure even richer than the reals. For instance, instead
of representing an agent’s levels of confidence at a given time with a
single probability distribution, we may represent them with a set of such
distributions (Mahtani, this volume). Or we may have one real-valued
function to track the agent’s attitudes and a separate (though related) one
to track her evidence. This yields a fourth approach, commonly called
“Dempster-Shafer Theory” (Dempster, 1966; Shafer, 1976).

Each of these approaches may be supported by some of the argument-
types described above, and each is plagued by some of the problems above
as well. Some allow formal structures more flexible and expressive than

49 In philosophy of science applications, for instance, scientific hypotheses about the physical
laws of the universe or the evolutionary origins of hominids do not typically change their
truth-values over time.

50 Titelbaum (2016) provides a big-picture summary with copious references.
51 For these applications and others, see Titelbaum (2013b).
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Bayesianism, while some trade expressive power for added psychological
plausibility. I will not attempt to choose a favorite here. But it’s worth
noting that among all the formalisms for representing disparate confidence
levels, none is currently more studied or more often applied than the real-
valued credal approach.52

6 appendix

Here’s a proof sketch for the representation theorem mentioned in Section
3.1. We will assume that in the decision theory of interest, the following
hold.

◦ Structural axioms ensuring that betting acts with various structures
(as described in the proof below) are always available to the agent.

◦ Weak dominance principle: when acts are independent of states, if
there is no state in which act A yields a greater utility than act B,
then A is not preferred to B.

◦ Strong dominance principle: when acts are independent of states,
if act A yields a greater utility than act B in every state, then A is
preferred to B.

◦ For any acts A and B, the agent prefers A to B just in case EU(A) >

EU(B), where EU is calculated as described in the main text.

The dominance principles above employ a notion of act/state indepen-
dence, and the relevant notion will vary depending on which decision
theory (evidential, causal, etc.) is in play. So fleshing out the proof below
for a given decision theory will require showing that the acts and states
appearing in each step of the proof are independent in the relevant sense.
Given the types of acts involved, that should be fairly straightforward.

Notice that the following is a corollary of the weak dominance principle.

◦ Equivalence principle: when acts are independent of states, if two
acts yield the same utility as each other in every possible state, the
agent is indifferent between them.

The argument is simply that if A and B yield the same utility in every
possible state, then by weak dominance A is not preferred to B and
B is not preferred to A. So the agent is indifferent between them, and
EU(A) = EU(B).

52 Thanks to the editors, Richard Pettigrew and Jonathan Weisberg, and especially to the
latter for detailed comments and many citation suggestions. Much of the material in this
piece has been adapted from my forthcoming book (Titelbaum, forthcoming), which covers
almost all of the topics here in much greater depth.
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To show that any credence function c appearing in a decision theory
with the features above must be a positive scalar transform of a probability
function, we need to prove that it satisfies four conditions.

1. Every tautology in L receives the same c-value.

Proof. Suppose for reductio we have two tautologies T1,T2 ∈ L such
that the agent assigns a credence of x to the first and a different
credence y to the second. Consider an act that pays 1 util on T1

and 0 utils otherwise, and an act that pays 1 util on T2 and 0 utils
otherwise. The agent will assign the first act an expected utility of x,
the second act an expected utility of y. Since x and y are different,
the agent will prefer one act to the other. Yet the two acts each yield
the same payout (1 util) in every possible state, so we’ve violated the
equivalence principle (and therefore weak dominance).

2. For any tautology and contradiction T,F ∈ L, c(T) > c(F).

Proof. Suppose for reductio we have a T and F such that c(T) ≤ c(F).
Now consider an act that pays 1 util on T and 0 utils otherwise, and
another act that pays 1 util on F and 0 utils otherwise. Given the
supposition, the agent will assign the first act an expected utility no
greater than the second. Yet the first act yields a greater utility than
the second in every possible state, so by strong dominance the first
act must receive a higher expected utility.

3. For any mutually exclusive X, Y ∈ L, c(X ∨Y) = c(X) + c(Y).

Proof. First consider the act of purchasing a bet that pays 1 util on X, 1
util on Y, and 0 utils otherwise. Since X and Y are mutually exclusive,
we may partition the possible states into X, Y, and ∼X &∼Y. Using
this partition, the expected utility of this act is

c(X) · u(X) + c(Y) · u(Y) + c(∼X &∼Y) · u(∼X &∼Y)

= c(X) · 1 + c(Y) · 1 + c(∼X &∼Y) · 0
= c(X) + c(Y).

(27)

Now consider the act of purchasing a bet that pays 1 util on X ∨Y,
and 0 utils otherwise. Partitioning the states into X∨Y and∼(X∨Y),
the expected utility of this act is

c(X ∨Y) · u(X ∨Y) + c(∼[X ∨Y]) · u(∼[X ∨Y])

= c(X ∨Y) · 1 + c(∼[X ∨Y]) · 0
= c(X ∨Y).

(28)

These two acts have the same payout in every possible state, so
to satisfy the equivalence principle the agent must be indifferent
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between them. This means that their expected utilities are equal, so
c(X ∨Y) = c(X) + c(Y).

4. For any X ∈ L, c(X) ≥ 0.

Proof. First, we show that there can be no Y,T ∈ L such that T is a
tautology and c(Y) > c(T). Suppose for reductio that we had such
two such propositions Y and T. Now consider an act that pays 1 util
if Y is true, and 0 utils otherwise, and an act that pays 1 util if T is
true, and 0 utils otherwise. The first act has expected utility c(Y),
while the second has expected utility c(T). By our supposition, the
agent prefers the first act. But since T is true in every state, there is
no state in which the first act yields a greater utility than the second.
So we have violated weak dominance.

Now to the main result. Assume for reductio that there exists an
X ∈ L such that c(X) < 0. Since X and ∼X are mutually exclusive,
c(X ∨ ∼X) = c(X) + c(∼X) by (3) above. If c(X) < 0, then c(X ∨
∼X) < c(∼X). But X ∨∼X is a tautology, so this is impossible.
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D E C I S I O N T H E O RY Johanna Thoma

Suppose I am deliberating whether I should live on a boat and sail the
Caribbean for a year. This is a decision not to be taken lightly. Many factors
will matter for my decision. Several of these depend on uncertain states of
the world. Will I be able to make a living? Is my boat really seaworthy?
Will I miss my friends? How bad will the next winter be in my home
town?

1 decision problems and the uses of decision theory

Giving a decision problem like this some formal structure may be helpful
for a number of interrelated purposes. As an agent, it might help me come
to a better decision. But giving formal structure to a decision problem may
also help a third party: prior to an action, it may help them predict my
behaviour. And after the action, it may help them both understand my
action, and judge whether I was rational. Moreover, giving formal structure
to a decision problem is a pre-requisite for applying formal decision
theories. And formal decision theories are used for all the aforementioned
purposes.

In the case of the decision whether to live on a boat, we could perhaps
represent the decision problem as shown in Table 1. In this matrix, the
rows represent the actions I might take. In our case, these are to either
live on a boat, or not to live on a boat. The columns represent the relevant
states of the world. These are conditions that are out of my control, but
matter for what I should do. Suppose these involve my boat either being
seaworthy, or not being seaworthy. I am uncertain which of these states
of affairs will come about. Finally, the entries in the matrix describe the
possible outcomes I care about that would result from my action combined
with a state of the world.

Boat seaworthy Boat not seaworthy

Live on a boat Life on a boat,
no storm damage

Life on a boat,
storm damage

Stay in home town Life as usual Life as usual

Table 1: Should I live on a boat?
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Since Savage’s (1954) decision theory, it has become standard to charac-
terise decision problems with state-outcome matrices like the one I just
introduced. More generally, let A1 . . . An be a set of n actions that are open
to the agent, and let S1 . . . Sm be m mutually exclusive and exhaustive
states of the world. These actions and states of the world combine to
yield a set of n ·m outcomes O11 . . . Onm. Table 2 shows this more general
state-outcome matrix.

S1 . . . Sm

A1 O11 . . . O1m
...

...
. . .

...

An On1 . . . Onm

Table 2: State-outcome matrix

Given such a representation of a decision problem, formal decision
theories assume that agents have various attitudes to the elements of the
state-outcome matrix. Agents are assumed to have preferences over the
outcomes their actions might lead to. Depending on our interpretation
of decision theory, we may also assume that agents can assign a utility
value to the outcomes, and a probability value to the states of the world.
Decision theories then require the preferences the agent has over actions,
which are assumed to guide her choice behaviour, to relate to those other
attitudes in a particular way.

1.1 Expected Utility Maximisation

Traditionally, the requirement that decision theories place on agents under
conditions of uncertainty has been that agents should maximise their
expected utility, or act as if they did. Decision theories which incorporate
this requirement are known under the heading of ‘expected utility theory’.
In the special case where an agent is certain about the consequences
of each of her actions, this requirement reduces to the requirement to
maximise utility. Since we are always to some extent uncertain about the
consequences of our actions, I will focus on the uncertain case here.1

However, much of the following discussion will also apply to decision-

1 I understand decision-making under ‘uncertainty’ here to refer to any case where an agent
is not certain what the consequences of her actions will be, or what state will come about. A
distinction is sometimes made between risk, uncertainty, ignorance and ambiguity, where
‘risk’ refers to the case where objective probabilities are known, ‘uncertainty’ refers to the
case where an agent can make a subjective judgement about probabilities, an agent is in
a state of ‘ignorance’ if she cannot make such probability assignments, and ‘ambiguity’
occurs when an agent can make probability assignments for some states, but not others.
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making under certainty. Moreover, most of this entry will focus on expected
utility theory. Some alternative decision theories are discussed in Section 6.

As we will see, the requirement to maximise expected utility takes
different forms under different interpretations of expected utility theory.
For now, let us assume that agents can assign utility values u(O) to
outcomes, and probability values p(S) to states of the world. The expected
utility is then calculated by weighting the utility of each possible outcome
of the action by the probability that it occurs, and summing them together.
Expected utility theory instructs us to prefer acts with higher expected
utility to acts with lower expected utility, and to choose one of the acts
with the highest expected utility.

In our example, suppose that I think that the chances that my boat
is seaworthy are 50%, and that the relevant utilities are the ones given
in Table 3. In that case, the expected utility of living on a boat will be
0.5 · 200 + 0.5 · 20 = 110, while the expected utility of staying in my home
town is 100. I conclude I should live on a boat.

Boat seaworthy Boat not seaworthy EU

Live on a boat 200 20 110

Stay in home town 100 100 100

Table 3: Decision problem with utilities

Formally, the expected utility EU(A) of an action can be expressed as
follows:

EU(Ai) =
m

∑
j=1

p(Sj) · u(Oij).

Expected utility theory requires agents to prefer acts for which this
weighted sum is higher to acts for which this weighted sum is lower,
and to choose an action for which this weighted sum is maximised.

1.2 The Uses of Decision Theory

Now we can see how expected utility theory could be put to each of the
different uses mentioned above. The requirement to maximise expected
utility (or to act as if one did), however it is understood, is considered as
a requirement of practical rationality by proponents of expected utility
theory. In particular, the requirements of expected utility theory are often
interpreted to capture what it means to be instrumentally rational, that
is, what it means to take the appropriate means to one’s ends, whatever

While these differences will play a role later in this entry, it is not helpful to make these
distinctions at this point.
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those ends may be. We will see how this may be cashed out in more detail
in Section 3, when we discuss different interpretations of expected utility
theory. For now, note that if we take the utility function to express the
agent’s ends, then the requirement to maximise the expectation of utility
sounds like a natural requirement of instrumental rationality.

Sometimes, the requirements of expected utility theory are also under-
stood as expressing what it means to have coherent ends in the first place.
Constructivists about utility (see Section 3.1) often understand expected
utility theory as expressing requirements on the coherence of preferences.
But on that understanding, too, expected utility theory does not make any
prescriptions on the specific content of an agent’s ends. It merely rules out
certain combinations of preferences. And so for those who think that some
ends are irrational in themselves, expected utility theory will at best be an
incomplete theory of practical rationality.

If we understand the requirements of expected utility theory as require-
ments of practical rationality, it seems like expected utility theory could
help me as an agent make better decisions. After I have formally repre-
sented my decision problem, expected utility theory could be understood
as telling me to maximise my expected utility (or to act as if I did). In the
above example, we employed expected utility theory in this way. Expected
utility theory helped me decide that I should live on a boat. In this guise,
expected utility theory is an action-guiding theory.

From a third party perspective, expected utility theory could also be
used to judge whether an agent’s action was rational. Having represented
the agent’s decision problem formally, we judge an action to be rational if
it was an act with maximum expected utility. This understands expected
utility theory as a normative theory: a theory about what makes it the case
that somebody acted rationally.

It is important to note the difference between the action-guiding and
the normative uses of expected utility theory.2 An action can be rational
according to normative expected utility theory even if the agent did not
use expected utility theory as an action-guiding theory. One could even
hold that expected utility theory is a good normative theory while being
a bad action-guiding theory. This would be the case if most agents are
bad at determining their expected utility, and do better by using simpler
heuristics.3

2 Herbert Simon famously drew attention to this difference when he distinguished between
procedural and substantive rationality, drawing on a similar distinction made by Max Weber
(1922/2005). See Simon (1976).

3 Starting with Tversky and Kahneman (1974), there has been a wealth of empirical literature
studying what kind of heuristics decision-makers use when making decisions under
uncertainty, and how well they perform. See, for instance, Payne, Bettman, and Johnson
(1993) and Gigerenzer, Todd, and Group (2000).
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Expected utility theory is also often put to an explanatory or predictive
use, especially within economics or psychology. If we assume that agents
follow the requirements of expected utility theory, and we know enough
of their preferences or utility and probability assignments, we can use
the theory to predict their behaviour. In this context, philosophers have
been interested more in whether decision theory can help us understand an
agent’s actions. Interpreting an agent as maximising her expected utility
in a formal decision problem may reveal her motives in action, and thus
explain her action.

In fact, there is a tradition in the philosophy of action that claims
that explaining another’s behaviour always involves rationalising her
behaviour to some extent. Davidson (1973) introduced the label ‘radical
interpretation’ for the attempt to infer an agent’s attitudes, such as her
beliefs and desires, from her actions. He believed that this was only
possible if we assume certain rationality constraints on how these attitudes
relate. Ramsey (1926/2010) had already used expected utility theory to
infer an agent’s probabilities, and thus, he argued, her beliefs from her
behaviour. Lewis (1974) showed that expected utility theory captures
Davidson’s constraints on the relationship between beliefs and desires,
and thus can be used to elicit beliefs and desires. Davidson himself later
argued, in Davidson (1985), that expected utility theory can be extended
to further elicit an agent’s meanings, that is, her interpretation of sentences.
This is sometimes known as the interpretive use of decision theory.

And so in the philosophical literature, expected utility theory has been
used as an action-guiding theory, a normative theory, and an interpretive
theory.4 Other decision theories have been put to the same uses. As we
will see in Section 6, there are alternatives to expected utility theory that
offer rival prescriptions of practical rationality. However, most alternatives
to expected utility theory have been introduced as primarily descriptive
theories, that are used to predict and explain behaviour that need not be
rational.

Now that we have seen what kinds of uses expected utility theory can
be put to, the next section will look at some influential applications of
expected utility theory.

1.3 Some Applications

Expected utility theory has proven to be an enormously fruitful theory,
that has been applied in various different fields and disciplines. Originally,
it found application mostly in the theory of consumer choice. This field

4 Bermudez (2009) draws a similar tri-partite distinction between the normative, action-
guiding and explanatory/predictive dimensions of decision theory. Similarly, Buchak
(2016) distinguishes between the normative and interpretive uses of decision theory.
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of economics studies why consumers choose some goods rather than
others, and helps to predict market outcomes. Expected utility theory has
been used to explain the shape of demand curves for goods. The demand
for insurance, in particular, is difficult to understand without a formal
theory of choice under uncertainty. Expected utility theory has also helped
to explain some phenomena that had previously seemed surprising. A
classic example here is adverse selection, which occurs when there is an
information asymmetry between buyers and sellers in the market. In these
kinds of situations, sellers of high quality goods may be driven out of
the market. Akerlof (1970) first explained this phenomenon, and a rich
literature has developed since. Einav and Finkelstein (2011) provide a
helpful overview of work on adverse selection in insurance markets.

Decision theory has also found application in many fields outside of
economics. For instance, in politics, it has been used to study voting and
voter turn-out,5 in law it has been used to study judicial decisions,6 and in
sociology it has been used to explain class and gender differences in levels
of education.7

Expected utility theory has also been influential in philosophy. Apart
from it being an important contender as a theory of practical rationality,
expected utility theory plays an important role in ethics, in particular in
consequentialist ethics. Along with Jackson (1991), many consequentialists
believe that agents ought to maximise expected moral goodness. Moreover,
expected utility theory has been applied to the question of what agents
ought to do in the face of moral uncertainty—uncertainty about what one
ought to do, or even about which moral theory is the right one.8

Recently, expected utility theory has found application in epistemology
in the form of epistemic decision theory. Here, agents are modeled as receiv-
ing epistemic utility from being in various epistemic states, such as being
certain of the proposition that my boat is sea-worthy. I will receive a high
epistemic utility from being in that state in the case where my boat in fact
turns out to be seaworthy, and low epistemic utility when my boat turns
out not to be seaworthy. Agents are then modeled as maximising their
expected epistemic utility. Epistemic utility theory has been used to justify
various epistemic norms, such as probabilism (the norm that an agent’s
credences should obey the probability calculus), and conditionalisation
(the norm that agents should update their credences by conditionalizing
their old credence on the new evidence they received). For an overview of
these arguments, see Pettigrew (2011).

5 Downs (1957) counts as the first systematic application of decision theoretic models from
economics to politics. For recent work on voting specifically, see Feddersen (2004).

6 See, for instance, Epstein, Landes, and Posner (2013).
7 See, for instance, Breen and Goldthorpe (1997).
8 See, for instance, Lockhart (2000), and Sepielli (2013) for a criticism of Lockhart’s approach.
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1.4 Formulating Decision Problems

How should the decision problems that formal decision theories deal
with be formulated in the first place? In order to apply a formal decision
theory, the choices an agent faces need to already be represented as a
formal decision problem. Table 1 offered one representation of my choice
of whether to live on a boat. But how can we be sure it was the right one?

For his decision theory, Savage (1954) assumed that states are descrip-
tions of the world that include everything that might be relevant to the
agent. Similarly, he thought that descriptions of outcomes are descriptions
of “everything that might happen to the person” (p. 13). Joyce (1999, p. 52)
cashes out a rule for specifying outcomes that also appeals to relevance.
He claims that a description of an outcome should include everything that
might be relevant to the agent, in the following sense: whenever there is
some circumstance such that an agent would strictly prefer an outcome
in the presence of that circumstance to the same outcome in the absence
of that circumstance, the outcome has been underspecified. Importantly,
this implies that an agent’s evaluation of an outcome should be indepen-
dent of the state it occurs in, and the act that brought it about. All of
this means that the sets of states and outcomes will end up being very
fine-grained. Moreover, Savage also thinks of actions as functions from
states to outcomes. This means that in each state, each action leads to a
unique outcome. To ensure this, the set of actions, too, will have to be very
fine-grained.

Note that this means that the decision problem I presented in Table 1

was hopelessly underspecified. When it comes to the decision of whether
to live on a boat for a year or not, I do not only care about whether my boat
will have storm damage or not. I also care, for instance, about whether I
will have enough money for the year. I will evaluate the outcome “Life on
a boat, no storm damage” differently depending on whether I will have
enough money for the year or not. In fact, the exact amount of money I
will have is going to matter for my decision. And so my decision problem
should really distinguish between many different states of affairs involving
me having more or less money, and the many different outcomes that
occur in these states of affairs.

Jeffrey (1965/1983), who offered a famous alternative to Savage’s deci-
sion theory (see Section 2.4), and treated states, acts, and outcomes all as
propositions, went so far as to define outcomes such that they entail an
act and a state. An act and a state are also supposed to entail the outcome,
and so we can simply replace outcomes with the conjunction of an act and
a state in the decision matrix.

These ways of individuating outcomes will obviously lead to very large
decision matrices for any real life decision. There are two reasons why we
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might find this problematic. The first reason has to do with the efficiency
of the decision-making process. If we want our decision theory to be
an action-guiding theory, then decision problems can’t be so complex
that ordinary agents cannot solve them. An action-guiding theory should
be efficient in its application. Efficiency may also be a concern for the
interpretive project. After all, this project wants to enable us to interpret
each other’s actions. And so doing so should not be overly complicated.

Savage called decision problems that specify every eventuality that
might be relevant to an agent’s choice “grand world” decision problems.
Joyce (1999) holds that we should really be trying to solve such a grand-
world problem, but acknowledges that real agents will always fall short
of this. Instead, he claims, they solve “small world” decision problems,
which are coarsenings of grand-world decision problems. If we treat acts,
states and outcomes as propositions, this means that the acts, states and
outcomes of the small world decision problems are disjunctions of the acts,
states, and outcomes of the grand-world decision problem. The decision
problem described in Table 1 is such a small-world decision problem.

Joyce (1999, p. 74) holds that an agent is rational in using such small-
world decision problems to the extent that she is justified in believing
that her solution to the small-world decision problem will be the same as
her solution to the grand-world decision problem would be. This permits
the use of small world decision problems both for the action-guiding and
normative purposes of decision theory whenever the agent is justified in
believing that they are good enough models of the grand-world decision
problem.

Joyce argues that this condition is met in Jeffrey’s decision theory if
an agent correctly evaluates all coarse outcomes and actions, while it is
not generally met in Savage’s decision theory. As will be explained in
Section 2.4, this is due to the feature of partition invariance, which Jeffrey’s
theory has and Savage’s theory does not. Despite these arguments, if
efficiency in decision-making is an important concern, as it is for an action-
guiding theory, one might think that an agent should sometimes base her
decision on a small-world decision problem even if she is fairly certain that
her decision based on the grand-world decision problem will be different.
She might think that her solution to a small-world decision problem will
be close enough to that of the grand-world decision problem, while solving
the small-world decision problem will save her costs of deliberation.

The second argument against having too fine-grained a decision prob-
lem is that this makes expected utility theory not restrictive enough. As
will be explained in more detail in Section 2, the axioms used in the repre-
sentation theorems of expected utility theory concern what combination
of preferences are permissible. If preferences attach to outcomes, and
outcomes can be individuated as finely as we like, then the danger is that
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the norm to abide by the axioms of decision theory does not constrain our
actions much.

For instance, consider the following preference cycle, where a, b and c
are outcomes, and ≺ expresses strict preference:

a ≺ b ≺ c ≺ a.

Preference cycles such as this are ruled out by the transitivity axiom, which
all representation theorems we shall look at in Section 2 share. When
outcomes can be individuated very finely, the following two problems
may arise. Firstly, a number of authors have worried that any potential
circularity in an agent’s preferences can be removed by individuating
outcomes more finely, such that there is no circularity anymore. Secondly,
and relatedly, fine individuation may mean that no outcome can ever be
repeated. In that case, an agent cannot reveal a preference cycle in her
actions, and so we cannot interpret her as being irrational.

To see this, note that if we treat the first and the second occurrence of
outcome a above as two different outcomes, say a1 and a2, the circularity
is removed:

a1 ≺ b ≺ c ≺ a2.

The worry is that this can always be done, for instance by distinguishing
“option a if it is compared to b” from “option a if it is compared to c”. If
this strategy is always available, in what sense is the transitivity axiom a
true restriction of the agent’s preferences and actions? If we can’t show
that decision theory puts real restrictions on an agent’s choices, then this
is a problem especially for the action-guiding and normative projects.

A number of authors9 have held that this problem shows that the axioms
of decision theory on their own cannot serve as a theory of practical
rationality (even a partial one), but have to be supplemented with a further
principle in order to serve their function. Broome (1991, chapter 5) notes
that the problem can be dealt with by introducing rational requirements of
indifference. Rational requirements of indifference hold between outcomes
that are modeled as different, but that it would be irrational for the agent
to have a strict preference between. If there was a rational requirement of
indifference between a1 and a2, for instance, the preference cycle would be
preserved.

However, we may also restrict how finely outcomes can be individuated
to solve the problem, by not allowing a distinction between a1 and a2.
Broome (1991, chapter 5) advocates a rule of individuation by justifiers
that serves the same role as the rational requirements of indifference.
According to this rule, two outcomes can only be modeled as distinct if it
is not irrational to have a strict preference between them.

9 See, especially, Broome (1991), Pettit (1991) and Dreier (1996).
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Pettit (1991) proposes an alternative rule for individuation: two outcomes
should be modeled as distinct just in case they differ in some quality the
agent cares about, where caring about a quality cannot itself be cashed
out in terms of preferences over outcomes. And Dreier (1996) argues that
two outcomes should be distinguished just in case there are circumstances
where an agent has an actual strict preference between them. Note that
this rule for individuation is equivalent to the one proposed by Joyce, but
Pettit’s and Broome’s rules may lead to coarser grained individuations
of decision problems. The coarser grained the individuations, the more
restrictive the axioms of expected utility theory end up being.

2 representation theorems

2.1 The Preference Relation

In decision theory, representation theorems are proofs that an agent’s
preferences are representable by a function that is maximised by the agent.
In the case of expected utility theory, they are proofs that an agent’s
preferences are such that we can represent her as maximising an expected
utility function. As we will see in Section 3, many decision theorists believe
that utility is nothing more than a convenient way to represent preferences.
Representation theorems are crucial for this interpretation of utility. The
significance of the representation theorems will be further discussed in
Section 3.2.

A weak preference relation is a binary relation <, which is usually
interpreted either as an agent’s disposition to choose, or her judgements
of greater choiceworthiness.10 An agent weakly prefers x to y if she finds
x at least as choiceworthy as y, or if she is disposed to choose x when x
and y are available.

We can also define an indifference relation ∼ and a strict preference
relation � in terms of the weak preference relation <:

1. x ∼ y if and only if x < y and y < x,

2. x � y if and only if x < y and not y < x.

Representation theorems take such preference relations as their starting
point. They then proceed by formulating various axioms that pose re-
strictions on the preference relation, some of which are interpreted as

10 Many economists interpret preference as ‘revealed preference’, and claim that an agent
counts as preferring x to y just in case she actually chose x when y was also available. Such
pure behaviourism is usually rejected in the philosophical literature because it takes away
from the explanatory power of preferences, and does not allow for counter-preferential
choice. For a critique of the notion of revealed preference, see Hausman (2000).
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conditions of rationality. Let X be the domain of the preference relation.
What representation theorems prove is the following. If an agent’s prefer-
ences conform to the axioms, there will be a probability function and a
utility function such that:

for all x and y ∈ X, EU(x) ≥ EU(y) if and only if x < y.

All the representation theorems described in the following assume that
the preference relation is a weak ordering of the elements in its domain.
That means that the preference relation is transitive and complete.

Transitivity. For all x, y and z ∈ X, x < y and y < z implies that x < z.

Completeness. For all x and y ∈ X, x < y or y < x.

Section 4 will discuss potential problems with both completeness and
transitivity.

Different representation theorems differ both in terms of the domain
over which the preference relation is defined, and in terms of the other
axioms needed for the representation theorem. They also differ in how
many of the agent’s attitudes other than preferences they take for granted.
Consequently, they result in representation theorems of different strength.

2.2 Von Neumann and Morgenstern

One of the first representation theorems for expected utility is due to von
Neumann and Morgenstern (1944) and takes probabilities for granted.11

In this representation theorem, the objects of preference are lotteries, which
are either probability distributions L = (p1, . . . , pm) over the m outcomes,
or probability distributions over these ‘simple’ lotteries. Probabilities are
thus already part of the agent’s object of preference.

While it helps to think of lotteries in the ordinary sense of monetary
gambles where there is a known probability of winning some prize, von
Neumann and Morgenstern intended for their representation theorem to
have wider application. In our original example, if there is a 50% chance
that my boat is seaworthy, then I face a 50/50 lottery over the outcomes
described in Table 1. Note furthermore that, since we are dealing directly
with probability distributions over outcomes, there is no need to speak of
states of the world.

While von Neumann and Morgenstern’s representation theorem is per-
haps most naturally understood given an objective interpretation of proba-
bility, their representation theorem is in fact compatible with any interpre-
tation of probability. All we need is to already have access to the relevant

11 An earlier representation theorem is due to Ramsey (1926/2010) and derives probabil-
ities as well as utilities. It is often considered as a precursor to Savage’s and Bolker’s
representation theorems, discussed below. See R. Bradley (2004).
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(precise) probabilities when applying the representation theorems. If we
think of probability as the agent’s subjective degrees of belief, we already
need to know what those subjective degrees of belief are. If we think of it
as objective chance, we need to already know what those objective chances
are.

What von Neumann and Morgenstern go on to prove in their represen-
tation theorem is that, provided an agent’s preferences over lotteries abide
by certain axioms, there is a utility function over outcomes such that an
agent prefers one lottery over another just in case its expected utility is
higher. One crucial axiom needed for this representation theorem is the
independence axiom, discussed in Section 5.1.

Note that the result is not that there is one unique utility function which
represents the agent’s preferences. In fact, there is a family of utility func-
tions which describe the agent’s preferences. According to von Neumann
and Morgenstern’s representation theorem, any utility function which
forms part of an expected utility representation of an agent’s preferences
will only be unique up to positive, linear transformations. The different
utility functions that represent an agent’s preferences will thus not all
share the same zero point. What outcome will yield twice as much utility
will then also differ between different utility functions. It is therefore often
claimed that these properties of utility functions represent nothing “real”.
What is invariant between all the different utility functions that represent
the agent’s preferences, however, are the ratios of utility differences, which
can capture the curvature of the utility function. Such ratios are often used
to measure an agent’s level of risk aversion.12

2.3 Savage

While von Neumann and Morgenstern’s representation theorem provides
a representation of an agent’s preferences where probabilities are already
given, Savage (1954) infers both a utility function and probabilities from
an agent’s preferences.13 As we have already seen, the standard tripartite
distinction of actions, outcomes and states of the world goes back to
Savage. Instead of assuming, like von Neumann and Morgenstern did,
that we can assign probabilities to outcomes directly, we introduce a set

12 Risk aversion is further discussed in Section 5.3. Also see Mas-Colell, Whinston, and Green
(1995), chapter 6 for more detail on expected utility theory’s treatment of risk aversion.

13 This is why von Neumann and Morgenstern’s theory is sometimes referred to as a theory
of decision-making under risk, and Savage’s is referred to as a theory of decision-making
under uncertainty. In the former, probabilities are already known, in the latter, subjective
probabilities can be assigned by the agent. However, note that, as we pointed out above,
von Neumann and Morgenstern’s theory can also be applied when probabilities are
subjective.
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of states of the world, which determine what outcome an act will lead to.
The agent does not know which of the states of the world will come about.

Savage takes the agent’s preferences over acts as input, and introduces
a number of axioms on these preferences. He derives both a probability
function over states, which abides by the standard axioms of probability,
and a utility function over outcomes which, like the one von Neumann
and Morgenstern derived, is unique up to positive linear transformations.
Together, they describe an expected utility function such that an act is
preferred to another just in case it has a higher expected utility. Importantly,
the agents in Savage’s decision theory abide by the sure-thing principle,
which serves a role similar to the independence axiom in von Neumann
and Morgenstern’s representation theorem, and will also be discussed in
Section 5.1.

Acts, states and outcomes are all treated as theoretical primitives in
Savage’s framework. But Savage’s representation theorem relies on a
number of controversial assumptions about the act, state and outcome
spaces and their relation. For one, probabilities apply only to states of
the world, and utilities apply only to outcomes. Preferences range over
both acts and outcomes. Savage assumed that an act and a state together
determine an outcome. Most controversially, Savage assumes that there
are what he calls constant acts for each possible outcome, that is, acts
which bring about that outcome in any state of the world. For instance,
there must be an act which causes me great happiness even in the event
that the apocalypse happens tomorrow. What makes things worse, by
completeness, agents are required to have preferences over all these acts.
Luce and Suppes (1965) take issue with Savage’s theory for this reason.

While the results of Savage’s representation theorem are strong, they
rely on these strong assumptions about the structure of the act space. This
is one reason why many decision theorists prefer Jeffrey’s decision theory
and Joyce’s modification thereof.

2.4 Jeffrey, Bolker, and Joyce

Jeffrey’s decision theory, developed in Jeffrey (1965/1983), uses an axioma-
tisation by Bolker (1966). While he does not rely on an act space as rich
as Savage’s, Jeffrey preserves the tripartite distinction of acts, states and
outcomes. However, for him, all of these are propositions, which means
he can employ the tools of propositional logic. Moreover, preferences,
utility and probability all range over all three. Agents end up assigning
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probabilities to their own acts,14 and assigning utilities to states of the
world.

Jeffrey’s theory is sometimes known as conditional expected utility
theory, because agents who follow the axioms of his decision theory are
represented as maximisers of a conditional expected utility. In Savage’s
decision theory, the utilities of outcomes are weighted by the unconditional
probability of the states in which they occur. This is also the formulation
we presented in Section 1.1. In the example there, we weighted the possible
outcomes by the probability of the state they occur in. For instance, we
weighted the outcome of enjoying a year on a boat without damages by
the probability of my boat being seaworthy.

Jeffrey noted that the unconditional nature of Savage’s decision theory
may produce the wrong results in cases where states are made more or
less likely by performing an action. In our example, suppose that, for
whatever reason, my choosing to live on a boat for a year makes it more
likely that my boat is seaworthy. The unconditional probability of the boat
being seaworthy is lower than the probability of it being seaworthy given
I decide to live on the boat. And thus using the unconditional probability
may lead to the judgement that I shouldn’t spend the year on the boat,
because the probability of it not being seaworthy is too high—even if the
boat will be very likely to be seaworthy if I choose to do so. To avoid this
problem, Jeffrey argued, it is better to use probabilities that are in some
sense conditional on the action whose expected utility we are evaluating.
We should weight the outcome of spending a year on a boat without
damage by the probability of the boat being seaworthy given that I choose
to live on the boat for a year.15

Let the probability of a state given an act be pA(S). There is much
disagreement on how this probability is to be interpreted. The main
disagreement is whether it should be given a causal or an evidential
interpretation. I postpone this discussion to Section 3.3. But let me note
here that Jeffrey himself falls on the evidential side. Conditional expected
utility theory advises us to maximise the following:

EU(Ai) =
m

∑
j=1

pAi(Sj) · u(Oij).

Jeffrey interprets this conditional expected utility as an act’s ‘news value’,
that is, as measuring how much an agent would appreciate the news that
the act is performed.

14 This is a controversial feature of the theory. See Spohn (1977) for criticism of this assump-
tion.

15 Savage’s own solution to the problem is that, for his formalism to apply, states and acts
need to be specified such that there is no dependence between an action being performed
and the likelihood of a state. Jeffrey’s response is more elegant in that it requires no such
restriction on what kinds of decision problems it can be applied to.
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The conditional nature of Jeffrey’s decision theory is also what leads to
its partition invariance.16 In Jeffrey’s theory, the value of a disjunction is
always a function of the value of its disjuncts. For instance, the value of
a coarse outcome O1−10 which is a disjunction of outcomes O1, . . . , O10 is
a function of the values of the outcomes O1, . . . , O10. But we could also
subdivide the coarse outcome O1−10 differently. O1−10 is also a disjunction
of the coarse outcomes O1−5 and O6−10, which are themselves disjunctions
of O1, . . . , O5 and O6, . . . , O10 respectively. And so we can also calculate
the value of O1−10 from the values of O1−5 and O6−10. Partition invariance
means that we get the same value in either case. The value of O1−10

can be represented as a function of the values of any of its subdivisions.
This means that, as long as utilities are assigned correctly to disjunctions,
Jeffrey’s decision theory gives equivalent recommendations no matter
how finely we individuate outcomes, states and actions. Joyce argues that
for this reason, the use of small-world decision problems is legitimate
in Jeffrey’s decision theory (see Section 1.4), and that that is a major
advantage over Savage’s unconditional, and partition variant decision
theory.

Jeffrey’s and Bolker’s representation theorem is less strong than Savage’s.
It does not pin down a unique probability function. Nor does it result
in a utility function that is unique up to positive linear transformations.
Instead, it only ensures that probability and utility pairs are unique up to
fractional linear transformations.17

Joyce (1999) argues that this shows that we need to augment Jeffrey’s and
Bolker’s representation theorem with assumptions about belief, and not
merely preference. Unlike von Neumann and Morgenstern, however, he
does not propose to simply assume probabilities. Instead, he introduces a
‘more likely than’ relation, on which we can formulate a number of axioms,
just as we did for the preference relation. The resulting representation
theorem results in a unique probability function and a utility function
which is unique up to positive linear transformations.18

We have introduced the most prominent representation theorems for
expected utility theory.19 What do these representation theorems show?
Each of them shows that if an agent’s preferences abide by certain axioms,
and certain structural conditions are met, her preferences can be repre-
sented by a utility (and probability) function (or families thereof) such
that she prefers an act to another just in case its expected utility is higher.

16 See Joyce (1999), pp. 121-122.
17 A fractional linear transformation transforms u to a·u+b

c·u+d , with a · d− b · c > 0.
18 Also see R. Bradley (1998), for an alternative way to secure uniqueness.
19 A helpful, more technical and more detailed overview of representation theorems can be

found in Fishburn (1981).
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Agents who abide by the axioms can thus be represented as expected
utility maximisers.

What these kinds of results show depends to some extent on the purpose
we want to put our theory to. But it also depends on how we interpret
the utilities and probabilities expected utility theory deals with. Section 3

gives an overview of these interpretations and then returns to the question
of what the representation theorems can show.

3 interpretations of expected utility theory

3.1 Interpretations of Utility

Some of the earliest discussions of choice under uncertainty took place
in the context of gambling. The idea that gamblers maximise some ex-
pected value first came up in correspondence between Fermat and Pascal
(1654/1929). Pascal, who formulated the expected value function in this
context, thought of the value whose expectation should be maximised as
money. This is natural enough in the context of gambling. Similarly, in this
context it is natural to think of the probabilities involved as objective, and
fixed by the parameters of the game.

However, money was soon replaced by the notion of utility as the value
whose expectation is to be maximised. This happened for two interrelated
reasons. First, the same amount of money may be worth more or less to
us depending on our circumstances. In particular, we seem to get less
satisfaction from some fixed amount of money the more money we already
have. Secondly, the norm to maximise expected monetary value has some
counterintuitive consequences. In particular, we can imagine gambles that
have infinite monetary value, that we would nevertheless only pay a finite
price for. Nicolas Bernoulli first demonstrated this with his famous St.
Petersburg Paradox.20

In response to these problems, Daniel Bernouilli (1738/1954) and Gabriel
Cramer independently proposed a norm to maximise expected utility
rather than expected monetary value. However, this raises the problem of
how to interpret the notion of utility. One strand of interpretations takes
utility to be a real psychological quantity that we could measure. Let us
call such interpretations of utility ‘realist’. Early utilitarians adopted a
realist interpretation of utility. For instance, Bentham (1789/2007) and Mill
(1861/1998) thought of it as pleasure and the absence of pain.

20 Bernoulli proposed a gamble in which a coin is thrown repeatedly. If it lands heads the
first time, the player gets $2. If it lands tails, the prize is doubled, and the coin thrown
again. This procedure is repeated indefinitely. The expected value of the resulting gamble
is thus $2 · 1

2 + $4 · 1
4 + $8 · 1

8 + . . ., which is infinite. However, most people would only
pay a (low) finite amount for it.
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Note, however, that these utilitarians were interested in defining utility
for the purpose of an ethical theory rather than a theory of rationality. One
problem with interpreting utility as pleasure in the context of expected
utility theory is that the theory then seems to imply that true altruism can
never be rational. If rationality requires me to maximise my own expected
pleasure, then I can never rationally act so as to increase somebody else’s
happiness at my own expense.

For this and other reasons modern realists typically think of utility as a
measure of the strength of an agent’s desire or preference, or her level of
satisfaction of these desires or preferences. I may strongly desire somebody
else’s happiness, or be satisfied if they achieve it, even if that does not
directly make me happy.21 Jeffrey (1965/1983), for instance, speaks of
desirabilities instead of utilities, and interprets them as degrees of desire
(p. 63). The corresponding realist interpretation of the probabilities in
expected utility theories is usually that of subjective degrees of belief.

The representation theorems described in Section 2 have, however, made
a different kind of interpretation of utility (and probability) possible, and
popular. These representation theorems show that preferences, if they
conform to certain axioms, can be represented with a probability and
utility function, or families thereof. And so, encouraged by these results,
many decision theorists think of utility and probability functions as mere
theoretical constructs that provide a convenient way to represent binary
preferences. For instance, Savage (1954) presents his theory in this way.
Importantly, on this interpretation, we cannot even speak of probabilities
and utilities in the case where an agent’s preferences do not conform with
the axioms of expected utility theory. Let us call these interpretations of
utility and probability ‘constructivist’.22

3.2 The Significance of the Representation Theorems

Whether we adopt a realist or a constructivist interpretation of utility
matters for how expected utility theory can serve the three purposes of
decision theory described in Section 1.2, and for what the representation
theorems presented in Section 2 really establish. Let us first look at the
interpretive project. As already mentioned, those interested in the interpre-
tive project have mostly been interested in inferring an agent’s beliefs and

21 This is also the interpretation adopted by several later utilitarians, such as Hare (1981) and
Singer (1993).

22 See Dreier (1996) and Velleman (1993/2000) for defenses of constructivism. Buchak (2013)
draws slightly different distinctions. For her, any view on which utility is at least partially
defined with respect to preferences counts as constructivist. Since this is compatible with
holding that utility is a psychologically real quantity, she allows for constructivist realist
positions. The position that utility expresses strength of desire, for her, is such a position. I
will count this position as realist, and not constructivist.
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desires from her choice behaviour. If that is the goal, then the probabilities
and utilities involved in decision theory should at least be closely related
to desires and beliefs. Under the assumption that agents maximise their
utility and probability functions, thus understood, we can hypothesise,
perhaps even derive, probability and utility functions that motivate an
agent’s actions.

How could the representation theorems we described in Section 2 help
with this project? They go some way towards showing that beliefs and
desires can be inferred from an agent’s choice behaviour. But the following
assumptions are also needed for this project to succeed:

1. The agent’s choice behaviour must reflect her preferences, at least
most of the time. This assumption is more likely to be met if we think
of preferences as a dispositions to choose, rather than as judgements
of choiceworthiness.

2. The axioms of the representation theorems must be followed by the
agent, at least most of the time. If we want to use expected utility
theory to deduce an agent’s beliefs and desires, then the agent’s
preferences have to be representable by an expected utility function.
While we can interpret the axioms as rationality constraints, these
cannot be the kinds of constraints that people fail to meet most of
the time. In particular, if we want to employ expected utility theory
for Davidson’s ‘radical interpretation’, then the choice behaviour of
agents who fail to abide by the axioms will turn out to be unintelli-
gible.

3. The probabilities and utilities furnished by the representation theo-
rem must correspond to the agent’s actual beliefs and desires.

Assumption 2 is controversial for the reasons described in Section 4

and Section 5. But assumption 3 is also problematic. The representation
theorems only show that an agent who abides by the axioms of the
various representation theorems can be represented as an expected utility
maximiser. But this is compatible with the claim that the agent can be
represented in some other way. It is not clear why the expected utility
representation should be the one which furnishes the agent’s beliefs and
desires.23

To answer this challenge, the best strategy seems to be to provide
further arguments in favour of expected utility maximisation, and in

23 This question was raised, for instance, by Zynda (2000), Hajek (2008) and Meacham and
Weisberg (2011). Zynda (2000) argues that the representation theorems alone cannot show
that agents do or should have probabilistic degrees of belief. Meacham and Weisberg (2011)
provide a number of arguments why the representation theorems alone cannot serve as
the basis of decision theory.
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favour of probabilistic beliefs, apart from the plausibility of the axioms
of the representation theorems. Suppose we think it is plausible that
agents should have probabilistic degrees of belief, and should maximise
the expected degree of satisfaction of their desires. And suppose we also
think that our preferences are closely related to our desires. Then if, given
some plausible axioms, these preferences can be given an expected utility
representation, we seem to have good reason to think that the utilities and
probabilities furnished by the representation theorem correspond to our
degrees of belief and strength of desire.

Setting aside the question of why we might want to have probabilistic
degrees of belief, what could such realist arguments for expected utility
maximisation be? Note that, for the purposes of the interpretive project,
these arguments have to not only be normatively compelling, but also
convince us that ordinary agents would be expected utility maximisers.
One type of argument appeals to the advantages of being an expected
utility maximiser when making decisions in a dynamic context. These
will be covered in Section 7. Pettigrew (2014) makes another argument:
for most realists, utility is supposed to capture everything an agent cares
about. If that is true, then it seems plausible to say that in uncertain
situations, I should be guided by my best estimate of how much utility
I will get. We can appeal to results in de Finetti (1974) to argue that an
agent’s best estimate of a quantity is her subjective expectation. This is so
because any estimate of the quantity that is a weighted sum different from
the expectation will be accuracy dominated by an expectational estimate:
the expectational estimate will be closer to the true value no matter what
happens. Thus, I should maximise my expected utility.

So far, we have assumed a realist interpretation of utility and probability.
Note, however, that expected utility theory could still be explanatorily
useful even if a constructivist interpretation of utility and probability are
adopted. It is often argued that the representation theorems show that
the utility and probability functions allow for a simpler and more unified
representation of an agent’s preferences: all the agent’s preferences can
be described with one utility and probability function. This could be seen
to make them more intelligible. In fact, Velleman (1993/2000) argues that
being an expected utility maximiser makes an agent more intelligible to
herself and others, and that this gives her a reason to be an expected utility
maximiser.

Let us now turn to the action-guiding and normative projects. These
projects will lead to quite different prescriptions depending on whether
utility is interpreted in a realist or in a constructivist sense. Suppose that
we are constructivists about utility. In that case, there is a sense in which
the prescription to maximise expected utility does not make any sense.
If one abides by the axioms of one’s favourite representation theorem,
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one’s preferences are representable as expected utility maximising. To
maximise expected utility, there is nothing more one needs to do, apart
from act according to the preferences over acts one already has. But if one’s
preferences do not abide by the axioms, on the other hand, one simply
does not have a utility function whose expectation one could maximise.

Consequently, constructivists often interpret the prescription of expected
utility theory as a prescription to have preferences such that one can be
represented as an expected utility maximiser. That is, one should abide by
the axioms of expected utility theory. For the action-guiding project, this
means that, as an agent, I should have preferences such that they abide by
the axioms of expected utility theory. For the normative project, it means
that we judge an agent to be irrational if she has preferences that violate
the axioms. This is why constructivists often interpret expected utility
theory as a theory about what it means to have coherent preferences or
ends, rather than as a theory of means-ends rationality.

For realists, however, the prescription to maximise expected utility
makes sense even independently of the representation theorems canvassed
in Section 2. Consider first the action-guiding project, which aims to
interpret expected utility theory as a theory that can guide an agent in
deciding what to do. If utility is just my strength of desire, and probability
is my degree of belief, and I have introspective access to these, then I can
determine the expected utility of the various acts open to me. I can do so
without considering the structure of my preferences, and whether they
abide by the axioms of expected utility theory. Expected utility theory is
then action-guiding without appeal to representation theorems. But note
that the advice to maximise expected utility is only useful to agents if
they really have such intuitive access to their own degrees of belief and
strength of desire.24

Similarly, if we are realists and our interests are normative, we can judge
an agent to be irrational by considering her utilities and degrees of belief,
and determining whether she failed to maximise expected utility. This
is because there will be facts about the agent’s utilities and probabilities
even if she fails to maximise expected utility. Realists about utility and
probability can also help themselves to the realist arguments for expected
utility maximisation just mentioned. For them, the normative force of
expected utility theory does not depend solely on the plausibility of the
axioms of expected utility theory. If we adopt a realist interpretation of
utility and probability, it is also easier to argue that expected utility theory
provides us with a theory of instrumental rationality. Maximising expected
utility could be seen as taking the means towards the end of achieving
maximum utility. However, realists will also have to provide an argument
that this is a goal rational agents ought to have.

24 Also see Bermudez (2009) on this claim.
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3.3 Causal and Evidential Interpretations of Expected Utility Theory

We have said that the probabilities involved in expected utility theory are
usually interpreted as subjective degrees of belief, at least by realists. As we
have seen, Jeffrey, Joyce, and others have advocated a conditional expected
utility theory. In conditional expected utility theory, agents determine
an act’s expected utility by weighting utilities by the different states’
probabilities conditional on the act in question being performed. Above,
we called this probability pA(S). How this probability is to be interpreted
is a further important interpretive question. The main disagreement is
about whether it should be given a causal or an evidential interpretation.
Jeffrey himself had worked with an evidential interpretation, while causal
decision theorists, such as Gibbard and Harper (1978/1981), Armendt
(1986), or Joyce (1999)25 have given it a causal interpretation.

The difference between these two interpretations is brought out by the
famous Newcomb Problem, first introduced by Nozick (1969). In this
problem, we imagine a being who is very reliable at predicting your
decisions, and who has already predicted your choice in the following
choice scenario. You are being offered two boxes. One is opaque and either
has no money in it, or $1,000,000. The other box is clear, and you can see
that it contains $1,000. You can choose to either take only the opaque box,
or to take both boxes. Under normal circumstances, it would seem clear
that you should take both boxes. Taking the clear box gives you $1,000

more no matter what.
The complication, however, is that the being’s prediction about your

action determines whether there is money in the opaque box or not. If the
being predicted that you will take two boxes, then there is no money in
the opaque box. If the prediction was that you will take only the opaque
box, there will be money in it. Since the being’s prediction is reliable, those
who take only one box tend to end up with more money than those who
take two boxes.

Note that while this case is unrealistic, there are arguably real-life cases
that resemble the Newcomb Problem in its crucial features. In these cases,
the acts available to an agent are correlated with good or bad outcomes
even though these are not causally promoted by the act. This happens in
medical cases, for instance, if a behavioural symptom is correlated with a
disease due to a common cause. Before the causal link between smoking
and lung cancer was firmly established, interested parties hypothesised
that there may be a common cause which causes both lung cancer, and the
disposition to smoke. If that were right, smoking would not cause lung

25 Joyce also first showed that the two interpretations can be given a unified treatment in a
more general conditional expected utility theory.
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cancer, but merely give you evidence that you are more likely to develop
it.26

Evidential and causal decision theory come apart in their treatment of
these cases. Evidential decision theory traditionally interprets pA(S) as a
standard conditional probability:

pA(S) =
p(A&S)

p(A)
.

According to this interpretation, the probability of the state where there is
$1,000,000 in the opaque box conditional on taking only one box is much
higher than the probability of the state where there is $1,000,000 in the
opaque box conditional on taking two boxes. This is because the act of
taking only one box provides us with evidence that the prediction was
that you would take only one box, in which case there is money in the
opaque box. And so expected utility maximisation would tell you to take
only one box.

Causal decision theorists take issue with this, because at the time of
decision, the agent’s actions have no more influence on whether there
is money in the opaque box or not. Either there is or there isn’t already
money in the box. In either case, it is better for you to take two boxes, as
Table 4 illustrates. This kind of dominance reasoning speaks in favour of
taking both boxes.

Prediction: one box Prediction: two boxes

Take one box $1, 000, 000 $0

Take two boxes $1, 001, 000 $1, 000

Table 4: The Newcomb Problem

Causal decision theory allows for this by giving pA(S) a causal inter-
pretation. It measures the causal contribution of act A to whether state
S obtains. Following a proposal by Stalnaker (1972/1981), Gibbard and
Harper (1978/1981) use the probability of a conditional in their causal
decision theory, instead of a conditional probability. In particular, they use
the probability of the conditional that an outcome would occur if an action
was performed.27

In the Newcomb Problem, neither the act of taking nor the act of not
taking the clear box make any causal contribution to whether there is
money in the opaque box. And so, on the causal interpretation, pA(S)

26 See Price (1991) for more examples.
27 Lewis (1981) shows that if the right partition of acts, states and outcomes is used, Savage’s

decision theory will give the same recommendations as Gibbard and Harper’s, and is thus
a type of causal decision theory.
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just equals the unconditional probability p(S) in both cases. And then
dominance reasoning becomes relevant.

Note, however, that it is controversial whether taking both boxes really
is the rational course of action in the Newcomb Problem. Those who
advocate ‘one-boxing’, such as Horgan (1981/1985) and Horwich (1987),
point out that one-boxers end up faring better than two-boxers. It is also
controversial whether evidential decision theory really does yield the
recommendation to one-box if the problem is represented in the right
way: Eells (1981) argues that evidential decision theory, too, recommends
two-boxing.

Jeffrey (1965/1983) himself supplements evidential decision theory with
a ratifiability condition, which allows him to advocate two-boxing. The
condition claims that an agent should maximise expected utility relative to
the probability function she will have once she finally decides to perform
the action. In the Newcomb Problem, only two-boxing is ratifiable. If the
agent decided to one-box, she would then be fairly certain that there is
money in the opaque box, and then she will wish she had also taken the
second box. If she decides to two-box, she will be fairly certain that there
is no money in the opaque box, and she will be glad that she at least got
the $1,000.28

4 incompleteness and imprecision

Several important challenges to expected utility theory have to do with
the fact that expected utility theory asks us to have attitudes that are more
extensive and precise than the preferences ordinary decision makers have.
In fact, in many cases it does not seem irrational to have attitudes that
are in some way imprecise or incomplete. And so the problems discussed
in the following arise both for the interpretive as well as for the action-
guiding and normative uses of decision theory.

The challenge takes different forms for constructivists and realists. For
constructivists, imprecision and incompleteness will manifest as violations
of the axioms of the representation theorems presented in Section 2. As
we have seen, all of these representation theorems assume that the agent’s
preference relation forms a weak ordering of the elements in its domain.
This means that the preference relation must be transitive and complete.

28 The status of the ratifiability condition is still a part of the contemporary debate on
causal decision theory. One open question is what decision should be favoured in cases of
decision instability, where no action is ratifiable, like in Gibbard and Harper’s Death in
Damascus case (see Gibbard and Harper (1978/1981), and Egan (2007) for further, similar
cases). Arntzenius (2008) and Joyce (2012) argue for ways of dealing with this problem.
The ratifiability condition also helps to illuminate certain equilibrium concepts in game
theory (see Joyce and Gibbard (1998)).
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Both assumptions are controversial for related reasons. Completeness
is controversial because it asks agents to have a more extensive set of
preferences than they actually have. Transitivity is controversial in cases
where an agent’s desires are coarse-grained, as will be explained below.
For realists, a related challenge is that both our degrees of belief and our
strength of desire are not precise enough to allow for representation in
terms of a precise probability and utility function.

4.1 Incompleteness

To start with the completeness condition, the worry here is that agents
simply do not have preferences over all the elements of the set the decision
theory asks them to have preferences over. For instance, if I have lived in
Germany all my life, I might simply have no preference between living
in Nebraska and living in in Wyoming. It’s not that I have never heard
of these places. The question would just never occur to me. It might then
neither be the case that I prefer Nebraska to Wyoming nor that I prefer
Wyoming to Nebraska. I am also not indifferent between the two. I might
simply have no preference. But if these outcomes are part of the set of
outcomes the decision theory asks me to have preferences over, then this
means that I am violating the completeness condition.

Similar claims are often made about cases of incommensurable values.
In a famous example due to Sartre (1945/2007), a young man has to choose
between caring for his sick mother and joining the French Resistance. The
two options here are often said to involve incommensurable values: on the
one hand, responsibility to one’s family, and on the other hand, fighting
for a just cause. In these kinds of cases, too, we might want to say that
the young man is neither indifferent, nor does he prefer one option to
the other. And here, this is not because the question of what he prefers
has never occurred to the man. He may in fact think long and hard about
the choice. Rather, he has no preference because the values involved are
incommensurable.

These kinds of examples are more convincing if our notion of preference
is that of a judgement of choiceworthiness. In these examples, agents have
not made, or are unable to make judgements of choiceworthiness about
some of the elements of the relevant set. If one thinks of preference as
disposition to choose instead, one might think that even if an agent never
thought about a particular comparison of outcomes, there can still be a
fact of the matter what she would be disposed to choose if she faced the
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choice. Moreover, if this is our notion of preference, we simply draw no
distinction between indifference and incommensurability.29

However, this alternative notion of preference may get into trouble
when some of the acts in the relevant set are ones that the agent could
not possibly choose between. The completeness condition in standard
expected utility theory may require the agent to have what Broome (1991)
calls ‘impractical preferences’. For instance, it might require an agent to
have a preference between

O1 : an orange,

O2 : an apple when the alternative is a banana.

Choosing between these alternatives is impossible in the sense that O2 will
not come about unless the alternative is a banana, not an orange. And so
it seems like we cannot determine the agent’s choice disposition between
them.

Incompleteness in preference is often dealt with by replacing the com-
pleteness axiom in the various representation theorems with a condition
of coherent extendibility.30 That is, we only require that an agent’s prefer-
ences are such that we could extend her set of preferences in a way that
is consistent with the other axioms of the representation theorem. The
problem with this strategy is that any representation in terms of prob-
ability or utility that the representation theorem furnishes us with will
only be a representation relative to an extension. There will usually be sev-
eral extensions that are consistent with an agent’s incomplete preferences
and the axioms of the theorem. And thus, there will be several possible
representations of the agent’s preferences. The representation theorem
will no longer furnish us with a unique probability function, and a utility
function that is unique up to positive linear transformations. For this
reason, incompleteness of preference is often associated with imprecise
probabilities.

4.2 Imprecise Probabilities

There is an active field of research investigating imprecise probabilities.31

These imprecise probabilities are usually represented by families of proba-
bility functions. And families of probability functions is exactly what the
representation theorems furnish us with if the completeness condition is

29 In fact, Joyce (1999) considers this an important argument against more behaviourist
interpretations of preference.

30 This is the strategy taken by Kaplan (1983), Jeffrey (1965/1983), and Joyce (1999).
31 See S. Bradley (2015) and Mahtani (this volume) for helpful overviews of the literature. For

an introduction to the theory of imprecise probabilities, see Augustin, Coolen, de Cooman,
and Troffaes (2014).
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replaced by a coherent extendibility condition. While this gives even a
constructivist reason to engage with imprecise probabilities, there are also
various realist arguments for doing so. Many formal epistemologists agree
that sharp degrees of belief that can be expressed with a sharp probability
function are both psychologically unrealistic, and cannot be justified in
situations where there is insufficient evidence.32 If we believe that the
probabilities in decision theory should accurately describe our belief states,
the probabilities in decision theory should then be imprecise.

Another motivation for engaging with imprecise probabilities is that
this allows us to treat states or outcomes to which the agent can assign
precise probabilities differently from states or outcomes to which the agent
cannot assign precise probabilities. This may allow us to make sense of the
phenomenon of ambiguity aversion. Ambiguity aversion occurs in situations
where the probabilities of some states are known, but the agent has no
basis for assigning probabilities to some other states. In such situations,
many agents are biased in favour of lotteries where the probabilities are
known. For instance, take the following example from Camerer and Weber
(1992).33

Suppose you must choose between bets on two coins. After
flipping the first coin thousands of times you conclude it is
fair. You throw the second coin twice; the result is one head
and one tail. Many people believe both coins are probably fair
(p(head) = p(tail) = .5) but prefer to bet on the first coin,
because they are more confident or certain that the first coin is
fair. (p. 326)

Standard expected utility theory cannot make sense of this, since it does
not allow us to distinguish between different degrees of uncertainty. In
standard expected utility theory, every state is assigned a precise probabil-
ity. As a result, ambiguity aversion can lead an agent to violate the axioms
of the different representation theorems. In particular, ambiguity aversion
can result in violations of separability (see Section 5) as in the famous
Ellsberg Paradox.34 Nevertheless, ambiguity aversion is common and does

32 For examples of these claims, see, for instance, Levi (1980) and Kaplan (1996). When an
agent cannot assign a sharp probability to states, we sometimes speak of decision-making
under indeterminacy or ignorance, as opposed to merely uncertainty.

33 Camerer and Weber (1992) also provide an overview of the empirical evidence of this
phenomenon.

34 See Ellsberg (1961).The Ellsberg Paradox runs as follows: you are given an urn that you
know contains 90 balls. 30 of them are red. The remaining 60 are either black or yellow,
but you don’t know what the distribution is. Now first, you are offered the choice between
receiving $100 if a red ball is drawn, and receiving $100 if a black ball is drawn. Most
people choose the former. Then, you are offered the choice between receiving $100 if a
red or yellow ball is drawn, and receiving $100 if a black or yellow ball is drawn. Here,
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not seem irrational. Imprecise probabilities may help us to better model
ambiguity, and thus hold the promise to help us rationalise ambiguity
averse preferences.

There are epistemological objections to using sets of probabilities to
represent beliefs.35 But another common objection to using imprecise prob-
abilities is that they lead to bad decision-making.36 How could decision-
making with imprecise probabilities proceed? We can use each probability
function in the family in order to calculate an expected utility for each act
open to the agent. But then each act will be associated with a family of
expected utilities, one for each member of the family of probability func-
tions. And so the agent cannot simply maximise expected utility anymore.
The question then becomes how we should make decisions with these sets
of probabilities and expected utilities.

One type of simple proposal that appears in the literature is the follow-
ing principle, sometimes called Liberal: an act which maximises expected
utility for every probability function in the family is obligatory. And any
act which maximises expected utility for some probability function in the
family is permitted.37 For an overview of other choice rules, see Troffaes
(2007).

Elga (2010) raises an important challenge for all such choice rules. If
they are permissive, as Liberal is, then they will allow us to make choices
in a series of bets that leave us definitely worse off. But if they are not
permissive, and always recommend a single action, they undercut one
main motivation for using imprecise probabilities in the first place. In that
case, they will pin down precise betting odds for an agent. But, Elga argues,
if we think that the evidence does not license us to use a precise probability,
it would be strange if it determined precise betting odds. Moreover, these
betting odds, if they abide by the axioms of expected utility theory, could
be used to infer a precise probability using the representation theorems
discussed above.38

Elga’s argument bears resemblance to other dynamic arguments against
violations of standard expected utility theory, which will be discussed in

most people choose the latter. These preferences display ambiguity aversion. They are not
consistent with a stable assignment of precise subjective probabilities to the drawing of a
yellow or black ball, combined with the assumption of expected utility maximisation.

35 See, for instance, the problem of dilation. Dilation occurs when an agent’s beliefs become
less precise when she updates on a piece of evidence. The phenomenon was first introduced
by Seidenfeld and Wasserman (1993) and is argued to be problematic for imprecise
probability theory in White (2010). See Joyce (2011), S. Bradley and Steele (2014b) and
Pedersen and Wheeler (2014) for critical discussion.

36 See, for instance, Williamson (2010).
37 See White (2010), Williams (2014), Moss (2015).
38 However, note that there are choice rules that determine precise betting odds that do not

reduce to expected utility maximisation, such as the one introduced by Sahlin and Weirich
(2014).
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Section 7. It may be challenged on similar grounds. There may be dynamic
choice strategies available to agents that guard them against making
sure losses in dynamic choice problems. In fact, Williams (2014) claims
that agents using his choice rule can make their choices ‘dynamically
permissible’ by only considering some of the probability functions in the
family to be ‘live’ at any one point. S. Bradley and Steele (2014a), too,
argue that agents with imprecise credences can make reasonable choices
in dynamic settings.

4.3 Imprecise Utility and Intransitivity

One might expect there to be a literature on imprecision with regard to
utilities similar to the one on imprecise probabilities. For one, replacing
the completeness condition with a condition of coherent extendibility will
not only lead to a family of probability representations, it will also result
in a corresponding family of utility representations. Moreover, there might
be similar realist arguments that could be made in favour of imprecise
strength of desire or degree of preference. Some of the examples of incom-
pleteness, such as the cases involving incommensurable values, could be
described as examples where it is unclear to what degree an agent desires
the goods in question, or how they compare. Such cases are also often
described as cases of ‘vague preference’. However, imprecise utilities and
vague preferences are so far mostly discussed in the mathematical and
economic literature. Fishburn (1998) suggests a probabilistic approach to
studying vague preferences, while most of the literature uses fuzzy set
theory. Salles (1998) provides an introduction to that approach.

There is a certain kind of lack of precision in our attitudes that does not
result in vague preferences or incompleteness of preference. Instead, this
lack of precision leads to a failure of transitivity, and is thus nevertheless
problematic for expected utility theory. Intransitivity arises for outcomes
that the agent finds indistinguishable with regard to some of the things
she values. The problem is brought out most clearly by the Self-Torturer
Problem, introduced by Quinn (1990). It runs as follows: a person has an
electric device attached to her body that emits electric current which causes
her pain. The device has a large number of settings, such that the person
is unable to tell the difference in pain between any two adjacent settings.
However, she can tell the difference between settings that are sufficiently
far apart. In fact, at the highest settings, the person is in excruciating pain,
while at the lowest setting, she is painless. Each week, the person can turn
the dial of the device up by one setting, in exchange for $10,000.
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Let us call the settings of the dial D0, D1, D2, . . . , D1000. In this problem,
the following set of intransitive preferences seems to be reasonable for a
person who prefers less pain to more pain, and more money to less:

D0 ≺ D1 ≺ D2 ≺ . . . ≺ D1000 ≺ D0.

At the highest settings, the person is in such excruciating pain that she
would prefer being at the lowest setting again to having her fortune. At
the same time, if turning the dial up by one setting results in a level of
pain that is indistinguishable from the previous, it seems that taking the
$10,000 is always worth it, no matter how much pain the agent is already
in.

An agent who has the self-torturer’s preferences is clearly in trouble.
In the original example, she can never turn the dial down again once she
has turned it up. If she always follows her pairwise preferences, she will
end up at the highest setting. This is obviously bad for her, by her own
lights: there are many settings she would prefer to the one she ends up at.
If, on the other hand, we suppose that the agent can go back to the first
setting in the end, the problem is that she could be ‘money-pumped’.39

If the agent has a strict preference for the lowest setting over the highest
setting, she should be willing to pay some positive amount of money on
top of giving up all her gained wealth for going back to the first setting.
She will end up having paid money for ending up where she started.

Advocates of standard expected utility theory may point out that these
observations just show why it is bad to have intransitive preferences.
However, critics, such as Andreou (2006) and Tenenbaum and Raffman
(2012), point out that while these are problematic consequences of having
the self-torturer’s preferences, there seems to be nothing wrong with
the self-torturer’s preferences per se. If the agent’s relevant underlying
desires are those for money and the absence of pain, but the agent cannot
distinguish between the levels of pain of two adjacent settings, then there
is nothing in the agent’s desires concerning the individual outcomes that
could speak against going up by one setting. If we think that preferences
should accurately reflect our underlying desires concerning the outcomes,
the self-torturer’s preferences seem reasonable.

Indeed, proponents of expected utility theory acknowledge that it is
somewhat unsatisfactory to simply declare the self-torturer’s preferences
irrational. They have hence felt pressed to give an explanation of why the
self-torturer’s preferences are unreasonable, despite appearances. Arntze-
nius and McCarthy (1997), and Voorhoeve and Binmore (2006) have made
different arguments to show that rational agents would hold that there

39 Money pumps were first introduced as an argument for transitivity by Davidson, McKinsey,
and Suppes (1955).
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is an expected difference in pain between two adjacent settings at least
somewhere in the chain.

Critics note that it is only in the context of the series of choices she
is being offered that the self-torturer’s preferences become problematic.
And so instead of declaring the self-torturer’s preferences irrational, we
may instead want to say that in some cases, it is rational for the agent
to act against her punctate preferences. Andreou (2006) argues that the
intransitive preferences of the self-torturer ought to be revised to be
transitive for the purpose of choice only. Tenenbaum and Raffman (2012)
note that the underlying problem in the self-torturer’s case is that the
agent’s end of avoiding pain is vague. It is not precise enough to distinguish
between all the different outcomes the decision theory may ask her to
evaluate, and that she in fact may have to choose between. They claim that
vague goals that are realised over time may ground permissions for agents
to act against their punctate preferences. And so this is another type of
imprecision in our attitudes which may call for a revision of standard
expected utility theory.

5 separability

5.1 The Separability Assumption

The imprecision and incompleteness of our attitudes discussed in Section 4

may be a problem for expected utility theory even in the context of certainty.
But another important type of criticism of expected utility theory has to do
with the assumptions it makes about choice under uncertainty specifically.
All the representation theorems canvassed in Section 2 make use of a
similar kind of axiom about choice under uncertainty. These axioms are
versions of what Broome (1991) calls separability. The idea here is that what
an agent expects to happen in one state of the world should not affect
how much she values what happens in another, incompatible state of the
world. There is a kind of independence in value of outcomes that occur
in incompatible states of the world. Separability is largely responsible
for the possibility of an expected utility representation. Separability is
a controversial assumption, for the reasons explained in Section 5.2 and
Section 5.3. Here, I present the versions of the separability assumption
used in the representation theorems introduced in Section 2.

In von Neumann and Morgenstern’s representation theorem (see Sec-
tion 2.2), separability is expressed by the independence axiom. Let L

be the space of lotteries over all possible outcomes. Then independence
requires the following:
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Independence. For all Lx, Ly, Lz ∈ L and all p ∈ (0, 1), Lx < Ly if and
only if p · Lx + (1− p) · Lz < p · Ly + (1− p) · Lz.

Independence claims that my preference between two lotteries will not
be changed when those lotteries become sub-lotteries in a lottery which
mixes each with some probability of a third lottery. For instance, suppose
I know I get to play a game tonight. I prefer to play a game that gives me
a 10% chance of winning a pitcher of beer to a game that gives me a 20%
chance of winning a pint of beer. The independence axiom says that this
preference will not be affected when the chances of me getting to play at
all today change. The possibility of not playing at all tonight should not
affect how I evaluate my options in the case that I do get to play.

In Savage’s framework (see Section 2.3), separability is expressed by his
famous sure-thing principle. To state it, we need to define a set of events,
which are disjunctions of states. Let Ai(E) be the act Ai when event E
occurs. The sure-thing principle then requires the following.

Sure-thing Principle. For any two actions Ai and Aj, and any mutually
exclusive and exhaustive events E and F, if Ai(E) < Aj(E) and
Ai(F) < Aj(F), then Ai < Aj.

The idea behind the sure-thing principle is that an agent can determine her
overall preferences between acts through event-wise comparisons. She can
partition the set of states into events, and compare the outcomes of each of
her acts for each event separately. If an act is preferred given each of the
events, it will be preferred overall. That is, if a particular act is preferred
no matter which event occurs, then it is also preferred when the agent
does not know which event occurs.

In Jeffrey’s decision theory (see Section 2.4), separability is expressed by
the averaging axiom. Remember that for him, acts, states and outcomes
are all propositions, and all objects of preference. The averaging axiom
claims the following.

Averaging. If A and B are mutually incompatible propositions, and
A < B, then A < (A or B) < B.

The averaging axiom claims that how much an agent values a disjunction
should depend on the value she assigns to the disjuncts in such a way that
the disjunction cannot be more or less desirable than any of the disjuncts.
When the propositions involved are outcomes that occur in different states
of the world, this requirement, too, expresses the idea that there is an
independence in value between what happens in separate states of the
world. Knowing only that I will end up with one of two outcomes cannot
be worse than ending up with any of the individual outcomes.

Assuming separability for preferences in the way that the independence
axiom, the sure-thing principle and the averaging axiom do ensures that
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the utility representation has an important separability feature as well. As
we have seen, in expected utility theory, the overall value of an action can
be represented as a probability-weighted sum of the utilities of the out-
comes occurring in separate states. This means that the value contribution
of an outcome in one state will be independent of the value contribution
of an outcome of another state, holding the probabilities fixed. And so
the separability of the value of outcomes in separate states is captured by
equating the value of an action with its expected utility. If separability is
problematic, it is thus problematic independently of any representation
theorem. In particular, this means that it is also problematic for realists.

5.2 Violations of Separability

To see how separability may fail, consider the following decision problem,
known as the Machina Paradox.40 Suppose you prefer actually going to
Venice to staying at home and watching a movie about Venice. You also
prefer watching a movie about Venice to doing nothing and being bored.
You are now offered the lotteries described in Table 5. Suppose that each
lottery ticket is equally likely to be drawn, so that, if we want to apply
von Neumann and Morgenstern’s framework, each lottery ticket has a
probability of 1%.

Tickets 1–99 Ticket 100

Lottery A Go to Venice Bored at home

Lottery B Go to Venice Movie about Venice

Table 5: Machina’s Paradox

Many people would prefer lottery A to lottery B in this context. Clearly,
if I am so unlucky as to draw ticket 100, I’d rather not have to watch
a movie reminding me of my misfortune. However, my preferences, as
stated, violate the independence axiom and sure-thing principle. It is also
clear why this violation of separability occurs. What happens in alternative,
incompatible states of the world, that is, what might have been, clearly
matters for how I evaluate the outcome of watching a movie about Venice.
If there was a big probability that I could have gone to Venice, I will
evaluate that outcome differently from when there was no such possibility.
In this case, the reason for an interdependence in value between outcomes
in alternative states of the world is disappointment: the movie about Venice
heightens my disappointment by reminding me of what I could have had.

40 See, for instance, Mas-Colell et al. (1995), chapter 6.
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The natural response to this kind of problem is to say that the outcomes
in the decision problem as I stated it were under-described. Clearly, the
feeling of disappointment is a relevant part of the outcomes of lottery B.
There is nothing irrational about wanting to avoid disappointment, and
many agents do. Thus, according to all the rules for the individuation
of outcomes discussed in Section 1.4, watching a movie about Venice
with disappointment should be a different outcome from watching a
movie about Venice without disappointment. And then, no violation of
separability occurs.

This seems to be a valid response in the case of Machina’s Paradox.
However, there are other violations of separability that arguably cannot
be given the same treatment. One famous case that seems to be more
problematic is the Allais Paradox, introduced in Allais (1953). It runs as
follows. First a subject is offered a choice between $1 million for certain
on the one hand, and an 89% chance of winning $1 million, a 10% chance
of winning $5 million, and a 1% chance of winning nothing on the other.
What she will get is decided by a random draw from 100 lottery tickets.
Many people choose $1 million for certain when offered this choice. Next,
the subject is offered the choice of either a 10% chance of $5 million, and
nothing otherwise on the one hand, or an 11% chance of $1 million, and
nothing otherwise on the other. Again, this is decided by the draw of a
lottery ticket. Here, most people pick the first lottery, that is, the lottery
with the higher potential winnings.

While this combination of preferences seems sensible, it in fact violates
independence and the sure-thing principle, given a natural specification
of the outcomes involved. This becomes evident when we represent the
two choices in decision matrices, as in Table 6 and Table 7.

Tickets 1–89 Tickets 90–99 Ticket 100

Lottery C $1 million $5 million $0

Lottery D $1 million $1 million $1 million

Table 6: Allais Paradox: First Choice

Tickets 1–89 Tickets 90–99 Ticket 100

Lottery G $0 $5 million $0

Lottery H $0 $1 million $1 million

Table 7: Allais Paradox: Second Choice

Choosing lottery D in the first choice, and lottery G in the second choice
violates independence and the sure-thing principle. To start with the sure-
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thing principle, note that in both choices, the two lotteries to be chosen
from are identical with regard to what happens if tickets 1–89 are drawn.
And thus, according to the sure-thing principle, the only thing that matters
for the overall assessment should be what happens if tickets 90–100 are
drawn. But for these tickets, the first choice, between lottery C and lottery
D, and the second choice, between lottery G and lottery H are identical.
And so, the agent should choose lottery D in the first choice if and only
if she chose lottery H in the second choice. Similar reasoning applies for
independence, if we regard each lottery as a compound lottery of the
sub-lotteries involving tickets 1–89 and 90–100 respectively.

Nevertheless, choosing lottery D in the first choice and lottery G in the
second choice is both common41 and does not seem intuitively irrational.
Unless some redescription strategy works to reconcile Allais preferences
with expected utility theory, expected utility theory must declare these
preferences irrational. Redescribing the outcomes to take account of dis-
appointment (or regret) arguably cannot do away with the violation of
separability in the Allais Paradox. Michael Weber (1998) provides an exten-
sive argument to that effect. The Ellsberg Paradox (Section 4.2) is another
case that cannot easily be dealt with by redescription. These examples
suggest that there are more problematic types of interdependence in value
between outcomes in different states of the world that cannot be as easily
reconciled with expected utility theory as the Machina Paradox. They have
consequently been an important motivation for alternatives to expected
utility theory (see Section 6).

There might, however, be good arguments in favour of the verdict
that violations of separability, like the Allais preferences, are genuinely
irrational. Savage himself, as well as Broome (1991) argue that our reasons
for choosing one act or another must depend on states of affairs where
the two acts do not yield the same outcome. This seems to speak in
favour of the sure-thing principle. However, as Broome acknowledges, this
assumes that reasons for action themselves are separable. Somewhat more
promisingly, he suggests that, if the kind of rationality we are interested
in is instrumental rationality, then all our reasons for action must derive
from what it would be like to have performed an action in the various
states that might come about.

Buchak (2013), who, as we will see, defends an alternative to expected
utility theory, argues that instrumental rationality does not require sep-
arability. In any case, note that, even if expected utility theory is right
that separability is a requirement of rationality, examples like the Allais
Paradox still show expected utility theory to be quite revisionary. Expected
utility theory declares preferences that are common and seem intuitively

41 See, for instance Morrison (1967) for experimental evidence that many people choose this
way.
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reasonable as irrational. While this may not be troubling in the case of
the normative and action-guiding projects, this at least seriously calls into
question whether expected utility theory can serve the interpretive project.

5.3 Separability and Risk Aversion

Examples like the Allais Paradox seem to show that agents actually care
about some values that are not separable. The Allais preferences, for
instance, make sense for an agent who cares about certainty. Lottery D
in the first choice seems attractive because it leads to a gain of $1 million
for certain. If the agent does not care merely about the feeling of being
certain, but instead cares about it actually being certain that she gets $1

million, then certainty is a value that is only realised by a combination of
outcomes across different states.

Buchak (2013) calls agents who are sensitive to values that are only
realised by a combination of outcomes across different states (other than
expected utility itself) ‘globally sensitive’. Agents who are globally sen-
sitive are sensitive to features other than the expected utility of an act.
Next to certainty, Lopes (1981, 1996) argues that mean, mode, variance,
skewness and probability of loss are further global features of gambles
agents may care about. She argues that a normatively compelling theory
of decision-making under risk would have subjects weigh off these various
different criteria. Buchak (2013), too, argues that global sensitivity can be
rational, under certain constraints.42

It has been argued that expected utility theory has trouble more gen-
erally in accounting for our ordinary attitudes to risk. In expected utility
theory, risk averse behaviour, such as preferring a sure amount of money to
a risky gamble with a higher expected monetary gain, is always explained
by the concavity of the utility function with regard to the good in question.
When a utility function is concave, the marginal utility derived from a
good is decreasing: any additional unit of the good is worth less the more
of the good the agent already has. When the utility function in money is
concave in this way, the expected utility of a monetary gamble will be less
than the utility of the expected monetary value. And this can mean that
the agent rejects gambles that have positive expected monetary value.

Figure 1 illustrates this for an agent with utility function u(m) =
√

m
and current wealth of $100, who is offered a 50/50 chance of either losing
$100 or gaining $125. For her, the expected utility of accepting this gamble

42 There is some debate whether global sensitivity can also be made compatible with ex-
pected utility theory. Weirich (1986) argues that globally sensitive aversion to risk can be
represented with disutilities that are assigned to outcomes. In the context of Buchak’s
theory, Pettigrew (2014) argues that the global sensitivity allowed for by her theory is
compatible with expected utility theory if outcomes are appropriately redescribed.
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is 0.5 ·
√

0 + 0.5 ·
√

225 = 7.5. This is less than the agent’s current utility
level of

√
100 = 10. The agent would reject the gamble even though it

leads to an expected gain of $12.50.43

2251000

15

10

7.5

m

u(m) u(m) =
√

m

Figure 1: A concave utility function

However, there are results suggesting that decreasing marginal utility
alone cannot adequately explain ordinary risk aversion. For monetary
gambles, it can be shown that according to expected utility theory, any
significant risk aversion on a small scale implies implausibly high levels
of risk aversion on a large scale. For instance, Rabin and Thaler (2001)
show that an expected utility maximiser with an increasing, concave utility
function in wealth who turns down a 50/50 bet of losing $10 and winning
$11 will turn down any 50/50 bet involving a loss of $100, no matter how
large the potential gain. Conversely, any normal level of risk aversion for
high stakes gambles implies that the agent is virtually risk neutral for
small stakes gambles.44 These results are troubling because we are all risk
averse for small stakes gambles, and we are all willing to take some risky
gambles with larger stakes. Moreover, this does not seem to be intuitively
irrational.

Another, more direct line of critique of the way expected utility theory
deals with risk aversion is available to realists about utility. If we think of
utility in the realist sense, for instance as measuring the strength of our
desire, it seems like we can be risk averse with regard to goods for which
our utility is not diminishing. But according to expected utility theory, we

43 See Mas-Colell et al. (1995), chapter 6 for more detail on expected utility theory’s treatment
of risk aversion.

44 See Samuelson (1963) and Rabin (2000) for similar results.
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cannot be risk averse with regard to utility itself. For realists, depending
on their interpretation of utility, this may be counterintuitive.45

6 alternatives to expected utility theory

Most alternatives to expected utility theory have been introduced as de-
scriptive theories of choice under uncertainty, with no claim to capturing
rational choice. The most well-known is prospect theory, introduced by
Kahneman and Tversky (1979). Its most distinctive features are firstly,
that it includes an editing phase, in which agents simplify their decision
problems to make them more manageable, and secondly, that outcomes are
evaluated as losses and gains relative to some reference point. In prospect
theory, losses can be evaluated differently from gains. Since different ways
of presenting a decision problem may elicit different reference points, this
means that the agents described in prospect theory are sensitive to ‘fram-
ing’. While real agents are in fact subject to framing effects,46 sensitivity to
framing is commonly regarded as irrational.

Alternatives to expected utility theory in the economic literature, too,
have given up the idea that agents maximise a utility function that is
independent of some reference point. Generalised expected utility the-
ory, as developed in Machina (1982), for instance, introduces local utility
functions, one for each lottery the agent may face. The lack of a stable
utility function makes it difficult to interpret these theories as theories of
instrumental rationality.

Other non-expected utility theories, in particular rank-dependent utility
theory, as introduced by Quiggin (1982), use a stable utility function. In
contrast to expected utility theory, however, they introduce alternative
weightings of the utilities of outcomes. While in expected utility theory,
an outcome’s utility is weighted only by its probability, in rank-dependent
utility theory, weights depend not only on the probability of an outcome,
but also its rank amongst all the possible outcomes of the action. This al-
lows the theory to model agents caring disproportionately about especially
good and especially bad low probability outcomes.

Buchak (2013) introduces risk-weighted expected utility theory, in which
a ‘risk function’ plays the role of the weighting function. In contrast
to older rank-dependent utility theories, she argues that risk-weighted
expected utility theory provides us with utilities and probabilities which
can be interpreted as representing the agent’s ends and beliefs respectively,

45 See Buchak (2013) for this line of critique, as well as more examples of risk aversion that
expected utility has trouble making sense of.

46 See, for instance, Tversky and Kahneman (1981).



94 johanna thoma

and a risk function, which represents the agent’s preferences over how to
structure the attainment of her ends.47

There is a research programme in the psychological literature that
studies various heuristics that agents use when making decisions in the
context of uncertainty. While these are usually not intended as norma-
tive theories of rational choice, they have plausibility as action-guiding
theories—theories that cognitively limited agents may use in order to
approximate a perfectly rational choice. Payne et al. (1993), for instance,
introduce an adaptive approach to decision-making, which is driven by
the tradeoff between cognitive effort and accuracy. Gigerenzer et al. (2000)
introduce various “fast-and-frugal” heuristics to decision-making under
uncertainty.

7 dynamic choice

So far, we have looked at individual decisions separately, as one-off choices.
However, each of our choices is part of a long series of choices we make in
our lives. Dynamic choice theory models this explicitly. In dynamic choice
problems, choices, as well as the resolution of uncertainty happen sequen-
tially. Dynamic choice problems are typically represented as decision trees,
like the one in Figure 2. The round nodes in this tree are chance nodes,
where we think of the agent as going ‘left’ or ‘right’ depending on what
state of affairs comes about. The square nodes are decision nodes, where
the agent can decide whether to go ‘left’ or ‘right’.

There are a number of interesting cases where an agent ends up making
a series of seemingly individually rational choices that leave her worse off
than she could be.48 Dynamic choice theory helps us analyse such cases.
Here I want to focus on dynamic choice problems involving agents who
violate standard expected utility theory. These cases provide some of the
most powerful arguments in favour of expected utility theory, and against
the alternatives canvassed in Section 6. We already mentioned Elga’s
dynamic choice argument against imprecise probabilities in Section 4.2.
Here, I turn to arguments involving violations of separability.

7.1 Dynamic Arguments in Favour of Separability

Machina (1989) discusses the following dynamic version of the Allais
Paradox. This dynamic version serves as an argument against Allais pref-
erences, and violations of separability more generally. In this dynamic

47 For an overview of other alternatives to expected utility theory in the economic literature,
the two most comprehensive surveys are Schmidt (2004) and Sugden (2004).

48 One example is the Self-Torturer Problem discussed in Section 4.3. Andreou (2012) is a
helpful overview of more such cases.
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version, agents only get to make a decision after some of the uncertainty
has already been resolved. They make a choice after they have found out
whether one of tickets 1–89 has been drawn, or one of tickets 90–100 has
been drawn, as shown in Figure 2.
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Figure 2: Dynamic Allais Problem

The interesting feature of the dynamic case is that at the time where
the agent gets to make a decision, the rest of the tree, sometimes called
the ‘continuation tree’, looks the same for the first and second choice. We
might think that this means that the agent should decide the same in
both cases. But then she will end up choosing in accordance either with
lotteries C and G respectively, or with lotteries D and H respectively, but
not according to the Allais preferences. That in turn means that for at least
one of the choices, an agent with Allais preferences will end up choosing
contrary to what she would have preferred at the beginning of the decision
problem, before any uncertainty has been resolved.

This has been held to be problematic for a variety of reasons. Firstly,
for the agent we are considering, the dynamic structure of the decision
problem clearly makes a difference to what she will choose. It can make a
difference whether the agent faces a one-off choice or a dynamic version
of that choice involving the same possible outcomes. But, it is claimed, for
instrumentally rational agents, who care only about the final outcomes,
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the temporal structure of a decision problem should not matter. Secondly,
suppose the agent anticipates that, after uncertainty has been removed, she
will go against the preferences she has at the outset. Such an agent would
presumably be willing to pay to either not have uncertainty removed,
or to restrict her own future choices. Paying money for this looks like a
pragmatic cost of having these kinds of preferences. Moreover, refusing
free information has been argued to be irrational in its own right.49 Thirdly,
the agent does not seem to have a stable attitude towards the choice to
be made in the dynamic decision problem, even though her underlying
preferences over outcomes do not change. All of these considerations have
been argued to count against the instrumental rationality of an agent with
Allais preferences.

Similar dynamic choice problems can be formulated whenever there is
a violation of separability. In Savage’s framework, whenever the agent’s
attitudes are non-separable for two events, one can construct decision
problems where the two events are de facto ‘separated’ by revealing which
of the events occurs before the agent gets to decide. And then parallel
problems will arise. In fact, if we find the previous argument against Allais
preferences convincing, we can formulate a very general argument in
favour of expected utility theory. Spelling out the argument from conse-
quentialism in Hammond (1988) in more precise terms, McClennen (1990)
shows that, given some technical assumptions, expected utility theory can
be derived from versions of the following principles:

NEC (Normal-form/Extensive-form Coincidence). In any dynamic
decision problem, the agent should choose the same as she would,
were she to simply choose one course of action at the beginning of
the decision problem.

SEP (Dynamic Separability). Within dynamic decision problems, the
agent treats continuation trees as if they were new trees.

DS (Dynamic Consistency). The agent does not make plans she foresee-
ably will not execute.

A similar argument is made by Seidenfeld (1988). The third condition in
McClennen’s formulation is fairly uncontroversial. However, those defend-
ing alternatives to expected utility theory have called into question both
NEC and SEP. Buchak (2013) discusses both the strategy of abandoning
SEP and that of abandoning NEC, and argues that at least one of them
works.

SEP is characteristic of a choice strategy that was first described by Strotz
(1956), and is now known in the literature as ‘sophisticated choice’.50 So-

49 See, for instance, Wakker (1988).
50 See McClennen (1990) for a characterisation of different dynamic choice rules.
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phisticated agents treat continuation trees within dynamic choice problems
as if they were new tress. Moreover, they anticipate, at the beginning of
the dynamic choice problem, that they will do so. Given this prediction
of their own future choice, they choose the action that will lead to their
most preferred prospect. They thus follow a kind of ‘backward induction’
reasoning. Sophisticated agents fail to abide by NEC: they can end up
choosing courses of action that are dispreferred at the beginning of the
choice problem. This can be seen in our example of the dynamic Allais
Paradox. Sophisticated agents behave in the way we assumed above. They
thus suffer the pragmatic disadvantages we described.51

Those who question NEC allow that the dynamic structure of a decision
problem can sometimes make a difference, even if that may have tragic
consequences. But note that one can question NEC as a general principle
and still think that in the particular dynamic choice problems we are
considering, the pragmatic disadvantages count against having preferences
that violate separability.

Because of the difficulties associated with sophistication described above,
many advocates of alternatives to expected utility theory have rejected
SEP instead. For instance, Machina (1989) argues that SEP is close enough
to separability that accepting SEP begs the question against separability.
If SEP is given up, it can make a difference to an agent if she finds
herself in the middle of a dynamic choice problem rather than at the
beginning of a new one. One choice rule that then becomes open to her is
‘resolution’, where the agent simply goes through with a plan she made
at the beginning of a decision problem. Resolute agents obviously abide
by NEC and avoid any pragmatic disadvantages. A restricted version of
this dynamic choice rule is advocated by McClennen (1990).52 Rabinowicz
(1995) argues that sophistication and resolution can be reconciled.

7.2 Time Preferences and Discounting

While dynamic choice theory is concerned with the temporal sequence of
our decisions, there is another branch of decision theory that is concerned
with the timing of the costs and benefits that are caused by our actions.
This literature studies the nature of our time preferences: do we prefer
for an outcome to occur earlier or later? How much would we give up in
order to receive it earlier or later?

51 In fact, Seidenfeld discusses cases where sophisticated agents end up making a sure loss.
52 Note that related notions of resolution are also discussed in the non-formal literature in

order to deal with problems of diachronic choice, such as the Toxin Puzzle, described in
Kavka (1983). See, for instance, Holton (2009) and Bratman (1998), as well as the discussion
on the Self-Torturer Problem in Section 4.3 above.
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Since most agents prefer for good outcomes to occur earlier, and bad
outcomes to occur later, Samuelson (1937) proposed the discounted utility
model. According to this model, agents assign the same utility to an
outcome (in Samuelson’s model these are consumption profiles) no matter
when it occurs, but discount that utility with a fixed exponential discount
rate. They can then calculate how much a future outcome is worth to them
at the time of decision, and maximise their discounted utility. In the case
where decisions are made under certainty, let the outcomes occurring at
different points in time, up until period t, be O1, . . . , Ot. The agent assigns
utility u(O) to each of these outcomes. This is an ‘instantaneous’ utility
function, where the timing of the outcome does not matter for the utility
assignment. Moreover, let d be the discount factor. The agent’s discounted
utility DU(O1, . . . , Ot) is then given by:

DU(O1, . . . , Ot) =
t

∑
i=1

di · u(Oi).

This discounted utility describes the current value of the stream of out-
comes O1, . . . , Ot to the agent. According to the discounted utility model,
agents maximise this discounted utility. When we have 0 < d < 1, the
agent prefers good outcomes to occur sooner rather than later. In that
case, it is also true that the value of an infinite, constant stream of benefits
will be finite. Koopmans (1960) presents a number of axioms on time
preferences, and provides a representation theorem for the discounted
utility model.

One main advantage of being the type of agent who abides by the
discounted utility model is that for such an agent, there will be no pref-
erence reversals as time moves on (this feature is sometimes referred to
as ‘time consistency’). That is, an agent will never suddenly reverse her
preference between two actions as she gets closer in time to a choice.
Yet, such preference reversals are common.53 It has been argued that the
hyperbolic discounting model advocated by Ainslie (1992), which allows
for such reversals, models the ordinary decision-maker better. Whether
the discounted utility model is normatively adequate is controversial, and
depends in part on whether we think that time inconsistency is necessarily
irrational.54 In fact, time inconsistent preferences, just like preferences that
violate expected utility theory, may lead to problematic patterns of choice
in dynamic choice problems, unless the agent adopts the right dynamic
choice rule.

The discounted utility model underlies much public decision-making.
Discount rates are standardly applied in cost-benefit analyses. This has

53 For empirical evidence of this phenomenon, see, for instance, Thaler (1981).
54 Frederick, Loewenstein, and O’Donoghue (2002) provide a helpful overview of this debate,

and the literature on time preferences more generally.
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received special philosophical attention in the case of cost-benefit analyses
of the effects of climate change. Ethicists and economists have debated
whether a strictly positive discount rate is justified when evaluating the
costs of climate change.55 Much recent work on time preference and
discounting has focused on how to discount in the context of uncertainty.
Again, this question is especially important for evaluating the costs of
climate change, since these evaluations are carried out in the context of
great uncertainty. Gollier (2002) provides an expected utility based model
of discounting under uncertainty that much of this literature appeals to.
Weitzman (2009) discusses discounting in a context where our estimates of
future climate have ‘fat tails’, and argues that fat tails make a big difference
to our evaluations of the costs of climate change.

8 concluding remarks

This entry started out by introducing decision theories that can be classified
under the heading of ‘expected utility theory’. Expected utility theory is an
enormously influential theory about how we do and should make choices.
It has been fruitfully applied in many different fields, not least philosophy.
This entry has described expected utility theory, discussed how it can be
applied to the choices real agents face, and introduced debates about its
foundations and interpretation.

Much recent discussion in decision theory concerns the two main types
of challenge to traditional expected utility theory that the latter half of
this entry focused on. The first type of challenge claims that traditional
expected utility theory requires agents to have attitudes that are too
fine-grained and too extensive. According to this challenge, agents have
attitudes, and are rationally permitted to have attitudes that are imprecise,
or vague, or incomplete. The important question arising for expected
utility theory is whether it can incorporate imprecision, vagueness, and
incompleteness, or whether it can instead offer a convincing argument
that these attitudes are indeed irrational.

The second type of challenge questions the assumption of separability
that underlies expected utility theory—that is, the assumption that the
value of an outcome in one state of the world is independent of what
happens in other, incompatible states of the world. According to this chal-
lenge, agents have attitudes to risky prospects that violate this assumption,
and are rationally permitted to do so. This challenge, in particular, has
inspired alternatives to expected utility theory. Alternatives to expected

55 See, in particular, the debate between Stern (2007) and Nordhaus (2007). For a philosopher
who holds that there is no justification for time preference in public decision-making, see
Broome (1994).



100 johanna thoma

utility theory face challenges of their own, however, not least the question
of whether they can make sense of dynamic choice.
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Suppose we take a standard, randomly shuffled pack of cards with no
jokers, and ask what the probability is that the top card is a red picture
card. We can calculate the probability of this to be 6/52 = 3/26. And of
course if, as many think, people have degrees of belief, or credences,
then you—knowing only that the pack is normal and has been randomly
shuffled—should have a credence of 3/26 that the top card is a red picture
card.

But many think that you can have credences in all sorts of claims,
and not just claims about random events involving cards, dice or coins.
In particular, classical Bayesian epistemologists think that you have a
credence in every proposition that you can entertain. Thus for example,
there is some number between 0 and 1 that is your credence that it will
snow in London on New Year’s Day 2026; and there is some number
between 0 and 1 that is your credence that I have a cup of tea beside my
computer as I type. But what exactly are your credences in these claims?
Perhaps no particular number springs to mind. Unlike in the playing card
scenario above, here there does not seem to be any obvious way to ‘work
out’ what the probability of these events is and so arrive at the precise
credence that you ought to have. Cases like these have led some to reject
the classical Bayesian epistemologist’s claim that people must have precise
credences in every proposition that they can entertain. Instead it is claimed
that people—even rational people—can have imprecise credences in at
least some propositions. Hereafter I will use ‘imprecise probabilism’ as
the name for the view that rational people can have imprecise credences.

Imprecise probabilism has some intuitive appeal. Take again the claim
(which we can call ‘nyd’) that it will snow in London on New Year’s
Day 2026. It is hard to put a precise number on your credence—but
there may still be something we can say about your attitude towards
this proposition. For example, perhaps you think the claim is not very
likely, but far from impossible, and certainly more likely than the claim
(which we can call ‘midsummer’) that it will snow on Midsummer’s day
in London in 2026. We might think that your credences in these claims can
be represented with ranges, rather than points. For example, perhaps your
credence in nyd is the range (0.1, 0.4), and your credence in midsummer is
the range (0.01, 0.05). Versions of this idea—of representing credences by
ranges rather than points—can be found in numerous sources, including
R. Bradley (2009), Gärdenfors and Sahlin (1982), Jeffrey (1983), Joyce (2005),
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Kaplan (1996), Keynes (1921), Kyburg (1983), Levi (1974), Sturgeon (2008),
van Fraassen (2006), and Walley (1991).

To explain imprecise probabilism in more depth, I must first set out
the classical Bayesian view more precisely. We begin with a set (an event
space) Ω = {w1, w2, . . . , wn}. Each wi in Ω is a state of affairs, or possible
world. We can then see a proposition (or event) A as a subset of set Ω.
For example, suppose we take the proposition that a particular dice throw
landed on an even number. This proposition obtains at all those possible
worlds where the dice lands on 2, 4, or 6. Thus there will be a set of
possible worlds where the proposition obtains. For the purposes of this
topic, we assume that the proposition can be identified with that set of
possible worlds at which it is true.

Now consider a set F = {A1, A2, . . . , Am} of these propositions (which
are themselves each sets of possible worlds). To make this set a sigma
algebra (σ-algebra), the set must be closed under union, intersection, and
complementation. For the set to be closed under union, it must be the
case that for two propositions Ai and Aj in the set, the union (Ai ∪ Aj)
is also in the set; similarly, for the set to be closed under intersection, it
must be the case that for any two propositions Ai and Aj in the set, the
intersection (Ai ∩ Aj) must also be in the set; and for the set to be closed
under complementation it must be the case that for any proposition Ai in
the set, the proposition Ω− Ai must also be in the set.

Finally we introduce a function p mapping F to [0, 1]. Thus for example,
if F contains some proposition A, then our function p will map that propo-
sition A to some number between 0 and 1. If the function is a probability
function, then it will meet these three conditions (the probability axioms).

1. p(A) ≥ 0, for all A in F .

2. p(Ω) = 1.

3. If Ai ∩ Aj = ∅ then p(Ai ∪ Aj) = p(Ai) + p(Aj).

Classical Bayesian epistemologists claim that any rational agent has an
epistemic state that can be represented by such a probability function.
In contrast according to the imprecise probabilist, a rational agent may
have an epistemic state that cannot be represented by a single probability
function. Instead, the imprecise probabilist typically claims that a rational
agent’s epistemic state can be represented by a set of probability functions
P = {p1, p2, . . . , pk}. Thus rather than assigning each proposition in F
some unique number, for each proposition A in F there will be some least
number assigned to it by the probabilities in P (the agent’s lower envelope
of A), and some greatest number assigned to A by the probabilities P (the
agent’s upper envelope of A).
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Thus the imprecise probabilist moves away from the classical Bayesian
view by claiming that an agent’s epistemic state is given not by a single
function from propositions to numbers, but by a set of such functions. And
if the agent is rational, then each of the functions in the set that represents
the agent’s epistemic state will be a probability function. In van Fraassen’s
terminology, this set of functions is the agent’s representor (van Fraassen,
1990). On another vivid version of this account, we can see the set as a
group of avatars (R. Bradley, 2009), each of whom has a precise credence
function: these avatars collectively represent the agent’s epistemic state.

This view raises some interesting problems, but before I turn to these, I
will first explore in more depth the central claims of the view.

1 exploring the view

How can a set of credence functions represent an agent’s epistemic state?
Or, to put the point another way, what must be true of a given agent
for her epistemic state to be correctly represented by some specific set of
credence functions?1

The idea is that what holds across all the credence functions in the set,
holds for the agent’s epistemic state.2 Thus for example, suppose that
every credence function in the set assigns the number 0.5 to the claim that
the next fair coin tossed will land heads: then it follows that the agent has
a credence of precisely 0.5 in this claim. Or suppose that every credence
function in the set assigns a number of no more than 0.4 to the claim nyd:
then it follows that the agent has a credence of no more than 0.4 in this
claim. Or suppose that every credence function in the set assigns a higher
number to nyd than it does to midsummer: then it follows that the agent
has a higher credence in the claim nyd than she does in midsummer.

On this picture, there may be some questions we can ask about the
agent’s epistemic state which have no answer. For example, we might
wonder which of a pair of claims is given the highest credence, or whether
they are given equal credence—but there may be no answer to this question
if the credence functions that represent the agent’s epistemic state conflict
over this. Similarly, on learning that an agent has a credence of no more
than 0.4 in nyd, we might ask what exactly the agent’s credence is in this
claim. But there is no answer to this question if the different credence
functions that represent the agent’s epistemic state assign different values
to this claim. In such cases, it is natural to say that the agent’s credence in
a claim is a range rather than a single unique number—where the range
contains all and only those numbers that are assigned to the relevant

1 Richard Bradley argues that for any given epistemic state, there is a unique maximal set of
such functions that represents that epistemic state (R. Bradley, 2009, p. 242).

2 Or perhaps, is determinately true of the agent’s epistemic state (Rinard, 2015).
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proposition by some credence function from the set that represents the
agent’s epistemic state.

I turn now to consider some variations on this view, and some initial
objections and clarifications.

1.1 Variations on the view

Here I contrast two different sorts of imprecise probabilist. All proponents
of imprecise probabilism agree that agents are sometimes permitted to
have imprecise credences in some propositions. They thus stand in con-
trast to the classical Bayesian epistemologists, according to whom rational
agents have precise credences in every proposition which they can enter-
tain. But even amongst those who accept imprecise probabilism, there
is disagreement over whether imprecise credences are ever required by
rationality.

James Joyce, for example, argues that one’s degrees of belief should be
no sharper than the evidence requires (Joyce, 2005): Joyce requires an agent
to have an imprecise credence in a claim where the evidence for that claim
does not justify a more precise credence. Thus for example consider again
the claim nyd, that it will snow in London on New Year’s Day 2026. Given
that the evidence for this is (as yet) slight, an agent who had a precise
credence in this claim (e.g. a credence of exactly 0.35) would be irrational.
In contrast, take the claim that the next fair coin tossed will land heads.
Given that the chance of this event is known to be 0.5, it is rational to have
a credence of exactly 0.5 in this claim.

To clarify this view, we need to explain what determines the correct
imprecise credence for an agent to have in any given situation. One possi-
ble answer to this is the chance grounding thesis: “one’s spread of credence
should cover the range of chance hypotheses left open by the evidence”
(White, 2009, p. 174).3 To see what this means, let us consider a few exam-
ples. First take an agent who knows that a coin is fair, and is contemplating
the claim, heads, that on the next toss the coin will land heads. Given
that (s)he knows that the chance of heads is 0.5, the chance grounding
thesis requires that every credence function in the set that represents the
agent’s epistemic state must assign 0.5 to heads—and so the agent must
herself have a credence of precisely 0.5 in heads. Now suppose instead
that the agent has a coin that she does not know to be fair: the chance of
its landing heads (heads*) is anywhere within the range (0.2, 0.8), for all
she knows. Then the chance grounding thesis requires that for each value
v within the range (0.2, 0.8), there must be a credence function in the set
that represents the agent’s epistemic state that assigns v to heads*. And

3 White defines this thesis, but does not endorse it.
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furthermore there must be no credence function in the set that assigns to
heads* some value v that is outside the range (0.2, 0.8).

This chance grounding thesis generates some counterintuitive results,
and Joyce argues that it should be replaced with the less stringent demand
that when your only relevant evidence is that the chance of some event is
within some interval (a, b), then your spread of credence ought to cover
this range (Joyce, 2010, p. 289). So for example suppose that in the case
above, you know not only that the chance of the coin’s landing heads is
within the range (0.2, 0.8), but also that the coin was selected at random
from a bag which contained a variety of coins with complementary biases:
i.e. for each coin in the bag that has a chance v of landing heads, the bag
also contained exactly one coin with a chance 1− v of landing heads. In
this case, because you have this extra piece of evidence, your “spread of
credence” in heads is not required to cover the whole range (0.2, 0.8), and
a credence of precisely 0.5, say, is permitted. However if you know only
that the chance of the coin’s landing heads is within the range (0.2, 0.8),
then your spread of credence in heads is required to cover the whole
range (0.2, 0.8).

Now we turn to consider imprecise probabilists who permit, but never
require agents to have imprecise credences. For these theorists, an agent is
free to have a credence of precisely 0.35 in the claim nyd (that it will snow
in London on New Year’s Day 2026). To these theorists, we might ask
whether there are any rational constraints on an agent’s epistemic state, bar
the requirement that their state should be represented by some maximal
set of credence functions that obey the probability axioms. Such a theorist
might require that any rational agent’s epistemic state will conform to the
principal principle—i.e. that the agent’s credence in any claim P conditional
on the chance of P being some value v, is v (Lewis, 1980). From this, it
follows that in the case where an agent is contemplating the claim (heads)
that on its next toss a coin known to be fair will land heads, the agent’s
credence in heads must be 0.5. But what constraint is placed on the agent
in the case where (s)he is contemplating the claim (heads*) that on its
next toss a coin known to have a chance within the range (0.2, 0.8) will
land heads? The principal principle here requires that the agent’s credence
should not exceed the range (0.2, 0.8), but nothing seems to require that
the agent’s credence should occupy this entire range.

Having explored this variation in the views of imprecise probabilists, I
turn now to contrast the account with an alternative view.

1.2 Dempster-Shafer Theory

An alternative approach to modelling our epistemic state involves belief
functions (Dempster, 1967, 1968; Shafer, 1976). To illustrate this view, we
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can again take the proposition (nyd) that it will snow in London on New
Year’s Day in 2026, and suppose that my belief-function assigns a value of
0.6 to this claim: we represent this by writing Bel(nyd) = 0.6. If my belief
function was a probability function, then it would follow that the value
assigned to the negation of nyd (i.e. to not-nyd) would be 0.4. However a
belief function need not be a probability function, and it might assign any
value less than or equal to 0.4 to not-nyd. Thus for example, it might assign
a value of 0 to not-nyd. This is despite the fact that the value assigned to
the tautology (either nyd or not-nyd) must be 1.

More generally, on this view the value assigned to the disjunction of
two disjoint propositions A and B, Bel(A ∪ B), need not equal the sum of
Bel(A) and Bel(B). The requirement is only that the value assigned to the
disjunction must be at least as great as the sum of the values assigned to
the disjuncts. Thus the belief function is not a probability function, as the
third probability axiom (countable additivity) does not apply.

One way to interpret the idea of a belief function, is as a measure of the
weight of evidence for each proposition. Thus consider again my belief
function that assigns a value of 0.6 to nyd. We can suppose that I have
asked a friend whether it will snow in London on New Year’s Day 2016,
and (s)he assures me that it will. I consider this friend to be reliable in 60%
of cases of this sort, and this explains why my belief function assigns a
value of 0.6 to this claim. If we suppose that this is all the relevant evidence
that I have, then my belief function assigns a value of 0 to not-nyd simply
because I have no evidence to support not-nyd. In cases where I have
evidence from two different sources (e.g. in a case where I make another
friend who also gives me his or her opinion on nyd), then the belief
functions that result from these different bodies of evidence need to be
combined, and Dempster and others have explored the question of how
this combination should be carried out (Dempster, 1967).

In common with imprecise probabilism—and in apparent contrast with
classical Bayesianism—this theory has resources designed to model severe
uncertainty. To see this, suppose that a coin is about to be tossed, and
that you have no information whatsoever about whether the coin is fair or
how it might be biased. On the classical Bayesian view, in spite of your
severe uncertainty, you will nevertheless have a precise probability that
the coin will land head-side-up. This strikes many as counterintuitive.
Advocates of both imprecise probabilism and Dempster-Shafer theory
take their theories to improve on classical Bayesianism here. According to
imprecise probabilism, in the case where you have no information about
the bias of the coin, a rational agent may—and on some versions of the
theory, must—have a credal range of (0, 1) rather than a precise credence
of 0.5. And according to Dempster-Shafer theory, in a case where you have
no information about the bias of the coin, you have no evidence in favour
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of heads, and no evidence in favour of tails, and so your belief function
will assign a value of 0 to both heads and tails.

For more on the Dempster-Shafter theory, and how it differs from both
classic Bayesianism and imprecise probabilism, see Halpern (2003) and
Yager and Liu (2008).

1.3 Scoring Rules

I turn now to an issue for those theorists who want to apply the idea of
accuracy scoring rules in the context of imprecise probabilism. I begin by
outlining a standard proposal for measuring the (in)accuracy of a credence
function, and I explain how this sort of scoring rule has been used to
construct an argument for probabilism. I then gesture towards some of the
challenges that arise when we consider these measures of accuracy in the
context of imprecise probabilism.

Let’s begin then with the classical Bayesian picture, according to which
a rational agent’s epistemic state is represented with a single precise
credence function. In this context a variety of scoring rules have been
proposed for measuring a credence function’s (in)accuracy at a given
world. One popular such rule is the Brier score (Brier, 1950) which I outline
here. First we set the truth-value of a proposition at a world to 1 if the
proposition is true there, and 0 if it is false. Now we can measure the
“distance” between the truth-value of the proposition at a world and the
credence assigned to it, by taking the difference between the two and
squaring the result. To illustrate this, suppose that you have a credence of
0.8 in the proposition that the world’s population is over 7 billion in 2016.
In the actual world, this proposition is true, and so has a truth-value of
1. Thus we measure the distance between the credence assigned to this
proposition and its truth-value in the actual world as follows: take the
truth value of the proposition (1), deduct the value assigned to it by the
credence function (0.8), and then square the result (giving 0.04). We get the
inaccuracy score for an entire credence function at a world by calculating
this distance for each proposition that is assigned a value by the credence
function, and summing the lot.

The Brier score is just one suggestion for measuring inaccuracy, and
others have been proposed, along with various claims about conditions
that any scoring rule ought to fulfil. One such requirement is that a scoring
rule ought to be proper, which can be defined as follows: any agent with a
rationally permissible credence function (i.e. one that obeys the probability
axioms), will score her own credence function to be no more inaccurate
than every other credence function, if the scoring rule that she uses is
proper. The Brier score is one example of a scoring rule that meets this
requirement.
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Scoring rules of this sort have been used to argue for probabilism—i.e.
for the claim that a rational agent’s credence function obeys the probability
axioms. The argument works by showing that for any credence function Cr
that does not obey the probability axioms, there is an alternative credence
function Cr∗ which does obey the probability axioms and which dominates
Cr in the following sense: the inaccuracy of Cr is at least as great as the
inaccuracy of Cr∗ at every world, and at some world the inaccuracy of Cr
is greater than the inaccuracy of Cr∗. Thus, the argument goes, it would be
irrational to have a credence function such as Cr which does not obey the
probability axioms, when an alternative credence function Cr∗ is available.
Arguments of this sort can be constructed using any scoring rule provided
that it meets certain requirements—including the requirement that it be
proper (Joyce, 1998). Arguments from accuracy for a variety of other
epistemic principles have also been proposed, including an argument for
the principal principle (Pettigrew, 2013), and conditionalization (Greaves
& Wallace, 2006).

We can now consider how these issues are affected by a switch from
precise to imprecise probabilities. If an agent has an imprecise credence
function, then how should the inaccuracy of her credence function be mea-
sured? We can see at once that the original measures of inaccuracy cannot
be straightforwardly carried across—for where an agent’s credence in
some proposition is imprecise, we have no single number which measures
that agent’s credence, and so cannot make sense of the idea of deducting
the agent’s credence in a given proposition from its truth-value at some
world. Thus a new way of measuring inaccuracy is needed.

There is not yet any consensus as to what this new way of measuring
inaccuracy would be like. Some authors have proposed requirements that
any way of measuring the inaccuracy of an imprecise credence function
would need to meet, and some have uncovered difficulties for the project.
Seidenfeld, Schervish, and Kadane argue that there is no strictly proper
scoring rule for imprecise probabilities. See Seidenfeld, Schervish, and
Kadane (2012) and Mayo-Wilson and Wheeler (2016) for further discussion
on this issue. Schoenfield (2017) argues that if the new accuracy scoring
rule meets certain conditions, then the claim that accuracy is all that
matters is incompatible with the claim that imprecise probabilities are
sometimes rationally required—or even permitted. Thus challenges await
those who wish to endorse both imprecise probabilism and accuracy
arguments.

Having explored the account of imprecise probabilities, I turn now to
some of the most discussed objections and problems for the account. I
divide these into two categories: learning and deciding.
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2 learning

On the classic Bayesian picture, an agent’s epistemic state is represented
by a single credence function. If the agent is rational, then she will update
(only) by conditionalization. Thus for example suppose that an agent
is about to run an experiment at the end of which she will have learnt
(just) either E or not-E. At the start of the experiment (at t0) let’s suppose
that the agent has a credence of 0.2 in E, and a credence of 0.5 in some
hypothesis H. Furthermore, the agent has a conditional credence of 0.9
in H given E: in other words, if we let Cr0 name the agent’s credence
at t0, then Cr0(H | E) = Cr0(H ∩ E)/Cr0(E) = 0.9. Now suppose that
the experiment runs, and at t1 the agent discovers E. The agent’s new t1

credence function (Cr1) ought rationally to be her old t0 credence function
(Cr0) conditionalized on the new evidence that she has gained, E. Thus her
new credence in H ought to be her old conditional credence in H given E:
Cr1(H) = Cr0(H | E) = 0.9.

For the proponent of imprecise probabilities, an agent’s epistemic state
is represented by a set of credence functions. How will a rational agent
adjust her epistemic state in the light of evidence on this account? The
idea standardly endorsed by imprecise probabilists is that each credence
function in the set will be adjusted in the usual way by conditionalization,
and the agent’s new, post-evidence epistemic state can be represented by
this adjusted set of credence functions. Thus for example, to return to our
experiment case above, suppose that every credence function in the set
that represents the agent’s epistemic state at t0 assigns a number within
the range (0.4, 0.6) to H—and every number within this range is assigned
to H by some credence function in the set. And suppose furthermore that
for each of these credence functions, the conditional credence assigned
to H given E is within the range (0.85, 0.95)—and every number within
this range is the conditional credence assigned to H given E by some
credence function within the set. Then at t1, when the agent has learnt
(just) E, the agent’s epistemic state will be represented by the original set
of credence functions each conditionalized on E, and thus the agent’s new
credence in H will be given by the range (0.85, 0.95). I will now turn to
two problems—both related to learning—for the proponent of imprecise
probabilities.

2.1 Belief Inertia

Let us consider a scenario in which you have just selected a coin from a
bag, knowing only that the bag contains various coins some of which may
be biased to various unspecified degrees. You are going to toss the coin 25
times, and before you begin tossing the coin (a time we can call t0) you
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contemplate claim heads25—the claim that the coin will land heads on
its 25th toss. According to any proponent of imprecise probabilities, you
are permitted to have an imprecise credence in this claim. Now we can
consider what will happen to your credence in heads25 if you toss the
coin a few times, and it lands heads each time. Let heads1 be the claim
that the coin lands heads on the first toss, heads2 be the claim that the
coin lands heads on its second toss, and so on. Intuitively, your credence
in heads25 ought to increase on learning heads1, and increase even more
on learning (heads1∩ heads2), and so on.

For a certain sort of proponent of imprecise probabilism, this scenario
is problematic. In particular, consider the sort of imprecise probabilist
who claims that an agent’s epistemic state should conform to the chance
grounding thesis.4 On this view, all and only those credence functions
which are compatible with the known chances must be included in the
set that represents the agent’s epistemic state. In the scenario that we are
considering, at t0 you can rule out very few chance hypotheses: for all you
know, the chance of heads25 may be any number strictly between 0 and 1.
Thus at t0 your credence in heads ought rationally to be the range (0, 1).
What happens if you toss the coin once and it lands heads—i.e. if you learn
heads1? For any number n within the range (0, 1), you have not learnt that
the chance of heads25 is not n. For example, you have not learnt that the
chance of heads25 is not 0.0001. Thus your new credence in heads25, after
learning heads1, ought still to be the range (0, 1). What happens if you
toss the coin again, and it again lands heads—i.e. in addition to heads1,
you also learn heads2? You cannot then rule out any additional chance
hypotheses. For example, it may still be the case, for all you know, that the
chance of heads25 is 0.0001. Thus your credence in heads25 after learning
both heads1 and heads2 remains the range (0, 1). This pattern continues:
even if you toss the coin 24 times and it lands heads on each toss, your
credence in heads25 should still remain fixed at (0, 1). In this sense, your
epistemic state exhibits inertia in the face of evidence. That your epistemic
state should rationally exhibit this inertia is very counterintuitive: surely as
you toss the coin and it lands heads repeatedly, your credence in heads25

ought to increase?
To put the point vividly, we can imagine the credence functions that

represent your epistemic state as a group of avatars. The avatars at t0

will assign various precise credences to heads25: for every number in
the range (0, 1), there will be some avatar who assigns that value to
heads25. On learning heads1, each avatar ought to update accordingly by
conditionalizing. Take an avatar who had a credence of 0.0001 in heads25.

4 A similar problem applies to Joyce’s adjusted version of this principle mentioned earlier.
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It may be5 that this avatar’s conditional credence in heads25 given heads1

is higher than her unconditional credence in heads25, in which case this
avatar will increase her credence in heads25 on learning heads1. But there
will be some avatar (perhaps an avatar whose unconditional credence
in heads25 was even lower than 0.0001) whose credence in heads25

conditional on heads1 is 0.0001. Thus even after learning heads1, there
will still be, in the set representing your epistemic state, an avatar whose
credence in heads25 is 0.0001. Similarly, even if you learn the conjunction
of the claims heads1 through heads24, there will still be an avatar in the
set representing your epistemic state whose credence in heads1 is 0.0001.
Thus your credence in heads25 will not shift from the range (0, 1) no
matter how much evidence you amass in favour of heads25.

This looks like a problem—at least for those imprecise probabilists who
accept the chance grounding thesis, or something close to it. For some of
the responses available, see R. Bradley (2017), Joyce (2010), Rinard (2013),
and Vallinder (2018).

2.2 Dilation

Here we turn to another problem for the proponent of imprecise probabil-
ism. The phenomenon I discuss here was first noted by early statisticians
of imprecise probabilism Walley (1991) and Seidenfeld and Wasserman
(1993), and has recently been prominently discussed by White (2009). Take
some claim P, that you have no evidence whatsoever for or against, so that
your credence at t0 in P is the range [0, 1]. Suppose that I know whether
P is true, and I take a fair coin and paint the heads side over. I write “P’
on this heads side iff P is true, and “not P” on the heads side iff P is not
true. I similarly paint over the tails side of the coin, and write on this side
whichever claim (out of “P” and “not P”) is false. You know that I have
done this. I then toss the coin before your eyes. Your credence before it
lands (i.e. at t0) that it will land head-side up (heads), is 0.5. Then at t1

you see it land, with the “P”-side up. What then at t1 is your credence in
P and what is your credence in heads?

At t1 you have learnt that the coin has landed “P”-side up. Thus if P
is true, then heads is also true (i.e. it must have landed heads)—for if P
is true then “P” has been painted onto the heads side of the coin, and so
given that it has landed “P”-side up it has also landed heads. Furthermore,
if heads is true, then P is also true—for if it has landed heads then given
that it has landed “P”-side up, “P” must have been painted onto the heads
side of the coin, which will have happened only if P is true. Thus at t1 you

5 Though it need not be: perhaps some avatars will stubbornly refuse to adjust their credence
in heads25 from 0.0001. We might try to avoid this problem by excluding such agents
(Halpern, 2003), though this will not solve the problem discussed in the main text.
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can be certain that P is true iff heads is true. Thus at t1 you must have the
same credence in P as you have in heads. Given that at t0 your credence
in heads is 0.5, and your credence in P is the range [0, 1], how will your
credence adjust between t0 and t1? Will your credence in heads become
the range [0, 1]? Or will your credence in P become precisely 0.5? Both
options seem counterintuitive.6 It seems implausible that your credence in
heads should “dilate” to the range [0, 1]: surely (by the principal principle)
your credence that a fair coin has landed heads ought to be 0.5, unless
you have some evidence as to how it has landed. And knowing that it
landed on the “P”-side does not seem to give you any evidence as to
whether it has landed heads or tails. And it also seems implausible that
your credence in P should sharpen to the number 0.5 (White, 2009), for
after all you knew even at t0 that the coin would either land “P”-side up,
or “P”-side down, and we cannot say that learning either of these pieces
of information would force your credence in P to become precisely 0.5
without violating van Fraassen’s reflection principle (van Fraassen, 1984).

One popular response made by the imprecise probabilist, is to accept
that at t1 your credence in heads ought to dilate to [0, 1].7 Here are two
things that might be said in defence of this position.

◦ It seems as though learning that the coin landed “P”-side up gives
you no evidence as to whether it has landed head-side up. But this
would not follow if P was a claim that you knew something about.
Suppose as a contrast case, then, that P is the claim that you have
just won the lottery—a claim in which you have a very low credence
indeed. On hearing that I (who know the outcome) am painting the
true claim (out of “P” and “not-P”) on the heads side, and the false
claim on the tails side, you will be almost certain that I am painting
“not-P” on the heads side, and “P” on the tails side. Your credence at
t0 in heads is 0.5, but when at t1 you learn that the coin has landed
“P”-side up, you will be almost certain that heads is false. Thus
where you have some evidence concerning P, it is natural to suppose
that learning that the coin has landed “P”-side up will alter your
credence in heads (see Sturgeon, 2010, Joyce, 2010).

What about in the case where P is a claim about which you have
no evidence? In this case, it is tempting to suppose that learning
that the coin has landed “P”-side up gives you no reason to adjust
your credence in heads. But the situation is more complicated than

6 A further option would be for both your credence in heads and your credence in P to
adjust, but this is no more appealing than the alternatives.

7 As White acknowledges, some statisticians and philosophers (such as Walley, 1991, and
Seidenfeld and Wasserman, 1993) had noted this result and “taken it in their stride” (White,
2009, p. 177).
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this suggests. Consider again your epistemic state as a set of avatars.
For every number in the range [0, 1], there is some avatar in the set
that represents your epistemic state that assigns this number to P.
Each such avatar, on learning that the coin has landed “P”-side up,
will adjust her credence in heads accordingly.8 For example, the
avatar whose credence in P is 0.2 will adjust her credence in heads

downwards; and the avatar whose credence in P is 0.8 will adjust her
credence in heads upwards. More generally after conditionalizing
on the claim that the coin has landed “P”-side up, for every number
in the range [0, 1], there will be an avatar who assigns that number
to heads. We can see then that it is not that learning that the coin
has landed “P”-side up gives you no evidence relevant to heads, but
rather that you are just very uncertain as to in what direction the
evidence you have received should pull you, and how far. Thus your
credence in heads is infected with the imprecision that you assigned
to P, and your credence in heads dilates to the range [0, 1] (Joyce,
2010).

◦ It is tempting to object that it is counterintuitive for an increase in
evidence to leave your credence function more imprecise than it was
before. However it is not obvious that your credence function is more
imprecise at t1 than it was at t0. To see this, consider that at t0 though
your credence in heads was precise, your conditional credence in
heads given that the coin lands “P”-side up was imprecise. Thus
there was imprecision in your credence function even at t1: this
just was not obvious when we focused only on your unconditional
credence in heads (R. Bradley, 2017).

Further discussion of the problem of dilation can be found in R. Bradley
(2017), S. Bradley and Steele (2014), Dodd (2013), Joyce (2010) and Pederson
and Wheeler (2014).

3 decision-making

On the classic Bayesian picture, a rational agent has a precise credence
function assigning some number between 0 and 1 to each proposition, and
also a precise utility function assigning some number to each possible
outcome representing in some sense how much the agent values each
outcome. When faced with a decision problem—i.e. a choice between
different actions—on the classic picture the agent must choose an action
that has maximum expected utility. We can calculate the expected utility
of any given action for the agent as follows: for every possible outcome,

8 Those avatars whose credence at t0 in P is 0.5 need make no adjustment.
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Milk at home (s1) No milk at home (s2)

Cr(s1) = 0.5 Cr(s2) = 0.5

Stop for milk 9 9

Don’t stop 10 5

Table 1: A decision problem

we multiply the agent’s credence that the outcome will obtain should she
perform the action under consideration, by the utility of that outcome—
and then we sum the lot.9

Here is an example to illustrate this. Sometimes on the way home from
work, I stop to buy a pint of milk, which means that I take a bit longer to
get home, but it is certainly better than getting home and finding that there
is no milk in the house. Suppose that on this occasion, my credence that
there is milk in the house already is 0.5. Table 1 represents my assessment
of the possible outcomes.

We can now calculate the expected utility of each available action. The
expected utility of stopping to buy milk is (0.5)(9) + (0.5)(9) = 9, whereas
the expected utility of not stopping to buy milk is (0.5)(10) + (0.5)(5) =
7.5. On the classic decision rule “maximise expected utility”, I ought to
stop to buy milk, because this is the action with the highest expected
utility.

The maximise expected utility rule works on the assumption that for
every relevant state of the world, the rational agent has a precise credence
that that state of the world obtains. But proponents of imprecise probabili-
ties deny this, and so cannot accept this rule. What alternative rule should
they put in its place? According to the proponent of imprecise probabilities,
what requirements does rationality place on an agent’s choice of action?
Many different answers have been proposed, and I will briefly outline two
of these answers.

permissive choice rules Recall that we can see an agent’s epistemic
state as represented by a set of avatars, each with a precise credence func-
tion. Thus faced with any decision problem, each avatar will have a view as
to which action—or actions—will maximise expected utility.10 According

9 This is a rough and ready sketch of Savage’s account (Savage, 1954). Modifications have
been made to that account (e.g. in Jeffrey, 1965) but here I will stick to straightforward
examples so that the modifications should not be relevant.

10 Here I assume that the agent has a precise utility function which feeds into each avatar’s
calculation. This of course is also up for debate, and some argue that just as a rational
agent can have an imprecise credence function, so (s)he can have an imprecise utility
function. I do not discuss this further here however.
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to the permissive choice rules,11 the agent may rationally perform any
action provided that at least one of her avatars recommends that action.

To illustrate this, suppose that an agent’s credence that it will rain
tomorrow is the range (0.4, 0.8). Thus for every number in this range,
there is some avatar who assigns that number to the claim that it will rain
tomorrow. Suppose then that the agent is offered the following bet: she is
to pay out £5, and will get £10 back iff it rains tomorrow. The agent has
to choose whether to accept the bet, or reject it. We can assume that the
agent values only money, and values it linearly. Some of her avatars would
recommend accepting the bet (those whose credence that it will rain is
greater than 0.5), some recommend rejecting it (those whose credence that
it will rain is less than 0.5), and some rate the expected utility of accepting
it equal to the accepted utility of rejecting it (those whose credence that
it will rain is 0.5). Thus according to the permissive choice rules, the
agent is free to either accept or reject the bet: both actions are permissible.
This rule—together with some variations—is discussed under the name
‘Caprice’ by Weatherson (1998).

maximin The rule maximin works as follows. Where an agent has
an imprecise probability function, we can see her epistemic state as rep-
resented by a set of precise functions, or avatars. When considering a
possible action, there is an expected utility for that action relative to each
precise probability function in the agent’s set. Amongst these expected
utilities for the action, one will be the lowest—and so each action has
a minimum expected utility. According to maximin, when faced with a
choice, a rational agent will carry out whichever action has the maximum
minimum expected utility.

To illustrate this, take again our agent whose credence that it will rain
tomorrow is the range (0.4, 0.8): for every number in this range, there
is some avatar who assigns that number to the claim that it will rain
tomorrow. Suppose then that the agent is offered the following bet: she
is to pay out £5, and will get £10 back iff it rains tomorrow. Each avatar
calculates the expected utility of each possible action—i.e. the action of
accepting the bet and the action of rejecting the bet. The avatar who assigns
the lowest expected utility to accepting the bet is the avatar whose credence
that it will rain tomorrow is 0.4: assuming again that the agent values only
money and that linearly, we can represent the expected utility of accepting
the bet from the perspective of this avatar as−5+(0.4)(10) = −1. Thus the
minimum expected utility of accepting the bet is −1. Now we can calculate
the minimum utility of rejecting the bet. All avatars assign the same
expected utility to this action—namely 0. Thus the minimum expected
utility of rejecting the bet is 0. A rational agent will choose from amongst

11 This is Elga’s (2010) term.
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those actions with the highest minimum expected utility—and as rejecting
the bet has a higher minimum expected utility (0) than accepting the bet
(−1), the agent if rational will reject the bet.

Variations on this rule have been developed by Gärdenfors and Sahlin
(1982), Gilboa and Schmeidler (1989), and others. An analogous maximax
rule has been developed by Satia and Lave (1973). Many further rules
have been proposed, including those by Arrow and Hurwicz (1972) and
Ellsberg (1961). See Troffaes (2007) for a discussion and comparison of
some of these rules.

3.1 Applying These Rules

In some scenarios, some of the alternative rules developed by imprecise
probabilists seem to work better than the classical Bayesian’s rule maximise
expected utility. Here is a famous case—the Ellsberg paradox—in which
this holds (Ellsberg, 1961).

You have an urn before you, which contains 150 balls. 50 are black, and
the other 100 are some mixture of red and yellow—but you have no further
information as to what the proportions of red and yellow balls are. For all
you know, there may be 100 red balls and no yellow balls, or 100 yellow
balls and no red balls, or any mixture between these two extremes. Now
a ball will shortly be selected at random from the urn, and you have the
chance to bet on what colour the ball will be. You can either say ‘black’, in
which case you’ll win £100 if it is black, and nothing otherwise; or you can
say ‘red’, in which case you’ll win £100 if it is red, and nothing otherwise
(Table 2).

Black (B) Red (R) Yellow (Y)

Bet black £100 £0 £0

Bet red £0 £100 £0

Table 2: The first scenario in the Ellsberg paradox

Now suppose instead that you have the option of saying ‘black or
yellow’, in which case you’ll win £100 if the ball is either black or yellow,
and nothing otherwise; or you can say ‘red or yellow’, in which case you’ll
win £100 if the ball is either red or yellow, and nothing otherwise (Table 3).

Typically people choose to say ‘black’ in the first scenario, but ‘red
or yellow’ in the second. Furthermore, many apparently rational people
exhibit this betting pattern.12 The problem is that if we assume that a
rational agent has precise probabilities and utilities, and chooses only

12 See Voorhoeve, Binmore, Stefansson, and Stewart (2016) for an analysis and discussion of
the prevalence of this betting pattern.
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Black (B) Red (R) Yellow (Y)

Bet black or yellow £100 £0 £100

Bet red or yellow £0 £100 £100

Table 3: The second scenario in the Ellsberg paradox

between those actions that maximise expected utility, then a rational agent
cannot exhibit this betting pattern. To see this, let’s suppose that some
agent who exhibits this betting pattern has precise probabilities, and is
maximising expected utility. We let the agent’s credence in B, R and Y
be given by Cr(B), Cr(R) and Cr(Y) respectively, and we let the utility of
winning £100 be given by u1 and the utility of winning £0 be given by u2.
Then—given that our agent chooses ‘black’ over ‘red’ in the first scenario,
it follows that

Cr(B) · u1 + Cr(R) · u2 + Cr(Y) · u2 > Cr(B) · u2 + Cr(R) · u1 + Cr(Y) · u2,

and so that

Cr(B) · u1 + Cr(R) · u2 > Cr(B) · u2 + Cr(R) · u1.

But then the agent chooses ‘red or yellow’ over ‘black or yellow’ in the
second scenario, and so it follows that

Cr(B) · u1 + Cr(R) · u2 + Cr(Y) · u1 < Cr(B) · u2 + Cr(R) · u1 + Cr(Y) · u1,

and so that

Cr(B) · u1 + Cr(R) · u2 < Cr(B) · u2 + Cr(R) · u1.

This contradicts our earlier result. Thus no agent exhibiting this betting
pattern can have only precise probabilities and utilities and be guided by
the rule maximise expected utility.

What alternative rule might be guiding the agent’s behaviour in Ells-
berg’s scenario? Several of the rules formulated by proponents of imprecise
probabilities can explain the agent’s behaviour, and so Ellsberg’s scenario
can be used to argue both for (some of) the alternative rules, and for
the claim that rational agents can have imprecise probabilities. To illus-
trate how some of these rules might handle Ellsberg’s scenario, I will run
through Ellsberg’s own solution to the problem.

In Ellsberg’s terminology, a situation can be “ambiguous” for an agent.
In an ambiguous situation, more than one probability distribution seems
reasonable to the agent. We can gather these probability distributions
into a set P = {p1, p2, . . . , pn}: these are the distributions that the agent’s
information “does not permit him to rule out” (Ellsberg, 1961, p. 661). The
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agent assigns weights to each of these reasonable distributions, and arrives
at a composite “estimated” distribution pi where pi is a member of P. The
estimated pay-off Aest of a given action A is the expected utility of the action
calculated using pi (Ellsberg, 1961, p. 661). But when faced with a choice of
actions, the rational agent may be guided not just by the expected pay-off
of each action, calculated in terms of pi. The agent may also take into
account the lowest expected utility of each action as calculated using any
member of P. We let Amin denote the minimum expected utility of action
A as calculated using any member of P, and we let x denote the agent’s
degree of confidence in pi (the “estimated” distribution). Then the index of
an action A is given by x · Aest + (1− x) · Amin. Ellsberg’s rule for action,
then, is as follows: choose the action with the highest index.

In Ellsberg’s scenario, the agent is in an ambiguous situation: the agent
can be certain that the probability that a ball randomly drawn from the
urn will be red is 1/3, but the agent cannot be certain of the probability
of the ball’s being yellow or black, because (s)he does not know the
proportion of yellow and black balls in the urn. There are a range of
probability distributions that seem reasonable to the agent: for every
number r between 0 and 2/3, there is a reasonable probability distribution
under which the probability of R is r, the probability of Y is 2/3− r, and
the probability of B is 1/3. Let us assume for simplicity that the agent
assigns weight evenly across these reasonable probability distributions.
Thus on the composite “estimated” distribution, the probability of R is 1/3,
the probability of Y is 1/3, and the probability of B is 1/3. Thus the expected
payoff of saying ‘black’ in the first scenario (1/3 · u1 + 2/3 · u2) is the same
as the expected payoff of saying ‘red’ in that scenario, and the expected
payoff of saying ‘black or yellow’ in the second scenario (2/3 · u1 + 1/3 · u2)
is the same as the expected payoff of saying ‘red or yellow’ in that scenario.

However a rational agent need not be guided merely by the estimated
payoff of each action, but also by the lowest expected utility of each action.
For the action of saying ‘red’ in the first scenario, the lowest expected
utility is that given by the probability distribution according to which the
probability of R is 0, the probability of Y is 2/3, and the probability of B is
1/3: according to this distribution, the expected utility of saying ‘red’ is 0.
In contrast, according to every distribution the expected utility of saying
‘black’ is 1/3, and so of course the lowest expected utility of saying ‘black’ is
1/3. The ‘index’ of some action A is given by x · Aest + (1− x) · Amin, where
x is the agent’s level of confidence in the ‘estimated distribution’. Thus the
index of saying ‘red’ is 1/3 · x + 0 · (1− x), and the index of saying ‘black’
is 1/3 · x + 1/3 · (1− x). Thus whenever the agent is less than perfectly
confident in the estimated distribution—which a rational agent may well
be—the value x will be less than 1, and the index of saying ‘black’ will be
greater than the index of saying ‘red’. Thus any agent for whom x is less



imprecise probabilities 125

than 1 will say ‘black’ rather than ‘red’ in the first scenario. In the second
scenario, however, the very same agents will choose to say ‘red or yellow’
rather than ‘black or yellow’. For it works out that the expected payoff of
both of these actions is 2/3, but the lowest expected utility of saying ‘black
or yellow’ (1/3) is lower than the lowest expected utility of saying ‘red or
yellow’ (2/3), and so saying ‘black or yellow’ has a lower index than saying
‘red or yellow’.

In short, an agent for whom x is less than 1 is ambiguity averse: all else
being equal, the agent prefers actions where (s)he knows the chances of
the relevant outcomes over actions where (s)he merely estimates those
outcomes. In the first scenario, if the agent says ‘black’ then (s)he will
know the chance of winning £100, whereas if she says ‘red’ then the chance
of winning will be unknown. In contrast, in the second scenario, if the
agent says ‘red or yellow’ then (s)he will know the chance of winning
£100, whereas if she says ‘black or yellow’, the chance of winning will be
unknown. Thus the betting pattern that is typically displayed in Ellsberg’s
scenario is permissible.

Here the imprecise probabilist seems to have an advantage over
the precise probabilist. The precise probabilist seems forced to claim—
counterintuitively—that the typical betting pattern in Ellsberg’s scenario
is irrational, whereas the imprecise probabilist can account for this betting
pattern well.

I turn now to the problem of sequential decision problems, which seem
to pose a problem for the imprecise probabilist.

3.2 Sequential Decision Problems

Here is a problem posed by Elga (2010).13 According to the imprecise
probabilist, a rational agent may have a credence of, say, [0.1, 0.8] in some
claim H. Now consider the following two bets:

Bet A: If H is true, then you lose £10; otherwise you win £15.

Bet B: If H is false, then you lose £10; otherwise you win £15.

These bets are offered sequentially: first Bet A is offered to the agent, and
then Bet B. The agent knows that she will be offered both bets, and has
the option of taking both, rejecting both, or taking either one. Intuitively, it
would be irrational for an agent to reject both bets, because rejecting both
bets leaves the agent with nothing, whereas accepting both bets leaves the
agent with a sure £5. Surely then a rational agent would not reject both?

13 The problems that the imprecise probabilist faces over sequential decision problems are
widely discussed in the literature from economics, and a puzzle related to Elga’s can be
found in Hammond (1988).
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The challenge that Elga poses to the imprecise probabilist is to put forward
a plausible decision rule that entails that a rational agent in this scenario
will not reject both bets. Various attempts have been made to meet this
challenge.

It seems at first as though the permissive choice rules will not do. To
see why, consider that if the agent is presented with just Bet A, there
will be avatars who recommend rejection, so it follows that the agent is
rationally permitted to reject Bet A. But then when presented with Bet B,
there will similarly be avatars (different avatars) who recommend that this
bet is rejected. So it follows that the agent is rationally permitted to reject
Bet B. Thus it seems that the permissive choice rules would permit the
agent to reject both bets, and so this rule cannot be used to meet Elga’s
challenge. However defenders of this rule may claim either that a sequence
of actions is permitted only when that sequence is recommended by a
single avatar, or else challenge Elga on his assumption that accepting each
bet is a separate action, rather than parts of a single action (Weatherson,
2003; Williams, 2014).

Similarly, it may seem that maximin, Ellsberg’s rule, and others will be
unable to handle Elga’s scenario, for many of these rules would permit a
rational agent to reject both bets if offered on separate occasions. However
as several authors have pointed out, and as Elga (2012) acknowledges,
once we call on the resources of game theory, we find that several of these
rules do entail that a rational agent in Elga’s scenario (in which the agent
knows that (s)he will be offered both bets) will not reject both bets. See S.
Bradley and Steele (2014), Chandler (2014), and Sahlin and Weirich (2014);
see Mahtani (2018) for a response.

A further way of responding to Elga’s challenge is to argue that when
faced with a series of choices, a rational agent will make a plan and stick
to it—and where an agent has an imprecise credence function, that plan
will be endorsed as maximising expected utility by at least one of the
agent’s avatars. For further discussion of this sort of view, see Bratman
(2012), Gauthier (1986), and McClenen (1990).

Finally, there are authors who reject the assumption that an agent in an
Elga-style scenario who rejects both bets is thereby irrational. For example,
Moss (2015) constructs an account of what it is for an agent with imprecise
credences to “change his or her mind”, and argues that it is permissible
in at least some Elga-style scenarios for an agent to reject Bet A while
identifying with one of her avatars, and then change her mind and reject
Bet B, identifying with a different avatar. Others such as S. Bradley and
Steele (2014) also maintain that a rational agent in an Elga-style scenario
may reject both bets.

Thus there are a range of interesting ways that the imprecise proba-
bilist might respond to the sort of sequential decision problem that Elga
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has raised, and the debate over which rule of rationality the imprecise
probabilist should endorse is still ongoing.

4 summary

I began with a natural motivation for accepting imprecise probabilism. I
then outlined the most widely discussed account of imprecise probabilities,
and considered how the account should be interpreted. I then turned to
two categories of objections to the account: objections concerning learning,
and objections concerning decision making. Within learning, I discussed
two different objections: firstly the problem of belief inertia, and secondly
the problem of dilation. Within decision making, I focused on the problems
that the imprecise probabilist faces in situations of sequential choice. There
has been recent, lively debate about these objections, and while various
responses have been put forward by the imprecise probabilists, we are
currently far from a consensus.
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4
C O N D I T I O N A L P R O B A B I L I T I E S Kenny Easwaran

Conditional probability is one of the central concepts in probability theory.
Some notion of conditional probability is part of every interpretation of
probability. The basic mathematical fact about conditional probability is
that p(A | B) = p(A ∧ B)/p(B) where this is defined. However, while
it has been typical to take this as a definition or analysis of conditional
probability, some (perhaps most prominently Hájek, 2003) have argued
that conditional probability should instead be taken as the primitive notion,
so that this formula is at best coextensive, and at worst sometimes gets it
wrong.

Section 1.1 considers the concept of conditional probability in each of
the major families of interpretation of probability. Section 1.2 considers a
conceptual argument for the claim that conditional probability is prior to
unconditional probability, while Section 1.3 considers a family of mathe-
matical arguments for this claim, leading to consideration specifically of
the question of how to understand probability conditional on events of
probability 0. Section 1.4 discusses several mathematical principles that
have been alleged to be important for understanding how probability 0
behaves, and raises a dilemma for probability conditional on events of
probability 0. Section 2 and Section 3 take the two horns of this dilemma
and describe the two main competing families of mathematical accounts
of conditional probability for events of probability 0. Section 4 summarizes
the results, and their significance for the two arguments that conditional
probability is prior to unconditional probability.

1 background

1.1 What is Conditional Probability?

Before considering the arguments suggesting that conditional probability
is a primitive notion (either equal to unconditional probability in fun-
damentality, or perhaps even more basic), we should consider just what
conditional probability is.

Some have argued, following some cryptic remarks of Frank Ramsey,
that conditional probability can be understood as the probability of a
conditional. However, without a clear interpretation of what a conditional
means, this provides little help for clarifying the concept of conditional
probability. There are deep difficulties with this identification, since to-
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gether with certain plausible logical principles for conditionals, it entails
various triviality results about unconditional probability. (Edgington, 1995,
summarizes much of this literature and argues that there is some inter-
pretation of the conditional that allows for this identification, and Bacon,
2015, shows how much logic for conditionals can be preserved.) At any
rate, the defenders of this principle hope to use conditional probability
to clarify the meaning of conditionals, rather than vice versa. Since the
meaning of a conditional has so much obscurity, this identification is of no
help in trying to analyze the meaning of conditional probability.

Perhaps a more useful (and also Ramsey-inspired) way to think of
conditional probability is to look at some of the roles it plays in order
to see what features it needs to have. But since there are many different
phenomena that have all been said to be interpretations of probability,
and conditional probability plays different roles in each, I will break this
consideration down into several parts. In this discussion, I will not consider
each separate interpretation of probability, but I will instead consider them
in three broad families. (For more on specific interpretations, see Hájek,
2007.)

The first family (which I will use as my primary reference point in much
later discussion) is the set of broadly “Bayesian” interpretations that treat
probability as some sort of informational state. The second family is the
set of broadly “physical” interpretations that treat probability as a feature
of some part of the world itself, rather than an information state. The third
family is the set of “mathematical” applications of probability, some of
which I don’t think rise to the level of an interpretation, but are worth
mentioning separately.

1.1.1 Bayesian Interpretations

Among the interpretations I am calling “Bayesian” are both various ob-
jective and subjective notions. I mean this class to include “logical proba-
bilities” (Keynes, 1921; Carnap, 1950; Maher, 2006) and “evidential prob-
abilities” (Williamson, 2002), as well as the more familiar objective and
subjective Bayesian interpretations of probability as some sort of rational
degree of belief (Easwaran, 2011a, 2011b). These interpretations of proba-
bility are used in a broad variety of applications in psychology, economics,
decision theory, philosophy of science, and epistemology.

However, in all of these applications, it seems that there are three
main roles that conditional probability is said to play. First, conditional
probability is said to play some sort of fairly direct role in constraining the
way that probabilities change over time. Second, conditional probability
is used in the analysis of various measures of confirmation (which often
claim to describe the potential value of various pieces of information,
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whether or not anyone ever gains that information). And third, conditional
probability is important in certain accounts of decision theory. If there
are roles for conditional probability other than these, then some of my
later evaluation of the different mathematical accounts of conditional
probability may need to be modified.

The role of conditional probability in updating is perhaps the most
familiar one. The traditional notion of Bayesian updating is said to occur
when there is some new evidence E that the agent gains with certainty. In
this case, the probability function after the update pnew and the probability
function before the update pold are said to satisfy, for every A, pnew(A) =

pold(A | E). Following Jeffrey (1965), many have thought that this sort
of update scenario is implausible, because there is never any particular
evidence that is gained with certainty. Instead, there is said to be an
evidential partition E, which is a set of propositions {Ei : i ∈ I}, such that
it is antecedently certain that there is exactly one i such that Ei is true. No
member of this partition becomes certain, but their probabilities change
in a way that drives the change of all other propositions. This notion of
“driving the change” is summarized by a constraint known as rigidity: for
any A, pnew(A | Ei) = pold(A | Ei). The specification of these conditional
probabilities is said to be enough, in conjunction with the new probabilities
for each Ei, to specify the new probability function uniquely, by means
of the Law of Total Probability. When the partition is finite, this takes the
form p(A) = ∑ p(Ei)p(A | Ei), though in the infinite case we need to be
a bit more careful. As I will discuss in Section 1.4.3, the natural way to
generalize this will be notated as p(A) =

∫
p(A | EI)dp, though further

complexities arise.
At least since the work of Hosiasson-Lindenbaum (1940), conditional

probability has also been very important in analyzing the notion of confir-
mation. Much of this literature has focused on finding numerical measures
of the degree to which particular evidence would support particular hy-
potheses. Where H is some hypothesis, and E is some potential evidence,
some well-known measures are said to take the value p(H | E)− p(H),
or p(H | E)/p(H), or p(E | H)/p(E | ¬H). (These and other measures are
discussed by Fitelson, 1999.) The probabilities that show up in these formu-
lations are of four types. There are two unconditional probabilities, p(E)
and p(H), which are called “priors” for the evidence and the hypothesis
respectively. (Priors for their negations sometimes appear as well, but
since p(¬E) = 1− p(E) and p(¬H) = 1− p(H) these are not relevantly
different.) There are also two types of conditional probability that arise.
p(H | E) is called the “posterior” of the hypothesis, because (according to
the update rule mentioned above), it gives the probability the hypothesis
would have after hypothetically learning the evidence. And p(E | H) and
p(E | ¬H) are called “likelihoods” of the hypothesis and its negation. Some
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philosophers have focused on measures involving only likelihoods, be-
cause they are said to be more objective than priors and posteriors (Royall,
1997). But at any rate, these are the conditional probabilities whose values
are relevant to confirmation.

In decision theory, the most traditional analysis of the value of an action
doesn’t depend on conditional probability at all (Savage, 1954). There are
said to be a set A of actions available to the agent and a set S of possible
states of the world independent of the agent, and together these are said
to determine outcomes of the act. The agent has a value V(A ∧ S) for
each outcome. When everything is finite, the value of an act A ∈ A is
given by V(A) = ∑S∈S p(S)V(A ∧ S). (Again, when S is infinite, things
are more complicated, as will be discussed in Section 1.4.2.) However,
Jeffrey (1965) and others have worried about cases in which one can’t
identify states of the world independent of the agent. In this case, Jeffrey
suggests that we should have V(A) = ∑S∈S p(S | A)V(A ∧ S), replacing
the unconditional probability of a state with its probability conditional on
each action. Joyce (1999) and other “causal decision theorists” have argued
that this “evidential decision theory” is wrong for certain cases, and replace
the conditional probability p(S | A) with something like p(A � S), the
probability of the subjunctive conditional. Regardless of how this is to be
interpreted, the relevant conditional probabilities for decision theory are
what I will call “action probabilities,” and they must be defined for states
of the world conditional on the possible acts of an agent.

Thus, on the Bayesian interpretations of probability, the conditional
probabilities that arise in any relevant application appear to be of three
forms—posteriors, likelihoods, and action probabilities. Posteriors must be
defined for every hypothesis conditional on every piece of possible evidence
(for confirmation theory), or for every proposition conditional on every
piece of possible evidence (for updating). Likelihoods must be defined
for every piece of possible evidence conditional on every hypothesis. And
action probabilities must be defined for every state of the world conditional
on every possible action. (On Jeffrey’s interpretation, action probabilities
may just be a special case of posteriors, since the role of an act for him
is in some sense as a special piece of evidence, but for Joyce and others
the role is somewhat different, though it may not even be a conditional
probability in the traditional sense.) In each case, the set of things that may
be conditioned on form a “partition”—they are a set of propositions such
that it is certain in advance that exactly one of them is true. This fact will
be significant for later discussion.
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1.1.2 Physical Interpretations

Another family of interpretations of probability take probability to be
something separate from any sort of information state. One historically
influential such interpretation is Popper’s account of chance as a sort
of “propensity” of the world to evolve in a certain way (Popper, 1959b).
Many statisticians have wanted some sort of objective physical notion of
probability like this, but without the metaphysical baggage. This has given
rise to frequentist statistical practice, described for instance by Mayo and
Cox (2006), on which the relevant probabilities are the proportion of cases
in which particular outcomes “would arise in a hypothetical long-run of
repeated sampling” (p. 79).

These interpretations are possibly more heterogeneous than the Bayesian
ones I discussed above, but we can still identify particular families of uses
to which conditional probabilities are put. First, conditional probabilities
are sometimes said to govern the way in which chances change over time.
Second, conditional probabilities are sometimes used to analyze notions
of causation or independence. Third, there are various uses conditional
probabilities are put to in frequentist statistical practice. And fourth, there
may be a relevant notion of expected value computed from physical
probabilities.

For changing chances, David Lewis claims that “a later chance distri-
bution comes from an earlier one by conditionalizing on the complete
history of the interval in between” (1980, p. 280). That is, if pold is the
probability function giving the chances at some earlier time and pnew gives
the chances at a later time, and H is the history of all events that occur
between these two times, then for any A, pnew(A) = pold(A | H). This
requires a notion of probability conditional on any H ∈ H, where H is the
set of all histories that could transpire between one time and another.

Some analyses of causation have said that A is a cause of B iff p(B | A) >

p(B), where p is some physical notion of probability. There are many
obvious problems with this account, turning on cases where there are
common causes (the probability of a parent having blond hair given that
a child has blond hair is higher than the unconditional probability of a
parent having blond hair, even though the child’s hair color is not a cause
of the parent’s), other events intervening (the probability of getting in a car
crash given that you’ve had a drink may be lower than the unconditional
probability of getting in a car crash, if drinking makes you less likely to
drive, even though drinking does tend to cause car crashes), and similar
sorts of problems. Sophisticated versions of this theory have now turned
to the sort of “causal modeling” developed by Pearl (2000) and Spirtes,
Glymour, and Scheines (2000). On this picture, events A and B are taken
to be particular values of variables A and B, which may have two values
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(A occurs or does not occur) or more (if A is seen as one of a class
of ways for something to happen). These variables are represented by
nodes in a graph with arrows connecting some nodes to others. Physical
probabilities are given by a probability distribution for the values of one
variable conditional on each specification of the values of the variables with
arrows pointing directly to it. There are then two notions of conditional
probability, depending on whether we “intervene” on one variable or
merely “condition” on it (Meek & Glymour, 1994). This difference can be
seen by considering the probability of someone having a sun tan given
that their vitamin D levels are high—conditioning involves looking at
people with currently high levels of vitamin D and measuring their tan,
while intervening involves artificially giving people high levels of vitamin
D and measuring their tan. Variable A is then said to be a cause of B iff
intervening on A in different ways gives different conditional distributions
for B, and is said to be independent if the conditional probabilities are
the same. (Vitamin D likely turns out not to be a cause of sun tan, but to
have correlation due to common cause.) Again, the relevant probabilities
always involve conditioning on the elements of a partition. For far more
on this, see Hitchcock (2010).

In frequentist statistical practice, there are a variety of conditional prob-
abilities that arise. One of the most well-known such conditional proba-
bilities is the p-value of a piece of evidence. This is the frequency with
which evidence at least as extreme as the observed value would occur in
hypothetical repetitions of the same experimental protocol, assuming that
the “null hypothesis” is correct. We might notate this as p(E+ | H0), where
E+ is the event of evidence at least as extreme being observed, and H0 is
the null hypothesis (though see Section 1.2 for discussion of whether this
should really be thought of as a conditional probability). The p-value is
often used as a criterion for statistical rejection, and it is common to reject
the null hypothesis (in favor of some alternative) if the p-value falls below
some pre-arranged threshold. The “power” of a statistical test is said to be
the frequency with which the same experimental protocol would result in
rejection of the null hypothesis, assuming that the alternative is in fact true.
We might think of this as p(R | H′), where H′ is the alternative to the null
hypothesis, and R is the event of an experimental result that our protocol
recommends rejection on. In statistical tests for which we want to estimate
the value of some unknown parameter, our experimental protocol often
ends not with rejection, but with specification of a “confidence interval.”
For instance, a 95% confidence interval is the set of parameter values
for which the p-value would be at least .05 if that value were treated as
the null—we can think of the confidence interval as the set of values that
wouldn’t be rejected at a given p-level. These probabilities are not the same
as the likelihoods discussed above for Bayesian probabilities (because these
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are not probabilities of the actually observed evidence, but rather of the
event “an observation at least as extreme would occur”), but they are still
probabilities conditional on each hypothesis.

Finally, although many contemporary decision theorists follow Savage
(1954) in using some sort of Bayesian probability as the basis of compu-
tation of expected value, von Neumann and Morgenstern (1947) use a
physical probability as their basis for a theory of rational decisions. Sim-
ilar issues involving objective correlations between “states of the world”
and an agent’s actions might motivate some use of conditional probabil-
ity in calculations of expected value, and these will be like the “action
probabilities” I mentioned above.

Again, in all cases, the set of things that can be conditioned on forms a
partition.

1.1.3 Mathematical Interpretations

There are some other interpretations of probability that don’t quite fit in
with those mentioned above. The most interesting such interpretation is
that of probability as actual relative frequency. For instance, the World
Health Organization reports that 68% of deaths worldwide in 2012 were
due to non-communicable diseases, such as cancer, diabetes, and cardio-
vascular diseases. We can interpret this as a sort of probability, and say that
the probability that a person who died in 2012 died of a non-communicable
disease is .68. On this interpretation, for any descriptions A, B, we can
say that p(B | A) is the fraction of things fitting description A that also fit
description B. Any description whatsoever can be used in either position,
provided that there is a meaningful way to count instances of each.

This bears much similarity to the “classical interpretation” of probability
attributed by Hájek (2007) to early probability theorists. The idea again
is that in many traditional games of chance, physical probabilities or
Bayesian probabilities may be usefully approximated by counting all the
different possible outcomes of the game and seeing how many of them
are of the sort of interest.

Tools like this have also been applied in pure mathematics, in what is
called the “probabilistic method.” This method was introduced by Erdős
(1947) to derive bounds for Ramsey numbers. (These numbers were first
investigated by Ramsey, 1930, in an attempt to work on the decision
problem for logic, but have since been generalized to the size of any sort
of structure that is needed to guarantee the existence of subsets with given
complexity.) Erdős considers the complete graph on n vertices where edges
are arbitrarily colored in two colors. He then defines a probability function
on subsets of this graph, and shows that if n is large enough, then the
probability of selecting k vertices at random such that all edges between



138 kenny easwaran

them are the same color is non-zero. In particular, this means that for any
coloring of the graph on n vertices, there must be k vertices whose edges
are all the same color. The importance of Erdős’ result is that the bound he
arrived at for n is substantially smaller than that arrived at by Ramsey, and
is in most cases still the best known. This method has since been deployed
in many other problems in combinatorics.

The classic applications of this method don’t make any use of conditional
probability. More advanced applications might, but in general, the inter-
pretation of the probability function is not really of any interest. Instead,
the probabilities (and perhaps any conditional probabilities) are just tools
for mathematical computation. Any mathematical account of “conditional
probability” could be useful, whether or not it has any application to other
interpretations of probability. Thus, this interpretation of probability gives
no particular constraint to our theorizing about conditional probability,
and if anything, encourages us to explore as many different mathematical
accounts as possible, in case one is of use in some mathematical problem
or other.

1.2 Backgrounds vs. Conditions

There are two main families of argument that all probabilities must really
be conditional. One family of argument (considered in this section) is
conceptual, and claims that for many different interpretations, some sort of
background is essential to even determine probabilities. The second family
of argument (considered in Section 1.3) is mathematical, and uses problems
involving division by zero to argue that conditional probability must be
prior to unconditional probability. Although the mathematical arguments
are sometimes clearer and seem more convincing, I will consider the
conceptual arguments first, since the mathematical arguments lead more
naturally to the issues that arise in the rest of this article. This section is
independent of the rest of the article, and can be skipped by readers more
interested in the mathematical issues.

This section considers the claim that a background is essential to the
possibility of probability. I will consider versions of this argument for each
interpretation of probability, and argue that for most interpretations of
probability, this “background” is different enough in kind from the sort of
thing that one can conditionalize on, that it should be treated separately
from conditional probability. I claim that only for probabilities thought of
as actual frequencies is it correct to say that every probability requires a
background, and that this background makes every probability essentially
a conditional probability. For some of the other interpretations, we will
at least find that many numbers traditionally thought of as unconditional
probabilities may be better thought of as conditional probabilities, but for
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all of these other interpretations there is conceptual room to argue that
some probabilities really are unconditional.

For this argument, again it will be useful to consider different interpre-
tations of probability in some detail. However, I will skip a few of the
most purely mathematical interpretations for which there are no important
conceptual requirements, and will consider the other interpretations in
somewhat different connections than I did before.

1.2.1 Degree of Belief

For subjective degree of belief, some have argued that all probabilities are
really conditional on a background. I will argue that the role of the back-
ground is different from the role of the conditioning event in conditional
probability. De Finetti (1974) says “every evaluation of probability is condi-
tional; not only on the mentality or psychology of the individual involved,
at the time in question, but also, and especially, on the state of information
in which he finds himself at that moment” (p. 134). That is, rather than
representing a subject S’s degree of belief at t in a proposition A as p(A),
many authors suggest that it should be represented as p(A | KS,t), where
KS,t is the conjunction of all the propositions that S knows at t.

However, if it is possible (or reasonable, or rational) for different subjects
with the same knowledge to have different degrees of belief, then including
the knowledge as a proposition in an expression of conditional probability
doesn’t address the fundamental issue. There would not be one single
probability function such that conditionalizing it on the knowledge that
each subject has at each time yields the degrees of belief that agent does
or should have. While the “information” may be a proposition of the same
sort as the bearers of probability, the “mentality or psychology of the
individual” is not.

Thus, unless we assume that the knowledge an agent has uniquely
determines the probabilities that are rationally permitted for her (a thesis
known as Uniqueness, contrasted with its negation, Permissivism; see Kopec
and Titelbaum, 2016), it seems more accurate to represent a subject S’s
degrees of belief at a time t as pS,t(A). There is a separate Bayesian proba-
bility function for each subject at each time. This probability function will
reflect an agent’s knowledge, which may mean that it gives probability 1 to
any proposition that is known. If this is the right way to treat knowledge,
then pS,t(A) = pS,t(A | KS,t). But the conditional probability is no more
fundamental here.

However, some philosophers, such as Horowitz and Dogramaci (2016),
argue that the knowledge or evidence that one has does uniquely deter-
mine the rational degrees of belief to have. On this picture, the degrees
of belief that are rational for a subject at a time really do turn out to be a
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matter of conditional probability, prational(A | KS,t). What the Subjectivist
Bayesians think of as a subject-and-time-relative unconditional probability
is actually aimed at following an objective conditional probability function.
However, even on this interpretation, there is an important theoretical
consideration of what the rational degrees of belief would be for an agent
with no knowledge whatsoever. The defender of the claim that condi-
tional probabilities are fundamental would represent this as prational(A | T),
where T is some tautology, but it seems just as reasonable to represent
this as prational(A), so that there are some unconditional probabilities after
all. The question then becomes: do the unconditional rational probabilities
suffice to determine all the conditional rational probabilities? But this is
largely a mathematical question, and not a conceptual one, and this is
the fundamental question behind Section 1.3 and Section 1.4, with full
theories described in Section 2 and Section 3.

I should also note that there is a view like this one available for a
more permissive or subjectivist viewpoint. This viewpoint is associated
with the work of Isaac Levi (1980). There is no one objectively rational
evidential probability function. Instead, there are just many different “con-
firmational commitments” that one might have. When this confirmational
commitment is conditionalized on the knowledge a subject has, we can
find the degrees of belief that the subject is committed to. Thus, what I
referred to above as pS,t(A) would instead be referred to as pC(A | KS,t),
where C is the particular confirmational commitment the agent has. A
major advantage this view has, if correct, is that it allows us to extend
Bayesian updating to cases in which one revises one’s beliefs by giving
up something that was taken as evidence, by removing this proposition
from one’s knowledge. However, this view also requires such hypothetical
revisions to yield well-defined commitments for giving up any of one’s
beliefs. And again, there may still be unconditional probabilities on this
view (namely, the commitments one has prior to any evidence), though
there is still a mathematical question of whether they suffice to determine
the conditional probabilities that we usually focus on.

1.2.2 Chance and Frequentism

Some have argued that for the chance or frequency interpretation of prob-
ability, the role of experimental setup or preconditions for repeatability
mean that all chance is conditional. I will again argue that the role of the
background here is distinct from the role of the conditioning event in con-
ditional probability, so that these interpretations also have no conceptual
reason for making conditional probability prior to unconditional.

On one picture, chances are relative to a world and a time (Lewis, 1980).
Thus, the chance of A at a time t in world w is fundamentally given by
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pw,t(A). Chances may update by conditionalization, so that if t′ is later
than t, then pw,t′(A) = pw,t(A | Ht,t′), where Ht,t′ is the description of the
complete history of the world from t to t′. If there is some earliest time
0, then one may even be able to say that pw,t(A) = pw,0(A | H0,t), so that
the chances at all later times are fundamentally given by the conditional
chances at the beginning of time. But this still leaves unconditional chances
at the earliest time. And if there is no earliest time, then it seems that
we must allow unconditional chances at every time to count as equally
fundamental, because there is no privileged earlier reference point from
which they are all conditionalized. And on any of these pictures, the
world must enter in as a separate background parameter distinct from the
things conditionalized on. The history up to t alone does not suffice to
determine the chances at t. (Just consider the following two worlds where
nothing happens other than a series of coin flips. In one world the flips
are independent and have chance .6 of coming up tails, while in the other
they are independent and have chance .5 of coming up tails. It is possible
for the first six flips to come up the same way in the two worlds while
still maintaining different chances for the seventh flip. This can happen on
any view on which chances are determined either by the Humean pattern
including the future, or by non-Humean laws.)

On another picture of chance, the chances are determined not by the
laws and the world, but by an experimental setup. The chance of a coin
coming up heads may be 0.5 when the setup of the coin flipping situation
is properly specified. But without a specification that the coin is flipped,
that the flip is fair, that the coin is balanced, etc., it just may not be the case
that it makes sense to say what the chance is that the coin will come up
heads. On some ways of taking this, experimental outcomes are the result
of chance processes, but experimental setups are the result of free choice of
the experimenter. Conditional probability is a relationship between two
events that are both in the domain of the probability function, while the
experimental setup is a precondition for the existence of these probabilities
at all. As Humphreys points out (Humphreys, 1985, 2004), Bayes’ Theorem
and other mathematical results allow us to invert conditional probabil-
ities by means of some mathematical calculations. If there were such a
thing as p(outcome | setup), then there would have to be something that is
p(setup | outcome). But the setup is not the sort of thing that has a chance,
as it is the result of a free choice, and the outcome is not the sort of thing
that characterizes a chance process, so this conditional probability is either
senseless or irrelevant. If we want to notate the role of the setup in deter-
mining the chance of the outcome, we should write it as psetup(outcome),
not p(outcome | setup).

This viewpoint on chance is similar to the one that frequentist statisti-
cians have of probability. The only probabilities that make sense on this
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view are the results of repeatable experiments. Scientific hypotheses help
specify these probabilities, but do not themselves have probabilities, since
they are not the results of repeatable experiments. This sort of thing is
often notated by philosophers as psetup(E | H), where E is some evidence
consisting of experimental outcomes, and H is a scientific hypothesis. The
function represents something like the fraction of times that this outcome
would occur if one were, hypothetically, to repeat this experimental setup
many times, assuming the hypothesis is true. If this is the right way to
represent the situation, then every statement of probability must have
some scientific hypothesis or other that determines it, so every probability
must be conditional.

However, I claim that on the frequentist interpretation, H should not
be thought of as being conditioned on, but must instead be part of the
background, just like a world, confirmational commitment, or experimen-
tal setup. The clearest reason for this is that on the frequentist account,
H is from an importantly different ontological category than E, while
conditional probability involves pairs of entities of the same ontological
category. H is either true or false, and not the outcome of a repeatable
experiment. A hypothesis, for the frequentist, is not the sort of thing that
has a probability, so it is not the sort of thing that can be conditioned on. In
statistical practice, the difference is often indicated by using a semicolon to
set off the hypothesis that is the precondition for the probabilities, rather
than the vertical line, which is used for conditional probabilities. Thus, we
should write “P(E; H)” rather than “P(E | H)”.

Furthermore, there is a notion of conditional probability that the fre-
quentist can talk about, that is quite different. On the hypothesis that an
urn has 3 white and 7 black balls, the conditional probability of the second
draw (without replacement) being black given that the first is white is
7/9, while the unconditional probability of the second draw being black
is 7/10. In this case we can calculate the conditional probability as the
unconditional probability of a white draw followed by a black one, divided
by the unconditional probability of the first draw being white, all given
the background of the urn hypothesis, which has no probability of its
own for the frequentist. The Bayesian can say that all of these probabilities
are conditional on the hypothesis, because the Bayesian thinks that the
hypothesis is the sort of thing that has a probability. But the frequentist
shouldn’t say this. So the frequentist has no special need for primitive
conditional probabilities.

1.2.3 Actual Frequencies

Some have argued that on the actual frequency interpretation of probability,
all probabilities are fundamentally conditional. For this interpretation, I
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agree. When probability is interpreted as frequency of some property
within an actual reference class, every probability really is conditional.

The interpretation of probability as actual finite frequency says that
p(B | A) is the fraction of entities with property A that also have property
B. There is a particular number that is the frequency of heart attacks
among 40-to-50-year-old American males in a given year, which we can
calculate by counting how many 40-to-50-year-old American males there
were that year, and counting how many of them had heart attacks that
year. There is another frequency of heart attacks among all Americans,
and another among all humans, calculated similarly. But if there is such a
thing as the frequency of heart attacks independent of any reference class
(even the entire universe), it is just a number, not a probability.

In this case, it looks like the reference class is the same sort of entity
as the event whose probability is being measured. We can talk about
the frequency of 40-to-50-year-old males among American heart attack
victims, by counting how many heart attack victims there were that year,
and finding what fraction of them were 40-to-50-year-old American males.
Furthermore, if we ask for the conditional frequency of heart attacks among
40-to-50-year-old American males given that they smoke, this appears to
be the same as the “unconditional” frequency of heart attacks among 40-
to-50-year-old American males who are smokers. Conditionalizing really
just is conjunction with the reference class. Thus, the reference class really
is the same sort of thing as a conditioning event. Thus, on the actual
finite frequency interpretation, we really do have a good case for every
probability being conditional.

1.2.4 Logical and Evidential Probabilities

For logical and evidential probabilities (as well as perhaps some objective
versions of the degree of belief interpretation of probability), some have
argued that all probabilities are fundamentally conditional. For these
interpretations, I don’t specifically reject this argument. However, there is
a special case of “empty background” that might be considered to be an
unconditional probability that is equally fundamental to the conditional
probabilities, so the upshot of the argument here is more equivocal.

Logical probability is often said to be a relation of partial entailment
between two propositions. That is, “p(B | A) = 1” is said to mean the same
thing (or something very similar to) “A ` B.” Saying that p(B | A) = 2/3
is saying that A “2/3 entails” B. Since entailment is a binary relation,
this logical probability is said to be an essentially conditional relation.
This is the point of view described, for instance, by Keynes (1921). (A
similar viewpoint, though not identical, is expressed with regards to the
“evidential probabilities” of Williamson, 2002.)
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Both roles here are played by arbitrary propositions, so there are no on-
tological distinctions between the two sides of the conditional probability.
There is no category mistake in reversing a logical entailment (though of
course the degree of entailment can differ). Furthermore, just like with
actual finite frequencies, there doesn’t appear to be any other notion of
conditional probability that is interestingly distinct from this one. The
probability of A given B, with C as background, doesn’t obviously have
any interpretation that would be clearly different from the probability of
A with B ∧ C as background. Thus, just as with actual frequencies, one
might be able to argue on conceptual grounds that all logical probabilities
are inherently conditional.

However, unlike with frequencies, the opponent of this view has a re-
sponse. Deductive logic can be expressed as the study of logical entailment
relations, but it can also be expressed as the study of theorems. One can
think of theorems either as sentences entailed by a tautology, or as sen-
tences entailed by no premises whatsoever. Similarly, it may be possible to
consider the set of logical probabilities conditional on a tautology either
as the degree of partial entailment the tautology gives to each sentence, or
as the degree of partial theoremhood each sentence has.

If we can interpret p(B | A) as the degree to which A partially entails
B, we may also be able to interpret p(A) as the degree of partial theorem-
hood of A. On this account, it may be further possible to recover all the
partial entailments from these facts about partial theoremhood through
techniques of calculating conditional probabilities, just as it is possible to
recover all the deductive entailments from the facts about theoremhood
through the deduction theorem. Thus, the opponent of conditional proba-
bility as the fundamental notion may have a response to this argument,
though it will depend on the extent to which conditional probabilities
really can be recovered from the unconditional ones, just as in the case of
Objective Bayesianism, or Levi’s confirmational commitments.

1.2.5 Summary

In summary, degree of belief, physical chance, experimental chance, and
hypothetical frequency all have some fundamental ontological distinction
between the bearers of probability and the backgrounds that are required
for probabilities to even exist. Thus, the necessity of these backgrounds
does not motivate the claim that conditional probability is primitive or
fundamental. For actual frequencies, logical probability, and evidential
probability, the backgrounds are of the same type as the bearers of proba-
bility, so this argument does seem to motivate the claim that conditional
probability is fundamental. But for logical and evidential probability, there
is a possibility of empty background, which can be re-interpreted as a
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fundamental notion of unconditional probability. Further mathematical
investigation is needed to see whether these unconditional probabilities
suffice to determine the conditional probabilities. Only for actual frequen-
cies is it clear that all probabilities really are conditional, because of the
necessity of a background for probability.

◦ All probabilities are non-trivially conditional:

� Actual frequency

◦ All are conditional, some conditions are empty:

� Logical

� Evidential

� Unique Degree of Belief

◦ Background relevant, not all are conditional:

� Chance

� Hypothetical Frequency

� Permissive Degree of Belief

1.3 Problems for the Ratio

The previous section considers conceptual arguments that all probabilities
are fundamentally conditional. I have argued that this argument works
for the interpretation of probability as actual frequency, and is equivocal
for logical and evidential probability and related objective epistemic in-
terpretations, but that it does not work for the other interpretations of
probability. In this section, I consider arguments for the claim that all prob-
ability is fundamentally conditional based on the mathematical features of
conditional probability. This set of arguments is the center of Alan Hájek’s
(2003). Although this argument is perhaps easier to feel the grip of, and is
largely independent of the particular interpretation of probability, I put it
second, because consideration of it leads naturally to the technical issues
considered in the later sections of this article.

The immediate target of Hájek’s argument is the common claim that con-
ditional probability is just defined as p(A | B) = p(A ∧ B)/p(B). As Hájek
points out, it appears to be a consequence of this definition that there is no
such thing as the conditional probability p(A | B) unless p(B) has a precise
non-zero numerical value. He then gives a litany of cases in which it seems
clear that p(A | B) exists, even though p(B) is either zero, imprecise, vague,
or non-existent. Thus, we must reject the ratio analysis as a definition
of conditional probability. Whether this requires conditional probability
to be a (or the) fundamental concept of probability theory is a deep and
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difficult question that depends on what alternatives to the ratio analysis
exist. The rest of the article after this section is a long consideration of
these alternatives. Section 1.4 defines the particular mathematical features
of probability and conditional probability that come up in addressing this
problem. Section 2 and Section 3 consider the two advanced mathematical
characterizations of conditional probability that avoid the problems of the
ratio definition, one of which makes conditional probability primary and
the other of which allows it to (almost) be calculated from unconditional
probability. Evaluation of the merits of these two mathematical accounts is
thus essential for deciding whether or not to accept Hájek’s argument that
conditional probability is prior to unconditional probability.

I will give examples of Hájek’s cases shortly. I think that most are not
decisive, but there is one family of them that is quite convincing for every
interpretation of probability mentioned above, apart from actual frequen-
cies. Thus it is interesting that the two primary arguments for conditional
probability being fundamental have this complementary distribution—the
one interpretation for which Hájek’s argument against the ratio analysis
clearly fails is the one interpretation for which all probabilities clearly
require a background of the same type as the bearers of probability, so
that it can clearly be understood as conditional probability.

1.3.1 Impossible or Ruled Out Conditions

I will begin by considering a type of case Hájek considers that is easy to
reject. I think it is important to consider how this type of case differs from
the others, which are more plausibly relevant. Let H be the proposition
that a particular coin flip comes up heads, and T be the proposition that
this same flip comes up tails. Hájek claims that p(T | T) = 1 under any
circumstance. In particular, he claims (p. 287) that this should be true even
if p is the function encoding physical chances at a time when the flip has
already happened and the coin already came up heads, so that p(T) = 0.
He also suggests that it should be true if p is the function encoding degrees
of belief of a rational agent who has already learned that the coin came up
heads, so that p(T) = 0.

These cases can be rejected because there doesn’t appear to be a clear
meaning for these conditional probabilities. Although I don’t think that
conditional probabilities are the probabilities of conditionals, there is a
useful analogy to be drawn with conditionals. Conditional probability is
intended to capture something more like an indicative conditional, rather
than a subjunctive conditional or a material conditional, and indicative
conditionals generally aren’t considered in cases where the antecedent
has already been fully ruled out. It seems correct to say, “if Oswald didn’t
kill Kennedy then someone else did,” but this is because we allow that
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our knowledge of the circumstances of the assassination is fallible. If we
imagine fully ruling out any possibility that Oswald didn’t commit the
assassination, then the conditional becomes harder to interpret. We can
apply subjunctive or material conditionals even to cases of necessary false-
hoods, but it’s hard to interpret them as indicative conditionals. Maybe we
can make sense of a sentence like, “if 7 hadn’t been a prime number, then
8 would have been,” but a sentence like “if 7 isn’t a prime number, then 8
is” seems only interpretable as a material conditional. Just as indicative
conditionals seem not to be acceptable when the antecedent has been fully
ruled out, none of the purposes for which conditional probabilities have
been proposed makes any use of probabilities conditional on antecedents
that have already been ruled out. There is no question of updating on or
confirming a hypothesis that has been completely eliminated.

There are processes of belief revision, on which one removes a belief that
one already has before updating on new information, but this is a different
process that uses conditional probability from the revised state rather than
the current state.1 Similarly, the probability of outcomes conditional on
acts that weren’t done is irrelevant to decision theory.2 Similarly, there is
no question of how the chances of events will evolve when something that
didn’t occur does occur (though there may be a question of how chances
will evolve when something of similar type to that event does occur),
and there is no question of the degree of causal relevance of something
that didn’t occur (though there may be a question of the degree of causal
relevance of its non-occurrence, which of course is something that did
occur).

1.3.2 Vague, Imprecise, or Gappy Conditions

A second class of cases that Hájek considers involve vague or imprecise
probabilities (pp. 293–5). It is controversial whether imprecise probabilities
even exist (see Titelbaum, this volume, and Mahtani, this volume, for
further discussion). But if they do, then it’s clear that they cause problems.
Perhaps one is uncertain about the outcome of the next United States
presidential election in such a way that one has imprecise credences
about it. Or perhaps it depends on non-deterministic events in a way that
leaves it with an imprecise chance. Nevertheless, if D is the proposition

1 Levi’s notion of confirmational commitments allows for probability conditional on propo-
sitions that are currently known to be false. But in this case, the probability function is
not the current degree of belief function, but rather the confirmational commitment—the
current degree of belief function is itself conditional on current knowledge. Thus, the
probability conditional on something currently known to be false is a prior commitment
of an indicative sort—not Hájek’s probability conditional on a certain falsehood.

2 Brandenburger (2007) has argued that game theory sometimes needs to consider probabili-
ties conditional on actions that are ruled out by rationality considerations, but these are
not ruled out with certainty, the way that tails was in Hájek’s examples.
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that a Democrat will win the next US presidential election, and H is the
proposition that a completely unrelated coin flip will come up heads, it
seems clear that p(H | D) = 1/2.

However, this challenge may not be a fatal objection to the ratio analysis
either. One proposal about imprecise probabilities is that, rather than p(D)

being an imprecise value (or set or whatever), there are instead multiple
precise probability functions pi that are all part of the representation of
degree of belief, or chance, or whichever interpretation of probability we
are considering. On each such function, pi(H | D) can be well-defined
by the ratio formula, and if they all happen to take value 1/2, then the
conditional probability can be precise even though the unconditional
probability is not. (This response is described in slightly greater detail on
page 295 of Hájek’s paper.)

Hájek puts the most weight on cases where there is no unconditional
probability, but conditional probabilities are well-defined. He gives a long
series of such cases on pp. 295–312. These include cases of free actions
(which may be such that they can’t have credences or chances), mere gaps
in the credences or chances, and cases of non-measurable sets.

I think that mere gaps are either best thought of as maximally imprecise
probabilities and addressed supervaluationally as above, or as events that
are outside of the scope of the relevant probability function. An agent
who fails to have a degree of belief in some proposition is an agent who
hasn’t considered or grasped it, and thus fails to have any degree of belief
conditional on it as well (even though there are some facts about what
degree of belief she should have were she to have them—like p(A | A) = 1).
Similarly with non-measurable sets—if they are outside the bounds of
chance or credence, then there are no meaningful conditional probabilities
on them either.

There may be some class of events (perhaps the actions of a free agent
who is in the process of deliberation) that can’t have probabilities, but
which themselves serve as the conditions for probabilities of other events.
However, some of these may in fact be better thought of as the “back-
grounds” for probabilities that I considered in Section 1.2. This may be
the right way to think of the “action probabilities” of decision theory, for
instance, where every probability must depend on a specification of the
action of the agent. However, if there were a class of events that can’t have
probabilities, but which also aren’t essential to the specification of other
probabilities, even though they can affect them, then this would be a better
case.
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1.3.3 Probability 0 Conditions

At any rate, I think the strongest case is one that Hájek puts less weight on
(pp. 289–290). These are cases arising from consideration of infinite proba-
bility spaces, where some events have probability 0 without being ruled out.
Consider a point on the surface of a sphere. Label the sphere with lines of
latitude and longitude like those of the Earth. Let N be the proposition
that the point is in the northern hemisphere. Let Lθ be the proposition that
the point is on the line of longitude at angle θ from the boundary between
the eastern and western hemispheres. If the initial probability distribution
is uniform, then it is quite plausible that P(N | L0) = 1/2, even though
P(L0) = 0, so that P(N ∧ L0)/P(L0) is undefined. Furthermore, even if
the initial probability distribution isn’t uniform, it seems that P(N | Lθ)

should be defined whenever there is some possibility of Lθ being true.
However, there are uncountably many distinct values of θ, and at most
countably many of them can have positive probability (because at most
n of them can have probability greater than 1/n, for each of the count-
ably many integers n, and any positive number is greater than 1/n for
some integer n). Thus, there must be some way to make sense of these
conditional probabilities, despite the use of probability 0. This example
can be generated for probability interpreted as chances or as degrees of
belief or as evidential probability, or any interpretation, as long as there
are uncountably many distinct possibilities that aren’t ruled out.

There are two methods that have been proposed to block this set of
cases. One is to introduce additional non-zero values for the probability
function to take that are nevertheless lower than 1/n for any positive
integer n. I have argued elsewhere that this method is unlikely to be
correct for chances or degrees of belief (Easwaran, 2014). (This proposal is
discussed in more detail by Wenmackers, this volume.) Furthermore, this
option bears some relationship to one of the proposals described later, in
Section 3.1, so I suggest that this is in some sense not really an alternative
to the methods considered here—it is effectively equivalent to letting the
probability take the value 0.

The other method for blocking this sort of case is to argue that the rele-
vant notion of probability can’t have uncountably many disjoint possible
events. In the case of Bayesian probabilities, this is motivated by some
consideration of the finitude of the human mind, while in the case of
chances it is motivated by some understanding of quantum mechanics
as requiring the universe to be discrete in time, space, and every other
meaningful parameter.

However, this sort of interpretation of quantum mechanics is implausible.
Although certain parameters like charge and spin are quantized, time and
space just enter into “uncertainty” relations. This means that they are
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bound to other parameters in a way that interactions depending very
precisely on one parameter must allow for exceedingly large variation on
the other. However, this does not put any specific lower bound on the
precision of any interaction, and doesn’t directly motivate the idea that
space and time are discrete.

Furthermore, although any particular human mind is finite, there is
reason to allow consideration of every hypothesis of the form V > p/q,
where V is some physical parameter, and p and q are integers. Certainly,
science seems to proceed as if each of these hypotheses is meaningful,
even if we can never be absolutely sure which are true or false. But these
countably many hypotheses together generate a family of uncountably
many hypotheses of the form x = r where r is a real number. (The claim
that all of the relevant algebras are countably generated, or generated
by random variables in this way will be important in Section 2.3.2.) The
example with points on a sphere is exactly like this, but so are many others
that are more directly relevant in science. To reject these cases is to say that
every probability function has some finite limit on the size of examples
that are relevant.

This response in terms of finitism is quite effective in the interpretation
of probability as actual frequency, if the classes of events one is discussing
are always finite. (When the classes may be infinite, it’s hard to say how
to even define the notion of frequency involved.) But this response is
no help to the statistical frequentist, who may be interested in scientific
hypotheses of the relevant sort. Philosophers often make reference to
examples involving a dart thrown at a board, with infinitely many points
that its center might hit, or a fair coin being flipped infinitely many times,
for which each sequence of heads and tails is a possible outcome. But
examples involving infinity are central to much scientific practice as well.

For instance, a statistical frequentist may be interested in some hypoth-
esis about how energetic particles are ejected from an atomic nucleus
under a particular sort of process. She may further be interested in the
question of how the energy distribution of these particles is correlated to
the direction in which they are ejected. If we let Ex be the statement that
the energy of the particle is x, and Dθ be the statement that the particle is
ejected in a direction at angle θ to the motion of the atomic nucleus, then
she could be interested in all probabilities of the form p(Ex |Dθ). But if she
hypothetically imagines the process being repeated infinitely many times,
the probability of many of the Dθ is likely to be zero, given that there are
uncountably many directions in which the particle could be ejected. If
we limit consideration to some actual set of experiments, then there are
likely to be only finitely many such ejections, and so the non-realized Dθ

can be ignored. But the statistical frequentist is interested in hypothetically
repeated experiments, so all of these possibilities must be considered.
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To summarize, there may be a way to resist all of these cases. But it
would involve some extensive use of special backgrounds for certain types
of probability, a particular way of dealing with any kind of imprecision in
probability functions, and a rejection of infinity. Most of the mathematical
work on alternatives to the ratio analysis only address the issue of infinite
probability spaces and probability 0. I think that the other problems can
be avoided as in ways that I have suggested along the way. But there
is certainly room for further philosophical and mathematical analysis of
those suggestions, and perhaps for new alternatives, which may or may
not prioritize conditional probability over unconditional probability. But
the rest of this article will examine the mathematical theories that have
been developed for dealing with the problems that arise around infinite
probability spaces and the resulting events of probability 0.

1.4 Additivity, Disintegrability, and Conglomerability

Once we consider these infinite families of hypotheses, it seems that we
must have some way of making sense of p(A | B) even when p(B) = 0.
There are many different mathematical theories that allow this to work
out, and these will be the subject of the further sections of this article.
The reason there are so many different theories is due to a fundamental
dilemma around infinity, which will take some time to explain.

Every such theory begins with the idea that the “definition” p(A | B) =
p(A ∧ B)/p(B) should be replaced with an axiom p(A | B)p(B) =

p(A ∧ B). We can then consider whether further information allows
us to define p(A | B) from the unconditional values, or at least in some
sense ground it in them, or whether we must take p(A | B) as a fundamen-
tal function separate from the unconditional probability function p(A).
However, even allowing for this function, there are difficulties when the
set of possibilities is infinite.

In this section I will discuss some of the mathematical properties in-
volved, and show that the idea that conditional probability can be un-
derstood as a function p(A | B) conflicts with the natural generalization
of Additivity in cases of infinity. We must either give up on Additivity
(and related principles generalizing the Law of Total Probability), or else
accept that conditional probability is given by a function p(A | B, E) for a
further parameter E . The mathematical theory of conditional probabilities
for infinite sets is an interplay between the two horns of this dilemma.

In this section I will formally treat the bearers of probability as sets of
possibilities, and will largely bracket concerns about the interpretation of
probability until the end.
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1.4.1 Additivity

When dealing with infinity, a fundamental question for probability theory
is whether and how to generalize the notion of Additivity. One of the
standard axioms of probability is that if A1 and A2 are disjoint events (that
is, there is no possibility on which they both occur) then p(A1 ∪ A2) =

p(A1) + P(A2). Kolmogorov and others have considered a generalization
of this axiom to countable cases.

Definition 1 The Ai for i ∈ I form a partition of A iff each Ai entails A, and
whenever A is true, exactly one of the Ai is true.

(If no particular A is mentioned, then I am considering a partition of the
set of all possibilities.) Thinking of the Ai as sets, that means that they are
disjoint, and their union is A. I will refer to this partition with boldface AI,
and with the index set I as subscript, while italic Ai, with a member i of I
as subscript, will refer to the member of AI that is indexed by element i.

One way to state Countable Additivity is as the requirement that for any
countable partition AI of A, we have p(A) = ∑i∈I p(Ai). Kolmogorov ac-
tually framed his axiom in a slightly different form as a sort of continuity—
whenever the Bi for i ∈N are a family of sets whose intersection is empty,
we have limn→∞ p(

⋂n
i=0 Bi) = 0.

However, I think that it is more perspicuous to phrase this generalization
in a third way, in order to more clearly demonstrate the further generaliza-
tions to uncountable sets. The following is a theorem of standard finitely
additive probability, whenever AI is a partition of A.

Theorem 1 If x ≥ p(A), then for any finite I0 ⊆ I, x ≥ ∑i∈I0
p(Ai).

We can then define additivity as the converse.

Definition 2 (AI-Additivity) If for every finite I0 ⊆ I, x ≥ ∑i∈I0
p(Ai), then

x ≥ p(A).

The following definition is equivalent.

Definition 3 (AI-Additivity) If x < p(A) then there is some finite I0 ⊆ I
such that x < ∑i∈I0

p(Ai).

Countable Additivity is equivalent to AI-Additivity for all countable
sets of indices I.3 This is because, for a set of non-negative real numbers,

3 We can also naturally talk about κ-Additivity as AI-Additivity for all I with cardinality less
than κ. This is standard notation though it is slightly confusing that Countable Additivity,
also known as “σ-Additivity,” is ℵ1-Additivity, while ℵ0-Additivity is actually Finite
Additivity. But this notation is relevant to distinguish between Additivity for all cardinals
strictly below ℵω , and Additivity for all cardinals up to and including ℵω , which is called
ℵω+1-Additivity.
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the sum of that set is the smallest real number that is at least as great as
every finite sum of those numbers.4

Countable Additivity is not entailed by the standard probability axioms,
and in fact rules out certain intuitively appealing probability distributions.
The classic proposed counterexample to Countable Additivity is often
known as the “de Finetti lottery” (de Finetti, 1974; for more detailed
discussion see Bartha, 2004, and Howson, 2008). Imagine that some natural
number is chosen in such a way that no number is more likely than any
other. This intuitively seems possible, and yet it is ruled out by Countable
Additivity. Since every number is equally likely to be chosen, each number
must have probability less than 1/n, because otherwise some n of them
would exhaust all the probability. The only way for this to be the case is
for each number to have probability 0. But this is a violation of Countable
Additivity, because the sum of these 0s is strictly less than 1, which is the
probability of the countable disjunction of these possibilities.

Considering Definition 3, we can derive a more general set of apparent
problems. Let each Ai stand for the event of the number i being picked,
and let I be the set N of all natural numbers, so that AI is a partition
of the necessary claim that some number or other is picked. In this case,
Definition 3 of AI-Additivity states that for every x < 1, there must be
some finite I0 such that x < ∑i∈I0

p(Ai). That is, for every x < 1, there
is some finite set such that the probability that the number chosen is
from that set is at least x. AI-Additivity doesn’t just rule out uniform
distributions on the natural numbers—it requires that every distribution
concentrate most of the probability on some finite set or other.

If AI-Additivity holds for all partitions AI, then the probability function
is said to be Fully Additive. In this case, for any partition AI of a set

4 Readers may be familiar with the definition of the sum of a sequence of (non-negative or
negative) numbers ai for i ∈N as

∑
i∈N

ai = lim
n→∞

n

∑
i=1

ai.

This definition doesn’t work for index sets other than N, and makes essential use of the
order of the indices. When some terms are negative, this order can be important—the
same set of numbers can have a different sum when added in a different order, if both
the negative and positive terms separately sum to infinite values. But when all terms
are non-negative, the least upper bound of the sums of finite subsets is the same as the
sum of the terms in any order (because every finite initial sequence is a finite subset, and
every finite subset is contained within some finite initial sequence, and since there are no
negative terms, the sum of any larger subset is at least as great as the sum of any subset
contained within it).
For uncountable infinite sets of non-negative numbers, it is hard to extend the sequential
definition, because we don’t have good methods for dealing with uncountably long
sequences. However, the least upper bound of the set of all sums of finite subsets is still
well-defined.
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A, Definition 3 entails that for every n, there is a finite set of Ai whose
probability adds up to more than p(A)− 1/n. Let I′ ⊂ I be the union
of the countably many finite sets of indices of these sets, which is thus
countable. By Theorem 1, if we let A′ =

⋃
i∈I′ Ai, then p(A′) ≥ p(A)− 1/n

for each n (since it contains a finite subset adding to this probability). Since
A′ ⊂ A, we have p(A′) = p(A). Thus, the remainder of A that is not in
A′, A \ A′, must have probability 0. If A was the set of all possibilities,
and each Ai is a singleton set containing a single possibility, then A′

is countable. Not only does each element outside of this countable set
individually contribute probability 0, but even collectively they all contribute
0.5 Thus, if Full Additivity holds, there is a sense in which we can ignore
all but countably many possible outcomes, and these countably many
outcomes have individual probabilities that add up to 1. A probability
function in which the set of all possibilities is countable is said to be discrete.
While there are many interesting applications of discrete probability, there
are also plenty of applications for which no countable set of possibilities
should account for all the probability, such as any scientific question for
which every real number within some interval is a possible answer. Thus,
most probability theorists do not accept Full Additivity.

We can think of different views of probability as along a sort of scale
(Figure 1). At the most restrictive end there is the strongly finitistic view
that there are only finitely many possibilities that probability is distributed
over. Next we get the discrete view, that there are only countably many
possibilities that probability is distributed over—this is classical probability
theory with Full Additivity for all cardinalities. Next we get the traditional
mathematical view on which the set of possibilities can be uncountable,
but the probability function is required to satisfy Countable Additivity.
Finally, at the most liberal end of the scale, we have the minority view
in mathematics but a popular view in philosophy, where the probability
space can be uncountable and the probability function is only required
to satisfy Finite Additivity. (Some of the popularity of this view among
philosophers may stem from confusion with probability over finite spaces,
at the opposite end of the scale.) Finite and discrete probability have no
problem with Additivity, and in fact allow conditional probability to be
uniformly defined by the ratio. However, the consideration of scientific
examples where we want to measure the unknown value of some parame-
ter push us towards uncountable spaces. So it is useful to investigate the

5 Another way to see this is to consider the probabilities of each individual possibility. For
each n, at most n of the individual possibilities can have probability greater than 1/n.
Thus, at most countably many have non-zero probability. But if Full Additivity holds, then
the sum of all the probabilities of the individual possibilities must be 1. So these countably
many non-zero probabilities must add up to 1. Thus, the set of all possibilities other than
the countably many with non-zero probability must be a set with probability 0.
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ways in which probability functions with failures of Additivity can still be
well-behaved. I believe that Countable Additivity is the most useful point
on this scale, but it is worth considering the mathematical features of all
four points.

Finitely Additive probability

Countably Additive probability

Discrete probability/Fully Additive probability

Finite probability

Figure 1: A scale of views

1.4.2 Disintegrability and Conglomerability

Although generalizations of Additivity are quite controversial, there are
related principles that have been argued to generalize to infinite cases.
These principles are defined by using integration in place of addition when
infinity arises, to avoid some of the difficulties of adding up zeros. By the
end of this section, I will mention some results that show that instances
of these principles must fail when instances of Additivity fail. However,
in Section 1.4.3, I will show that we can avoid these failures by defining
conditional probability relative to a partition.

The starting point for discussion of these principles is the Law of Total
Probability.

Theorem 2 (Finite Law of Total Probability) If A1 and A2 are incompatible,
and A is the disjunction A1 ∪ A2, then

p(B ∩ A) = p(B | A1)p(A1) + p(B | A2)p(A2).

Given two instances of the conjunction law, p(B ∩ Ai) = p(B | Ai)p(Ai),
this is equivalent to an instance of Additivity: p(B ∩ A) = p(B ∩ A1) +

p(B ∩ A2). We can state a generalization of this, where AI is a partition of
some set A.

Definition 4 The B ∩AI-Law of Total Probability states that

p(B ∩ A) = ∑
i∈I

p(B | Ai)p(Ai).
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Given that p(B ∩ Ai) = p(B | Ai)p(Ai), it is straightforward to see that the
B ∩AI Law of Total Probability is equivalent to B ∩AI-Additivity. Giving
up Full Additivity means giving up certain instances of the Law of Total
Probability. But there are ways of modifying the Law of Total Probability
that don’t directly take this additive form.

The Law of Total Probability can be related to considerations of expected
value for random variables. Informally, a random variable is some quantity
with a potentially unknown real number value, where for each real number
x, there are well-defined probabilities p(V > x) and p(V = x). Notably,
the set of events V = x form a partition.

Definition 5 When there are only finitely many possible values for V, the ex-
pected value of V is given by

exp(V) = ∑
x

x · p(V = x),

where the sum ranges over all finitely many possible values for V.

This definition would yield strange results if it were applied to a variable
V for which Additivity fails on the partition into V = x.

Any violation of Additivity must involve some partition AI such that
∑i∈I p(Ai) = 1 − ε. If I has cardinality at most that of the set of real
numbers, then we can generate a random variable whose expected value
under an extension of the above definition would be paradoxical. For each
i ∈ I, let εi be a distinct positive value less than ε/(1− ε). Let V be a
random variable that takes on the value 1 + εi iff Ai is true. Then a naive
extension of Definition 5 would tell us that exp(V) = ∑i∈I(1 + εi)p(Ai).
But by choice of εi, we see that (1 + εi) < (1 + ε/(1− ε)) = 1/(1− ε).
Thus, exp(V) < ∑i∈I(1/(1− ε))p(Ai) = (1/(1− ε))(1− ε) = 1. That is,
even though V is a random variable whose value is always strictly greater
than 1, this definition of expectation would yield an expected value that is
strictly less than 1.

To avoid this problem, it has been standard to define expected value
slightly differently in infinite cases. Instead of directly considering the
probability of V = x for each possible value that V can take on, mathemati-
cians just directly rule out discontinuities like the one mentioned above. If
V is a random variable that only has finitely many possible values, then
we follow the old definition and let exp(V) = ∑x x · p(V = x). If V has
infinitely many possible values, but has a lower bound (that is, there is
some l such that it is certain that V > l), then we can avoid this problem.
If V ′ is a random variable that always takes a value strictly less than V,
we will say V ′ < V. We will just directly stipulate that if V > V ′ then
exp(V) > exp(V ′). This will rule out the problem of the previous para-
graph, because we could let V ′ be the random variable that always takes
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the value 1, and see that exp(V) > exp(V ′) = 1. By considering variables
V ′ that only take on finitely many distinct values, we get a set of lower
bounds for what E(V) could be. We say that the expectation of V is the
least number above all these lower bounds (the “supremum” of this set of
lower bounds).

Definition 6 Let V be a random variable with a lower bound. Then

exp(V) = sup
V′<V

exp(V ′),

where V ′ ranges over variables that only take on finitely many distinct values.

Similarly, for random variables that have an upper bound, we can define
the expectation to be the greatest number below all the upper bounds (the
“infimum” of this set). We then deal with unbounded random variables by
breaking them into a component with a lower bound and an upper bound.
Let V+ be the random variable that agrees with V when V is positive and
is 0 otherwise, and V− be the random variable that agrees with V when V
is negative and is 0 otherwise. Then define exp(V) as follows.

Definition 7

exp(V) =
∫

V dp = sup
V′<V+

∑
x

x · p(V ′ = x) + inf
V′>V−

∑
x

x · p(V ′ = x),

where V ′ ranges over random variables that only take finitely many distinct
values.

This is the definition of the Lebesgue integral of V with respect to proba-
bility function p, and is the final generalized definition of expected value.
It agrees with Definition 5 and Definition 6 in the cases where they apply.

With this new definition, we can try to save the Law of Total Probability
in a slightly different form. Let AI be a partition. We can consider p(B |AI)

as a random variable whose value is given by p(B | Ai) for whichever
proposition Ai is the unique one from AI that is true. If AI is finite, then
the Law of Total Probability takes the form p(B) = exp(p(B |AI)). This
motivates the following definition.

Definition 8 B is Disintegrable over the partition AI iff

p(B) =
∫

p(B |AI)dp.

Disintegrability is thus another generalization of the Law of Total Proba-
bility, formulated with integrals rather than (potentially infinite) sums.

Let AI be any partition, I′ be any subset of I and A′ = ∪i∈I′Ai. Define
Conglomerability as follows.
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Definition 9 p(B |AI) is Conglomerable over A′ iff

inf
i∈I′

p(B | Ai) ≤ p(B | A′) ≤ sup
i∈I′

p(B | Ai).

It is useful to compare Conglomerability to van Fraassen’s principle of
“reflection” (van Fraassen, 1984; Briggs, 2009).

It is not hard to see that Disintegrability of B over AI entails Con-
glomerability over each A′ with positive probability (because constant
functions taking on the infimum or supremum of p(B | Ai) are among the
set of random variables whose expectation is considered in calculating
exp(p(B |AI))). Conversely, Conglomerability of p(B |AI) over all A′ with
positive probability entails Disintegrability of B over AI. (Since the inte-
gral is defined by comparison to finite sums, this only requires the Finite
Law of Total Probability, rather than the generalizations that fail when
Additivity fails over infinite partitions.)

We might hope that these new generalizations of the Law of Total
Probability in terms of integration rather than summation don’t require
Countable Additivity. However, this hope turns out to be misplaced. A
general theorem is proven by Hill and Lane (1985), verifying that for
countable probability spaces, Conglomerability and Countable Additivity
are equivalent. That is, any failure of Countable Additivity entails a failure
of Conglomerability, and thus Disintegrability, which is the generalization
of the Law of Total Probability. (Slightly more general versions of this
result were proven earlier by Schervish, Seidenfeld, and Kadane, 1984.)

Instances of this result were noted by de Finetti (1974, pp. 177–8), who
also conjectured the general result but hadn’t proven it. To see the basic
idea, consider something like the de Finetti lottery, where each natural
number has equal probability of being chosen. Let E be the event that
an even number is chosen. Intuitively, p(E) = 1/2. However, if we con-
sider the partition into the sets Ai = {2i + 1, 4i, 4i + 2}, then intuitively
p(E | Ai) = 2/3, so that the unconditional probability of E, which is 1/2, is
strictly outside the range spanned by its probabilities conditional on each
member of the partition, which are all 2/3. The construction by Hill and
Lane notes that even without the assumptions of uniformity underlying
the specific probability judgments 1/2 and 2/3, if E and its complement
are both sets of positive probability, then we can often create each Ai
by taking enough elements of E with one element of its complement to
make p(E | Ai) > p(A) + ε. If we can’t do this for every element of the
complement, we can usually do it by taking enough elements of the com-
plement with one element of E to make p(E | Ai) < p(A)− ε. The tricky
part of the Hill and Lane construction is showing how to create a special
partition in the case where neither of these techniques works. These results
have been generalized to show that there are failures of Conglomerability
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for probability distributions that satisfy Countable Additivity but fail to
satisfy Additivity at some cardinality beyond the countable (Seidenfeld,
Schervish, & Kadane, 2013, 2014). Thus, Disintegrability and Conglomer-
ability don’t let us get quite as much distance from Additivity as we might
hope.

1.4.3 The Fundamental Dilemma

However, there is a way to separate Disintegrability and Conglomerability
from Additivity.

First, we should note that Additivity only makes reference to uncon-
ditional probabilities, while Disintegrability and Conglomerability make
reference to conditional probabilities. Furthermore, Disintegrability and
Conglomerability make reference to conditional probabilities p(B | Ai) only
in the context of a random variable p(B |AI). In generating a contradiction
to Conglomerability from a failure of Additivity, Hill and Lane needed
to construct a new partition by joining together elements of AI. (This is
also the case for Seidenfeld et al.) Thus, if a given set A is an element of
two distinct partitions AI and A′I′ , we can avoid the problems if we change
the value of p(B | A) when we move from considering AI to considering
A′I′ . That is, we should consider conditional probability as a three-place
function, p(B | Ai, AI), so that changing just the partition can change the
value of the conditional probability, even if we are considering the same
events B and Ai. Some theorists find this repugnant to their sense that
conditional probability p(B | Ai) must have a single value, but it enables
us to avoid the paradoxes.

This move was in fact already made by Kolmogorov (1950). Although
he hadn’t noticed the connections between Additivity principles and Con-
glomerability, he had already noticed some problems that Conglomerabil-
ity apparently led to, and avoided them by turning conditional probability
into a three-place function of two events and a partition.6 (In fact, this
problem was already mentioned as early as Bertrand, 1889, though due
to Borel’s work on this problem, and the existence of another paradox
known as “Bertrand’s Paradox,” this has come to be known as the “Borel
Paradox.”)

Imagine a point uniformly chosen from the surface of a sphere, labeled
with latitude and longitude like the surface of the Earth. Consider the set
P of “polar” points—those with latitude greater than 60 degrees north or
greater than 60 degrees south. Consider the set E of “equatorial” points—
those with latitude between 30 degrees south and 30 degrees north. Let
Lθ be the great circle of longitude θ. By symmetry, it seems that p(P | Lθ)

6 Strictly speaking, Kolmogorov worked with a “sub-σ-algebra” rather than a partition, but
we will discuss the relation of these concepts in Section 2.
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should be independent of θ, and so should p(E | Lθ). Conglomerability
over the partition7 Lθ requires that p(P) = p(P | Lθ) and p(E) = p(E | Lθ).
But p(P) = 2−

√
3

2 ≈ 1/8 while p(E) = 1/2. Note that P and E each cover
1/3 of the length of Lθ . Thus, conditionalizing a uniform distribution over
the sphere in a way that is Conglomerable over the longitudes gives a
conditional distribution that is concentrated near the equator and away
from the poles.8

To force a problem for the two-place conditional probability function, we
can fix a given line of longitude and shift which partition it is considered
as a member of. Re-describe the sphere so that the poles are still on this
line, but where the old equator was. This switches which points on the line
are polar and which are equatorial. Conglomerability requires the very
same great circle to give rise to different conditional probabilities when
considered as a line of longitude for one set of coordinates, rather than
as a line of longitude for a different set of coordinates. If we let C be this
circle, and Lθ be the partition into lines of longitude for the given poles,
while Lφ is the partition into lines of longitude for poles where C intersects

the equator of the original partition, then we get p(P |C, Lθ) =
2−
√

3
2 while

p(P | C, Lφ) = 1/2. Conditioning on the same event gives different results
when that event is considered as drawn from one partition rather than
another.

Thus, Conglomerability already motivates the idea that conditional prob-
ability depends not just on the conditioning event, but also on the partition
from which that event is drawn. Since the arguments from Conglomerabil-

7 Strictly speaking, Lθ do not form a partition, because every line of longitude includes
the poles. However, the example can be slightly modified without making any significant
changes to anything by just removing the poles from the sphere, or arbitrarily adding
the poles to one particular line of longitude and not any of the others. A slightly cleaner
version of the same sort of case exists if X and Y are two independent normally distributed
variables with mean 0 and standard deviation of 1. Exercise 33.2 of Billingsley (1995)
notes that conditioning on X−Y = 0 relative to the partition X− Y gives different results
from conditioning on X/Y = 1 relative to the partition X/Y. Example 6.1 on pp. 224–5 of
Kadane, Schervish, and Seidenfeld (1986) considers the case where Y = 0 has been ruled
out and notes that conditioning on X = 0 relative to the partition X gives different results
from conditioning on X/Y = 0 relative to the partition X/Y.

8 Some have worried that the appeal to symmetry in the argument that p(P | Lθ) should be
independent of θ is enough like the appeal to symmetry in the intuition that the conditional
probability should be uniform that both are suspect. However, if we take the partition into
account as part of the description of the problem, then there is a relevant difference. The
unconditional probability is symmetric under any rotation of the sphere. However, the
partition into lines of longitude is only symmetric under rotations of the sphere about
the poles—rotating about any other point sends some lines of longitude to great circles
that are not lines of longitude. In particular, rotation along any particular line of longitude
changes the partition, so there is no need for probability conditional on this partition to
preserve uniformity under this rotation. See p. 303 of Chang and Pollard (1997) for more
discussion of this symmetry breaking.
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ity to Additivity rely on generation of new partitions, we might hope that
allowing conditional probability to vary as the partition changes can avoid
the worst consequences. And in fact it often can. As shown by Billingsley
(1995, Theorem 33.3), if p is a probability function satisfying Countable
Additivity over the events involving two random variables, then there is a
way to specify the values for p(B | A, A) while satisfying Conglomerability,
where A is the partition of possible values of one variable, and B ranges
over any proposition involving the two variables. In particular, this means
that it is possible to give up on all forms of Additivity beyond Countable
Additivity while holding on to Conglomerability.9

Thus, we have a choice between allowing conditional probability to
be a three-place function p(B | A, A) depending on a partition as well as
a pair of events, and having unrestricted Conglomerability while only
keeping Countable Additivity; or requiring conditional probability to be
a two-place function p(B | A) just of two events and keeping only as
much Conglomerability as we do Additivity. The former option is called
Regular Conditional Probability, while the latter is called Coherent Conditional
Probability. (‘Coherent’ in this sense just means that the same pair of events
has the same conditional probability regardless of what algebra it was
drawn from, and is not related to the use of the word ‘coherent’ to mean
“satisfying the probability axioms.” I don’t know where the term ‘regular’
comes from here, but it is not related to the concept requiring non-zero
probabilities.) Mathematical theories of these two types will be the subjects,
respectively, of Section 2 and Section 3.

Fuller consideration of the costs and benefits of these proposals will
come in Section 2 and Section 3. But I will first mention several arguments
for Conglomerability, which defenders of Coherent Conditional Probability
must reject.

Recall that Conglomerability (Definition 9) says that for any partition
A, infA∈A p(B | A) ≤ p(B) ≤ supA∈A p(B | A). By considering either B
or its negation as needed, a violation means that there is some value x
such that p(B) < x, but for every A ∈ A, p(B | A) > x. If we consider
the role of conditional probability in updating degrees of belief or in
measuring confirmation, then this means that if one is about to perform an
experiment whose possible outcomes are A, then one can know in advance
that one will get evidence confirming proposition B. This possibility seems
intuitively costly for statistical or scientific reasoning, though there have
been some attempts to mitigate it (Kadane, Schervish, & Seidenfeld, 1996).

For update via Jeffrey Conditionalization, Conglomerability is even more
natural. Recall that update via Jeffrey Conditionalization proceeds by tak-

9 There are some other challenges to Conglomerability raised by Arntzenius, Elga, and
Hawthorne (2004), but these also depend on changing partitions while keeping conditional
probability fixed.
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ing some partition E of possible evidence and updating one’s old degrees
of belief p(E) to new degrees of belief p′(E) for all E ∈ E. This then prop-
agates through the rest of one’s beliefs by means of “rigidity,” the require-
ment that for any proposition A, we have p′(A | E) = p(A | E). In the finite
case, the Law of Total Probability tells us that p′(A) = ∑E∈E p′(A | E)p′(E),
and since these values are specified, so are the probabilities for all other
propositions. In the infinite case, we need some version of the Law of Total
Probability for this to generalize. The natural thought is that we should
have p′(A) =

∫
p′(A | E)dp′. But this just is the formulation of Disin-

tegrability for p′, which is equivalent to Conglomerability. Thus, giving
up Conglomerability would require finding a new version of the Law of
Total Probability that doesn’t have these features, to use in defining Jeffrey
Conditionalization.

Considering the role of conditional probability in decision theory, Con-
glomerability is also supported by a Dutch book argument. The basic idea
is given by Billingsley (1995, p. 431). Basically, any sort of reasoning to a
foregone conclusion (as violations of Conglomerability allow) will make
for guaranteed changes in one’s betting prices that can be exploited by
someone who knows one’s updating rule. Rescorla (2018) has given a more
complete Dutch book argument, including converse theorems proving that
Conglomerability suffices for immunity to this sort of Dutch book.

There is also an accuracy-based argument for Conglomerability. Some
authors have suggested that the right way to think of degree of belief is
as aiming at the truth. Once we have a reasonable notion of “accuracy”
that measures closeness to the truth, we can then derive norms for degree
of belief from principles of maximizing accuracy (Joyce, 1998; Greaves &
Wallace, 2006; Pettigrew, 2016). As it turns out, an update plan for learning
which member of a partition is true maximizes expected accuracy iff it
satisfies Conglomerability with respect to that partition (Easwaran, 2013a).

None of these arguments is fully definitive. It is possible to reject the
importance of Dutch books and accuracy conditions for degree of belief. It
is conceivable that an alternative formulation of the Law of Total Probabil-
ity allows for a generalization of Jeffrey Conditionalization (or that Jeffrey
Conditionalization is not the right update rule). And perhaps reasoning to
a foregone conclusion is not so bad for updating. And all of these problems
are perhaps less bad for physical or chance interpretations of probability
than for Bayesian interpretations of one sort or another. Thus, if it is very
important that conditional probability really be a two-place function rather
than depending on a partition as well, then there is motivation to pursue
Coherent Conditional Probability.

Thus the question becomes just how bad the costs are of Regular Con-
ditional Probabilities, with their extra parameter. Some have said that
an event alone must be sufficient to determine a posterior probability
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distribution, and that the fact of the partition from which the event was
drawn can’t be relevant. “This approach [Regular Conditional Probability]
is unacceptable from the point of view of the statistician who, when given
the information that A = B has occurred, must determine the conditional
distribution of X2” (Kadane et al., 1986). This is most plausible for uses
of conditional probability in update by conditionalization, where one just
learns a new piece of information, and apparently doesn’t learn anything
about the partition from which this information was drawn.

However, I claim that by considering the situation in a bit more detail,
there will always be a partition that is relevant in any application of
conditional probability. Billingsley (1995, end of section 33) brings this
out with a juxtaposition of three exercises. The first two exercises involve
consideration of the Borel paradox with a point on the surface of a sphere,
and a version involving two independent normally distributed random
variables. The third exercise juxtaposes the effect in these exercises of the
same information presented in two different ways (a great circle presented
as one from the family of longitudes, or as the equator from a family
of latitudes; the fact of two random variables being equal as a piece of
information about their difference, or as a piece of information about their
ratio) with a classic probability puzzle.

Three prisoners are in a cell and two will be executed in the morning.
Prisoner 3 asks the guard to tell him which of 1 or 2 will be executed
(since at least one of them will) and on hearing the answer reasons that
his chance of survival has gone up from 1/3 (as one of three prisoners,
two of whom will be executed) to 1/2 (as one of two prisoners, one of
whom will be executed). But of course, as anyone who has considered the
similar “Monty Hall” problem can recognize, this reasoning ignores the
fact that “Prisoner 1 is executed” and “Prisoner 2 is executed” do not form
a partition, since it is possible for both to be true. The relevant learning
situation is one in which the partition is “The guard says prisoner 1 will
be executed” and “The guard says prisoner 2 will be executed.” If these
two answers are equally likely conditional on prisoner 3 surviving, then
in fact the probability of survival is unchanged by this update.

This sort of example shows that even in elementary cases, we need to
be careful about only updating on evidence by conditionalization in cases
where it is clear that the evidence is drawn from a partition. To properly
take this into account, we must be able to figure out what partition the
evidence was drawn from. For Jeffrey Conditionalization, the partition is
in fact part of the specification of the update situation, so this is clearer.
Thus, I claim that for the first two uses of Bayesian probability (update by
conditionalization or Jeffrey Conditionalization) the partition relativity of
Regular Conditional Probabilities is no problem. There are some authors
who argue that update situations don’t always involve evidence that comes
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from a partition (Schoenfield, 2016; Gallow, 2016). But I think that at least
for scientific cases where evidence comes as the result of the performance
of an experiment, the partition is implicit in the experimental setup. This is
especially so in cases where the evidence was something that antecedently
had probability 0, which are the only cases in which the issue of how to
conditionalize arises.

For the uses of conditional probability in the measurement of confir-
mation, we have to look both at posterior probabilities and likelihoods.
That is, we should be looking at probabilities of hypotheses conditional
on evidence (as for updating) and for probabilities of evidence condi-
tional on hypotheses. In this case, because of the Problem of Old Evidence
(presented by Glymour, 1980, and classified and investigated at length
by Eells, 1985), we must be considering conditional probabilities given
before the experiment is actually performed. In order to properly compare
and contrast the effect of different possible pieces of evidence, or different
experiments, on different hypotheses, we must have a sense of the possible
experiments, the possible pieces of evidence they could result in, and
the possible hypotheses under consideration. This is particularly clear in
cases where we are interested in confirmation, disconfirmation, and inde-
pendence of hypotheses about random variables rather than just single
propositions. A scientist who is interested in measuring the value of some
physical, social, or biological parameter is going to have a whole family
of propositions about its value that each may be confirmed, disconfirmed,
or independent of the evidence received, and this family will define a
partition for the relevant likelihoods.

For decision-theoretic cases, the relevant conditional probabilities are
probabilities of outcomes conditional on actions. Here again it seems
plausible that the set of actions available to an agent forms a partition. If
this is right, then the relativization to a partition just brings out a feature
that is already important to the situation. Thus, just like with the other
Bayesian applications of conditional probability, I claim that there is no
problem to the three-place formulation of conditional probability required
by Regular Conditional Probabilities.

Even once we see that conditional probability depends on the partition
from which the conditioning event was drawn, we might worry about
how the description of events and partitions can affect the actual value.
Rescorla (2015) argues that we should think of the same event drawn
from a different partition as having something like a different “sense,” so
that these are just Frege puzzles of a sort. I’m not convinced that this is
the right way to understand things, because the difference in conditional
probability persists even when everyone involved recognizes that the same
conditioning event is a member of multiple partitions. But I think that
some reasoning of this sort can dissolve some worries.
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Some have also worried that by redescribing the probability space, we
might be able to make one partition look like another, so that we can
get conflicting requirements for the same conditional probability. But
Gyenis, Hofer-Szabó, and Rédei (2016) show that this is impossible—any
reparameterization of a set of events and a partition gives rise to some other
description on which the mathematical requirements of Conglomerability
and Disintegrability give the same results.

In addition to the obvious challenge in terms of relativization, there
is also a question of whether Regular Conditional Probabilities require
Countable Additivity. Classic results (such as the Radon–Nikodym Theo-
rem, or Theorem 33.3 of Billingsley, 1995) show that when the propositions
involved are just about random variables, relativization of conditional
probability to a partition as well as a conditioning event is sufficient to
allow Conglomerability to hold even when Additivity fails at uncountable
cardinalities. However, every existence theorem I know of assumes Count-
able Additivity. I have not investigated the proofs of Countable Additivity
from Countable Conglomerability in enough detail to be sure that they
hold up when conditional probabilities are allowed to vary as the parti-
tion changes. Thus, if considerations like the de Finetti lottery motivate
rejection of Countable Additivity, then there may be further problems
for Regular Conditional Probabilities. But as I have argued elsewhere,
there are independent reasons to accept Countable Additivity that don’t
generalize to higher cardinalities (Easwaran, 2013b).

As the reader can probably see, I favor Regular Conditional Probabilities
over Coherent Conditional Probabilities. But in the remainder of the paper,
I will put forward mathematical theories of both types so that the reader
can judge for herself what the appropriate uses of each might be.

2 regular conditional probabilities

2.1 Formal Theory

Regular Conditional Probabilities are a central motivation for the Kol-
mogorov (1950) axiomatization of probability. There is some set Ω of
“possibilities,” and the bearers of probability are subsets of this set. (Dif-
ferent interpretations of probability will interpret these possibilities and
sets of them differently.) Not every subset of the space of possibilities is a
bearer of probability, but there is some collection F of them that are. F is
assumed to be a “σ-algebra” or “σ-field,” which means that the empty set
is an element of F , the complement of any element of F is an element of
F , and if Ai for i ∈N are any countable collection of elements of F , then⋃

i∈N Ai is also an element of F . (This restriction to closure only under
countable unions and complements is quite natural for the propositions
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implicitly grasped by a finite mind, though one might want to restrict
further to computably-definable sets or the like.)

Finally, there is a function p assigning real numbers to all and only the
elements of F subject to the following rules. For any A ∈ F , p(A) ≥ 0;
p(Ω) = 1; and if Ai for i ∈ N are any countable collection of disjoint
elements of F , then p(

⋃
i∈N Ai) = ∑i∈N p(Ai). That is, the probability

function satisfies Countable Additivity. We refer to the triple (Ω,F , p) as
a probability space.

For any non-empty set Ω, there are of course multiple different σ-
algebras of subsets of that space. Trivially, the set {∅, Ω} is always the
minimal σ-algebra on Ω, while the full power set consisting of all subsets
of Ω is always the maximal σ-algebra on Ω. But usually, F is some algebra
other than these two. We say that a set A is “A-measurable” iff A is an
element of A. If A and B are any two σ-algebras on Ω, and every element
of A is B-measurable, then we say that A is a “sub-σ-algebra” of B.

We often consider functions assigning a real number to every element of
Ω. If V is such a function, then we say that V is a random variable, or that
it is F -measurable, iff for all rational values x, the set {ω ∈ Ω : V(ω) < x}
is F -measurable. The set {ω ∈ Ω : V(ω) ∈ S} is often just written as
V(ω) ∈ S or even V ∈ S, so for V to be F -measurable just is for p(V < x)
to exist for all rational values x, just as in Section 1.4.2. Furthermore, since
the rational values are a countable and dense subset of the real numbers,
the fact that F is closed under countable unions and complements means
that p(V = x), p(V ≥ x) and any other probability simply expressible in
terms of values of V exist as well.

As in Section 1.4.2, we can define the integral
∫

A V dp for bounded
random variables V. This definition proceeds in two parts. If V only
takes finitely many values on points in A, we say that

∫
A V dp =

∑ x · p(A ∩ (V = x)), where the sum ranges over the finitely many values
that V takes on. Otherwise, we define

∫
A V dp = supV′<V

∫
A V ′ dp, where

the supremum ranges over all random variables V ′ that take on only
finitely many values in A, and such that whenever ω ∈ A, V ′(ω) < V(ω).

With these definitions, I can finally give the official definition of a
Regular Conditional Probability.

Definition 10 A Regular Conditional Probability is a three-place real-valued
function p(B | A)(ω) satisfying the following three conditions:

1. Fixing a σ-algebra A ⊆ F and ω ∈ Ω defines a function of B satisfying
the probability axioms (that is, it is non-negative for all B ∈ F , it takes the
value 1 when B = Ω, and it is Countably Additive).

2. Fixing a σ-algebra A ⊆ F and a measurable set B defines an A-measurable
function of ω.
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3. For any fixed σ-algebra A ⊆ F and an F -measurable set B, and for
A ∈ A, ∫

A
p(B | A)(ω)dp = p(B ∩ A).

In Section 2.2 I will discuss how this notion relates to the three-place
function p(B | A, A) of conditional probability mentioned earlier. The basic
idea of each condition is as follows. Condition 1 will ensure that condi-
tioning on a single event relative to a single partition yields a probability
function. Condition 2 will ensure that we really are conditioning on an
event A from the partition A. Condition 3 will ensure that p(B | A, A)

satisfies Disintegrability (and thus Conglomerability). But for now I will
just discuss a few formal features this mathematical function has.

As a first example, consider a probability space defined by a joint
probability density for two random variables. That is, we can consider
X and Y as two random variables, and let Ω = R2, where the element
ω = (ωX, ωY) of Ω represents the possibility of X = ωX and Y = ωY.
F is the σ-algebra generated by the set of sets X < x and Y < y. (This
algebra is known as the collection of “Borel sets,” which is a subset of the
Lebesgue-measurable sets, but sufficient for our purposes.) To say that the
probability is defined by a joint probability density means that there is a
measurable function d(x, y) such that

p((x1 < X < x2) ∩ (y1 < Y < y2)) =
∫ x2

x1

∫ y2

y1

d(x, y)dy dx,

where the integrals here are ordinary real-valued integrals. (This defini-
tion of probability over the rectangular boxes suffices to determine the
probability of every measurable set.)10

If X is the σ-algebra generated by the set of sets X < x, then we can
define a Regular Conditional Probability p(B | X )(ω) as follows. Let

p((x1 < X < x2) ∩ (y1 < Y < y2) | X )(ω) =

∫ y2
y1

d(ωX, y)dy∫ ∞
−∞ d(ωX, y)dy

,

if x1 < ωX < x2 and 0 otherwise. (I use ωX to represent the fixed value
X takes at ω, while I use y as the bound variable of the integral.) Again,
because the rectangles (x1 < X < x2) ∩ (y1 < Y < y2) generate the whole
σ-algebra, this suffices to define the conditional probability p(B | X )(ω)

for all measurable sets B. Note that the values y1 and y2 enter on the right
as limits of an integral, while the values x1 and x2 just determine when

10 Note that since we have assumed there is an unconditional probability function p, then we
have assumed that

∫ ∞
−∞

∫ ∞
−∞ d(x, y)dy dx = 1. In Section 3.2.5, when discussing Rényi’s

theory of conditional probability, I will allow this integral to be infinite instead, to capture
the statistical theory of “improper priors.”
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the probability is 0. This is because the point (ωX, ωY) with respect to
the σ-algebra X represents the set of all points with X = ωX and any
value of Y, and the rectangle either intersects this line at all points from
y1 to y2 or none of them. Intuitively, the numerator of the right side says
how much density is concentrated at y1 < Y < y2 and X = ωX, while
the denominator normalizes this to account for how much density is at
X = ωX generally. It is tedious, but possible to check that this definition
satisfies the three conditions to be a Regular Conditional Probability.11

The Borel paradox can be thought of as a special case of this example. If
X represents the longitude (from −π to π) and Y represents the latitude
(from −π/2 to π/2), then the uniform unconditional probability is given
by the density function d(x, y) = cos y

4π when −π < x < π and −π/2 <

y < π/2, and 0 otherwise. Using the above formula, we calculate that

p(y1 < Y < y2) | X )(ω) =

∫ y2
y1

cos y
4π dy

1/2π
=

sin y2 − sin y1

2
.

By parallel reasoning, we calculate that

p(x1 < X < x2) | Y)(ω) =

∫ x2
x1

cos ωY
4π dx

cos ωY/2
=

x2 − x1

2π
.

That is, conditional on lines of longitude, probability is concentrated near
the equator, while conditional on lines of latitude, probability is uniform.

If we want to use this sort of technique to figure out other Regular
Conditional Probabilities for other sub-σ-algebras, we can often do this,
if the new algebra is related to the old one by a change of coordinates.
This will work if the probability space is defined by two random variables
X and Y, and there are two other random variables f1 and f2, such that
the values of f1 and f2 are uniquely determined by the values of X and
Y, and vice versa. For instance, we might have f1 = X − Y and f2 = Y,
or f1 = X/Y and f2 = Y (if Y = 0 is impossible), or f1 and f2 as latitude
and longitude in a different set of coordinates than X and Y. In such a
case, we can consider f1 and f2 as functions of the values of X and Y, and
represent points in Ω not as (ωX, ωY), but as ( f1(ωX, ωY), f2(ωX, ωY)).

Assuming the functions f1 and f2 are measurable, we get a new density
function given by

d(ωX, ωY) ·
[

∂ f1(x, ωY)

∂x
∂ f2(ωX, y)

∂y
− ∂ f2(x, ωY)

∂x
∂ f1(ωX, y)

∂y

]
.

11 To check the third condition, it’s useful to note that the A ∈ X are generated by the sets
x1 < X < x2, and the probability of these sets is given by integrals like the denominator
of the right-hand-side, so that this denominator cancels in the integration, leaving just the
integral of the numerator over X, which is how we defined the unconditional probability
in the first place.
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This quantity on the right is the Jacobian associated with the relevant
change of variables. When f1(ωX, ωY) = ωX and f2(ωX, ωY) = ωY, so that
the “new” variables are the same as the old, the Jacobian is equal to 1, so
the density is unchanged, as expected. But the fact that this Jacobian is
not generally equal to 1 indicates that corresponding points in the two
representations of the probability space will have different densities with
respect to the two different sets of variables. Thus, even if one value of one
variable occurs exactly when a corresponding value of a different variable
occurs (such as X = 0 occurring iff X/Y = 0, or latitude is 0 in one set of
coordinates iff longitude is 0 in another set of coordinates), the densities
may have been transformed in some non-uniform way, so the Regular
Conditional Probability may take different values.

A slightly different introduction to this sort of method is discussed by
Chang and Pollard (1997). They argue that in most cases where Regular
Conditional Probabilities are of interest, they can be calculated by a method
like this one. Although their discussion is still quite technical, it may be
more usable and friendly than some others.

2.2 Philosophical Application

As before, I define a “partition” to be a collection A of subsets of Ω such
that every member of Ω is in exactly one member of A. In Section 1.4.3,
I argued that in order to maintain Conglomerability, while respecting
the roles of conditional probability as posterior for conditionalization,
or Jeffrey update, or as likelihood, or as action probability for decision
theory, we need a notion of conditional probability that defines p(B | A, A)

whenever A is a partition. However, the formal theory given above defined
a random variable p(B,A)(ω), where A is a sub-σ-algebra rather than a
partition, and where ω is an element of Ω rather than a subset of it. In
this section, I show that the formal definition of a Regular Conditional
Probability is sufficient to give us what we need.

Partitions can be related to σ-algebras in two importantly different ways.
One is that we can say that a σ-algebra B is generated by a partition if
it is the smallest σ-algebra with respect to which every element of A is
measurable. In this case, B consists of the set of all unions of countably
many elements of A, and their complements.12 However, in many cases,
the more useful σ-algebra to consider is a slightly different one. I will say
that a σ-algebra B is compatible with a partition A iff every element of A is

12 We also talk about σ-algebras generated by collections of subsets other than a partition,
and in those cases there can often be much more complex elements of the generated σ-
algebra, such as countable unions of complements of countable unions of complements of
countable unions of elements. But in the case of a partition, these more complex elements
already exist just at the level of countable unions or their complements.
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an element of B, and no proper subset of an element of A is an element
of B, except for the empty set.13 Then, if B is any σ-algebra and A is any
partition, I will say that the restriction of B to A is the largest sub-σ-algebra
of B that is compatible with A. This consists of all elements of B whose
intersection with any element of A is either empty or the full element of
A—it is the set of all B-measurable sets that don’t crosscut any element of
A.

Given these definitions, for A, B ∈ F and A ⊆ F a partition containing
A, I will define p(B |A, A) as p(B |A)(ω), where ω is any element of A and
A is the restriction14 of F to A. If A is empty, then p(B | A, A) is undefined.
This corresponds to the fact that conditional probability is intended to
be an indicative conditional for updating rather than revision of beliefs,
as discussed in Section 1.3. Otherwise, since p(B | A)(ω), considered as
a function of ω, is required to be A-measurable, it must be constant on
the atoms of A. But because A is the restriction of F to A, the atoms
are the elements of A. Since A is an element of A, this means that it
doesn’t matter which ω ∈ A is chosen. Thus, as long as p(B | A)(ω) is
a well-defined function, so is p(B | A, A), whenever A is non-empty. The
stipulations in the definition of a Regular Conditional Probability then
mean that p(B | A, A) satisfies the probability axioms (including Countable
Additivity) when A and A are fixed, and that Conglomerability is satisfied
over A. Thus, if conditional probability should be defined relative to
any partition, and Conglomerability must be satisfied, then conditional
probability must be related to a Regular Conditional Probability in this
way.

2.3 Existence and Uniqueness of Regular Conditional Probabilities

The question motivated by the arguments of Section 1.3 is whether uncon-
ditional probabilities suffice to determine a notion of conditional proba-
bility, or whether conditional probability should be taken as fundamen-
tal. The mathematical definition of a Regular Conditional Probability as
p(B | A)(ω) is as a function that satisfies some axioms connecting it to the
unconditional probability space (Ω,F , p). In some cases, we have been
able to demonstrate that Regular Conditional Probabilities exist. If they
don’t exist in probability spaces that are philosophically important, then

13 In more standard terminology, A consists of the “atoms” of B, where an atom of a σ-
algebra is any non-empty element of the σ-algebra such that no non-empty proper subsets
are also members of the σ-algebra. Not every σ-algebra has atoms, but if there are any
atoms, they are disjoint. The atoms form a partition iff every element of the space is a
member of some atom, in which case the σ-algebra is said to be “atomic.”

14 Section 2.3.2 will show what goes wrong if we try to use the sub-σ-algebra generated by A
instead of the restriction to it.
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Conglomerability must be given up. And if Regular Conditional Probabili-
ties are not unique, then we must either accept that conditional probability
is at least as fundamental as unconditional probability, or give some fur-
ther conditions that suffice to uniquely determine the Regular Conditional
Probability uniquely. In this section I will consider some mathematical
problems of particular Regular Conditional Probabilities and argue that
they don’t arise in philosophical application, so they will always exist and
have the desired features. Furthermore, I will show that unconditional
probability is almost sufficient to define all conditional probabilities in the
relevant probability spaces, and give some ideas of what else might suffice
to define conditional probability uniquely from unconditional probability.

2.3.1 In Bad Sub-σ-algebras There Is No Regular Conditional Probability

It is mathematically well-known that there are probability spaces (Ω,F , p)
and sub-σ-algebrasA for which there is no Regular Conditional Probability.
A classic example is the case where Ω is the set [0, 1] of real numbers
between 0 and 1, A is the set of all Borel subsets of this set, F is generated
by A plus one set that is not Lebesgue-measurable, and p is Lebesgue
measure on A and assigns probability 1/2 to the additional set generating
A. (This example is discussed in Billingsley, 1995, Exercise 33.11.)

However, Theorem 33.3 of Billingsley (1995) states that when F is the
σ-algebra generated by the values of a random variable, this problem
can never arise. There will always be a Regular Conditional Probability
for every sub-σ-algebra. This result generalizes to cases where F is the
σ-algebra generated by the values of finitely many random variables, as
appears to be the case for most scientific applications of probability.

Furthermore, due to the finitistic limits of the human mind, I claim that
this in fact includes all epistemically relevant cases. As I suggested near
the end of Section 1.3, I think the right interpretation of human finitude
doesn’t mean that the probability space is finite. Rather, it means that the
probability space is generated by the countably many sentences of some
finitary language. I claim that the sentences in this language fit within
the σ-algebra over this space generated by a particular artificial random
variable.

To see this, define the random variable T by enumerating the sentences
of the language as φi and letting

T(ω) = ∑
φi is true

1
2i .

Any possibility ω will make infinitely many sentences true and infinitely
many sentences false, and no two such possibilities can result in the same
real value, so this random variable distinguishes all possible worlds. We
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need to check further that the set of values that are logically consistent is
itself measurable. But by the Compactness Theorem of first-order logic,
any logically inconsistent set contains one of the countably many logically
inconsistent finite sets, and each of these sets is an intersection of finitely
many closed sets of values. Thus, the set of consistent values is the comple-
ment of a countable union of closed sets, and is thus measurable. Thus, I
claim that any epistemically reasonable probability space uses a σ-algebra
generated by a random variable, conditionalized on a measurable set.
Thus, Theorem 33.3 of Billingsley (1995) entails that Regular Conditional
Probabilities exist.

Even without this sort of argument, the existence theorem can be gen-
eralized. These generalizations are investigated by Hoffmann-Jørgensen
(1971), Faden (1985), Pachl (1978).

2.3.2 In Bad Sub-algebras, the Regular Conditional Probability Behaves Badly

Another problem that sometimes arises is highlighted by Blackwell and
Dubins (1975) and Seidenfeld, Schervish, and Kadane (2001). They seem to
show that in certain partitions A, there is an event A with p(A | A, A) = 0,
which would seem to be quite bad. However, I claim that this problem
only arises in cases where A is used in a mathematically improper way.

The mathematical result they show is that p(B | A)(ω) = 0 even though
ω ∈ B. As an example, let Ω be the set [0, 1] of real numbers between
0 and 1, let F be the collection of all Borel subsets of this set, and let p
be the standard Lebesgue measure on F . Let A be the collection of all
countable subsets of [0, 1] and their complements. It is straightforward
to check that p(B | A)(ω) = p(B) is a Regular Conditional Probability.15

However, if B = {ω} (or any other countable set containing ω) then
p(B | A)(ω) = p(B) = 0. Given my translation of p(B | A, A), this would
seem to mean that p({ω} | {ω}, A) = 0, where A is the partition into
singletons.

However, this is the point at which the distinction between the σ-algebra
generated by A and the restriction of F to A is important. The σ-algebra A
above is the algebra generated by the partition into singletons, but it is not
the restriction of F to the partition into singletons. The restriction of F to
the partition into singletons just is F (as it is for any F—recall that the
restriction of F includes all elements of F that do not crosscut any element
of the partition, and no set crosscuts a singleton). Although p(B | A)(ω) =

p(B) is a Regular Conditional Probability, it is straightforward to show that
the parallel does not work for p(B | F )(ω). In fact, any Regular Conditional

15 The first two conditions are trivial. The third condition requires that
∫

A p(B | A)(ω)dp =
p(A ∩ B) for all A ∈ A. However, since p(B | A)(ω) = p(B) for all ω, the left side of the
integral just is p(A)p(B). But if A is countable, then p(A) = 0, as does p(A ∩ B), while if
A’s complement is countable, then p(A) = 1 and p(A ∩ B) = p(B).
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Probability for this conditioning algebra must have a set C with p(C) = 1
such that whenever ω ∈ C, p(B | F )(ω) = 1 if ω ∈ B and 0 otherwise, as
expected. And Theorem 2 of Blackwell and Dubins (1975) and Theorem 1

of Seidenfeld et al. (2001) show that this is quite general. Whenever A is
countably generated, for any Regular Conditional Probability p(B | A)(ω),
there is a set C with p(C) = 1 such that whenever ω ∈ C and B ∈ A,
p(B | A)(ω) = 1.16 Thus, in my translation, p(B | A, A) = 1 if A ⊆ B, as
expected, whenever the restriction of F to A is countably generated. This
will automatically be the case if A is the partition of possible values of a
random variable. But I claim that it should hold generally for any partition
that is graspable by a finite human mind.

2.3.3 The Regular Conditional Probability is Almost Unique

Now that we have established that Regular Conditional Probabilities
exist and are well-behaved, it remains to see when they are uniquely
determined by the unconditional probability space (Ω,F , p). It turns out
that the answer is never in any interesting case. However, the different
Regular Conditional Probabilities that exist are almost identical in a natural
sense. Furthermore, for some sets of niceness conditions, exactly one of
them will be nice, and this can be designated as the correct one.

If p(B | A)(ω) is one Regular Conditional Probability, and S ∈ A is any
set with p(S) = 0, then we can let p′(B | A)(ω) = p(B | A)(ω) whenever
ω 6∈ S and replace the function with any other probability function we
like within S, and the result is also a Regular Conditional Probability.
This is because the only constraint on the values of a Regular Conditional
Probability are through its integrals, and changing a function on a set of
probability 0 does not change any of its integrals. Translating to p(B | A, A),
this means that we can change the values of the conditional probability
function on any collection of A ∈ A whose total probability is 0 and still
satisfy Conglomerability.

Conversely, if p(B | A)(ω) and p′(B | A)(ω) are two Regular Conditional
Probabilities for a given unconditional probability, then we can show that
for any B and A, the set of ω for which they differ must have probability
0. If it had positive probability, then there would be some ε such that
the set C of ω on which they differ by at least ε would have positive
probability, and would be a member of A. But this would contradict the
condition that

∫
C p(B | A)(ω)dp = p(B ∩ C) =

∫
C p′(B | A)(ω)dp. Thus,

16 Of course, this assumes that a Regular Conditional Probability exists, which requires that
F be a nice algebra, such as the algebra generated by a random variable. See Blackwell
(1956) for more on these conditions. In fact, for these sorts of spaces, Yu (1990) proves
that existence of the relevant function can be proven in the system “ACA0” of reverse
mathematics, so that strong set-theoretic hypotheses like the Axiom of Choice are not
required.
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although the Regular Conditional Probability is not exactly unique, it is in
a sense “almost” unique. These different Regular Conditional Probabilities
are often called “versions” of the Regular Conditional Probability for the
given unconditional probability.

This almost uniqueness is not quite enough to satisfy the idea that con-
ditional probability is defined by the unconditional probability function.
However, in some cases there is a prospect that by specifying a further
condition, we can pick out a unique version of the Regular Conditional
Probability. For instance, consider the case of the Borel paradox. As I
showed in Section 2.1, one version of the Regular Conditional Probability
for this example can be generated by integrals of a probability density
that also generates the unconditional probability. In this case, there is a
continuous density function that generates the unconditional probability
(namely, the density function that was given there, with d(x, y) = cos y).
Furthermore, it is easy to see that no other continuous density generates
the same unconditional probability function. (If two continuous density
functions differ at some point, then they must differ on some neighbor-
hood of that point, which would have non-zero probability.) Thus, if an
unconditional probability function is generated by some continuous den-
sity on the values of some random variables, then we can require that
the version of the Regular Conditional Probability used be the one that is
generated by this integral calculation from the unique continuous density
that generates the unconditional probability.17

17 Oddly, if we just consider the partitions into longitudes through various choices of poles,
we may be able to take advantage of this non-uniqueness to find a Coherent Conditional
Probability that satisfies Disintegrability. If we assume the Axiom of Choice and the
Continuum Hypothesis (or Martin’s Axiom—both assumptions entail that the union of
any collection of fewer than continuum-many sets with probability 0 is also a set of
probability 0), then we can do the following. Choose some well-ordering of the points on
the sphere such that each has fewer than continuum-many predecessors. For any great
circle A, find the point x ∈ A that comes earliest in this ordering. Let p(B | A) take the
value given by integration with respect to the continuous density where x is chosen as the
north pole of the coordinate system.
Now if we consider any particular partition into longitudes with x as a pole, we can see
that each line of longitude will give rise to a conditional probability that agrees with the
one required for Disintegrability in this partition iff there is no point on the line earlier
than x in the chosen ordering. However, because of the way the ordering was set up, there
are fewer than continuum-many points earlier than x in the ordering, so the union of all
the lines of longitude that contain such a point has probability 0. Thus, enough of the
conditional probabilities agree with integration with respect to the relevant continuous
density that Disintegrability is satisfied in this partition.
Of course, this particular method only satisfies Disintegrability over partitions into lines of
longitude, and not into lines of latitude, or other partitions. Furthermore, the particular
Coherent Conditional Probability produced over these conditioning events is highly
asymmetrical and requires the Axiom of Choice for its construction. But it is useful to
observe that this sort of construction is at least sometimes possible.



conditional probabilities 175

However, while I think it is not that implausible to think that all realistic
epistemic spaces are generated by some density on the values of some
random variables, I don’t see any good reason to believe that there must
always be a continuous density function that generates the unconditional
probability. Perhaps there is some similar requirement that could be used
to find the “right” Regular Conditional Probability to go along with
any unconditional probability function. But I have no idea what that
requirement might be. So for now, we have some reason to believe that
the existence of uncountable (though countably generated) probability
spaces, together with Conglomerability, force us to use Regular Conditional
Probabilities, which suggests that conditional probability is in some sense
at least as fundamental as unconditional probability. However, if one is
only given the unconditional probability function, then for any countably-
generated partition A one can find some Regular Conditional Probability
p(B | A, A) for all propositions B on the elements of A, and one can be
sure that almost all of the values given by this function will line up with the
“correct” conditional probability function. The question is just whether this
“almost all” can be turned into “all,” or whether conditional probability
needs to be specified along with unconditional probability in defining a
probability space.

3 coherent conditional probabilities

Recall that Coherent Conditional Probability is conditional probability
defined as a function just of two events, with no dependence on a par-
tition or sub-σ-algebra or anything else. If Additivity fails at some level
(possibly beyond the countable), then Conglomerability and Disintegrabil-
ity will also fail. There are several different formal theories of Coherent
Conditional Probability that have been proposed by philosophers, mathe-
maticians, and statisticians. In this section I will describe three of the most
prominent ones.

3.1 Popper

The first, which is both oldest and probably most familiar to philosophers,
was developed by Karl Popper in his (1955). Popper considered this
formulation of conditional probability important enough that he included
a revised and simplified version in new appendices *iv and *v to the
second edition of The Logic of Scientific Discovery (1959a). Popper’s axiom
system is particularly well-suited to an interpretation of probability as a
logical (or even semantic) relation. But I claim that it is not sufficient for
general epistemological applications, particularly for scientific purposes.
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In this section I will describe Popper’s later version of the system, and the
features it has.

Popper postulates a finite or countable set of sentence letters A, B, C, . . . ,
and two uninterpreted connectives—a binary connective ‘∧’ and a unary
connective ‘¬’. (I have replaced his notation with a more modern one.) He
then postulates a two-place conditional probability function mapping pairs
of formulas in the language generated by these letters and connectives to
real numbers. He then postulates six conditions on the function expressible
with these uninterpreted connectives. (I will discuss these conditions
later.) Finally, he defines unconditional probability in terms of conditional
probability.

One of the important things Popper does along the way is to develop
a probabilistic notion of equivalence. He says that two formulas φ and
ψ of the language are probabilistically equivalent iff replacing φ with
ψ anywhere in any statement of probability will yield the same value.
He then proves that if two formulas are classically logically equivalent,
then they are probabilistically equivalent. He doesn’t explicitly assume
commutativity and associativity for ∧, or the double negation rule, or
anything of that sort, but is able to derive probabilistic equivalents of them
from his probability axioms.

Popper’s axioms entail that some elements ψ are such that for all φ,
p(φ | ψ) = 1. (Among other things, this means that p(¬ψ | ψ) = 1!) Fol-
lowing van Fraassen (1976), we call such elements abnormal and all others
normal. Popper’s axioms entail that if χ is normal, then 0 ≤ p(φ | χ) ≤ 1,
and that p(φ |χ)+ p(ψ |χ) = p(¬(¬φ∧¬ψ) |χ)+ p(φ∧ψ |χ), so that con-
ditional on any normal event, we have a standard probability function. Fur-
thermore, they entail that if ψ is abnormal, then for any χ, p(¬ψ | χ) = 1.
Finally, they entail that whenever φ is a classical logical contradiction, φ is
abnormal.

Importantly, this means that Popper’s notion of conditional probability
(like all the others I am aware of) is of no help in using conditionalization
to represent belief revision rather than just update. Consider an update rule
that says pt′(φ |ψ) = pt(φ |ψ∧χ), where χ is the conjunction of everything
that one has learned between t and t′. Now imagine a person who, between
time 0 and time 1 learns A, and between time 1 and time 2 learns ¬A.
If update can include revision of past learning (which implicitly means
that learning is fallible), then this should result in something reasonable.
However, what we see is that for any φ and ψ, p2(φ |ψ) = p1(φ |ψ∧¬A) =

p0(φ | (ψ ∧ ¬A) ∧ A). But since (ψ ∧ ¬A) ∧ A is a contradiction, it is
abnormal. Thus, p0(φ | (ψ∧¬A)∧ A) = 1. So by updating on the negation
of something that one previously learned, one’s degrees of belief have
become unusable, because all probabilities are equal to 1. This is why
I focused in Section 1.3 on the role of infinity in generating events of
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probability 0, rather than Hájek’s examples of conditionalizing on the
negation of something that has already been learned.

However, one important thing to note for Popper’s system is that
p(ψ) = 0 does not entail that ψ is abnormal. However, if p(ψ) = 0 but ψ is
normal, then unconditional probabilities alone do not suffice to determine
the probabilities conditional on ψ. Thus, conditional probability really is
primitive in this system. For instance, consider models of Popper’s axioms
with sentence letters A and B, with p(A) = 1/2 and p(B) = 0. Every
formula of the language is classically equivalent to a contradiction, or
to a disjunction of some of A ∧ B, A ∧ ¬B,¬A ∧ B,¬A ∧ ¬B. The stipu-
lated values determine all the unconditional probabilities, and thus all the
probabilities conditional on formulas of positive unconditional probability.
However, it is consistent with these values that A∧ B and ¬A∧ B be either
normal or abnormal. If both are abnormal, then so is B, and probabilities
conditional on any of the three of them are all equal to 1. If one is abnormal
and the other is normal, then probabilities of any formula conditional on
the normal one are 1 or 0 depending on whether the formula is entailed
by it or not. If both are normal, then any value for p(A | B) is possible,
but this value then suffices to determine the rest of the probabilities in the
model.

And in fact, Kemeny (1955) proves that something like this holds fairly
generally for finite languages. If we only have n sentence letters, then
there are 2n “state descriptions” in the language (conjunctions of each
sentence letter or its negation), and every formula is either a contradiction
or equivalent to a disjunction of some of these. The Popper axioms are
then equivalent to the following stipulation. There are k functions mi for
i < k, and each of these functions assign a non-negative real number to
each state description. For each mi, the sum of the values it assigns to
the state descriptions is 1. For each state description X, there is at most
one mi such that mi(X) > 0. A proposition is abnormal iff it is either a
contradiction, or it is a disjunction of state descriptions that are assigned
value 0 by every mi. If ψ is normal, then let i be the lowest number such
that there is a state description X with mi(X) > 0 and X entails ψ. Then

p(φ | ψ) =
∑X entails φ∧ψ mi(X)

∑X entails ψ mi(X)
.

In this system, unconditional probabilities are just equal to the sums of the
values of m1, but they put no constraints on the values of the succeeding
functions, which are needed to define the full conditional probability
function.

For infinite languages, things can be slightly more complicated. Consider
a language with sentence letters Ai for natural numbers i. Consider just
the models Mi where Mi satisfies sentence Ai and none of the others. It
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is not hard to check that every formula of the language is either true in
finitely many of these models and false in the rest, or false in finitely many
of these models and true in the rest. If ψ is true in infinitely many models,
then let p(φ | ψ) = 0 if φ is true in finitely many models and 1 otherwise.
If ψ is true in none of these models, then ψ is abnormal. Otherwise, if ψ

is true in finitely many models, then define p(φ | ψ) as the ratio of the
number of models in which φ ∧ ψ is true to the number of models in
which ψ is true. This definition satisfies Popper’s axioms, but cannot be
represented by a lexicographically ordered set of probability functions
as Kemeny shows in the finite case. (This example is one that Halpern,
2009 attributes to Stalnaker.) Halpern also discusses a slight variant of this
case where the probability function agrees with this one in all cases except
where ψ is true in finitely many models. In the variant, p(φ | ψ) = 1 if φ

is true in the highest numbered model in which ψ is true, and 0 otherwise.
This probability function also satisfies Popper’s axioms but cannot be
represented by a lexicographically ordered set of probability functions. But
again, these functions have the same unconditional probabilities and the
same abnormal propositions, but different conditional probabilities, so that
conditional probability must be specified separately from unconditional
probabilities.

Popper’s six conditions are the following (Popper, 1959a, Appendix iv*).

1. For all φ, ψ there are χ, θ with p(φ | ψ) 6= p(χ | θ).

2. If for all χ, p(φ | χ) = p(ψ | χ), then for all θ, p(θ | φ) = p(θ | ψ).

3. For all φ, ψ, p(φ | φ) = p(ψ | ψ).

4. p(φ ∧ ψ | χ) ≤ p(φ | χ).

5. p(φ ∧ ψ | χ) = p(φ | ψ ∧ χ)p(ψ | χ).

6. For all φ, ψ, either p(φ | ψ) + p(¬φ | ψ) = p(ψ | ψ), or for all χ,
p(ψ | ψ) = p(χ | ψ).

In Appendix v* of Popper (1959a), he derives a sequence of consequences
of these postulates. Importantly, he doesn’t assume any logical features
of ∧ and ¬ in these derivations—he only uses the explicit probabilistic
assumptions made above.

First, using condition 3, he defines k = p(φ | φ) for any formula φ. Using
4 and 5 he then proves that k2 ≤ k, so 0 ≤ k ≤ 1. After a few more
steps, he then proves that 0 ≤ p(φ | ψ) ≤ k for any φ, ψ. From this, he
is then able to derive that k = k2, so k = 0 or k = 1, but condition 1

rules out k = 0. Condition 4 then tells us that 1 = p(φ ∧ ψ | φ ∧ ψ) ≤
p(φ | φ ∧ ψ), so p(φ | φ ∧ ψ) = 1. With condition 5 this then proves that
p(φ ∧ φ | ψ) = p(φ | ψ). A bit more manipulation allows him to derive that
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p(φ ∧ ψ | χ) = p(ψ ∧ φ | χ), and that p(φ ∧ (ψ ∧ χ) | (φ ∧ ψ) ∧ χ) = 1, and
after several more steps, that p(φ ∧ (ψ ∧ χ) | θ) = p((φ ∧ ψ) ∧ χ | θ). Thus,
he has derived that ∧ is commutative and associative, up to probabilistic
equivalence.

He then turns his attention to negation and derives several important
results. First, he derives that p(¬(φ ∧ ¬φ) | ψ) = 1. Then he derives that
p(¬(¬φ ∧ ¬ψ) | χ) = p(φ | χ) + p(ψ | χ)− p(φ ∧ ψ | χ). If we introduce an
abbreviation ∨ such that φ ∨ ψ just stands for ¬(¬φ ∧ ¬ψ), this becomes
p(φ ∨ ψ | χ) = p(φ | χ) + p(ψ | χ) − p(φ ∧ ψ | χ), which is a version of
the standard law of Additivity. He then derives that p(φ ∧ (ψ ∧ χ) | θ) =
p((φ ∧ ψ) ∧ (φ ∧ χ) | θ), and p(φ ∧ (ψ ∨ χ) | θ) = p((φ ∧ ψ) ∨ (φ ∧ χ) | θ).
Using this, he derives that p(¬¬φ ∧ ψ | χ) = p(φ ∧ ψ | χ) and that if
p(φ | χ) = p(ψ | χ) then p(¬φ | χ) = p(¬ψ | χ). He then derives that
p(φ ∨ φ | ψ) = p(φ | ψ). And finally, he proves that if for all κ, p(φ | κ) =
p(ψ | κ), and p(χ | κ) = p(θ | κ), then for all κ, p(φ ∧ ψ | κ) = p(χ ∧ θ | κ).

With these conditions, he is then able to show that logically equivalent
formulas are probabilistically equivalent, and derive the facts I mentioned
above about abnormal formulas, and probabilities conditional on normal
formulas.

For Popper, one of the important features of this characterization is
that probability can play the role of giving the meanings of the logical
symbols. This is quite a natural desideratum for a logical interpretation
of probability, though it may not be as natural for other interpretations.
This program is developed further by Field (1977), who gives a method for
giving meanings to quantifiers (though this is substantially more clumsy
than Popper’s method for the connectives).

One thing to note about Popper’s formalism is that infinitary versions of
Additivity (and Conglomerability, and Disintegrability) can’t even be stated,
much less satisfied or violated. First, every formula is finite, so that even if
the language is expanded by adding a disjunction symbol, there are no
infinite disjunctions explicitly expressible in the language. Second, by the
Compactness Theorem of propositional logic, no formula in this language
is logically equivalent to an infinite disjunction of formulas expressible
in the language unless it is also logically equivalent to a disjunction of
finitely many of those disjuncts. One might wonder whether this holds
for probabilistic equivalence, but probabilistic equivalence is only defined
for formulas within the language, and infinite disjunctions aren’t in the
language, so the question doesn’t arise.

While some might find this to be an advantage of the sentential for-
mulation of probability, many have found it to be a limitation and have
given what they call versions of Popper’s system where the bearers of
probability are sets rather than formulas of a language, and the operations
are set intersection and complement rather than (uninterpreted) ∧ and ¬
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(Roeper & LeBlanc, 1999; Hájek & Fitelson, 2017). But since Popper’s goal
was at least partly to characterize the sentential operations in terms of
probability, rather than using facts about sets to prove some results about
probability, I think of these systems as significantly different.

Versions of these systems are given by van Fraassen (1976), Spohn (1986),
McGee (1994), and Halpern (2009), among others. Because the bearers of
probability are sets, these authors are able to prove more general character-
izations than Kemeny. In particular, Spohn shows that if we add Countable
Additivity to Popper’s axioms, then these probabilities can always be
represented as a lexicographically-ordered set of Countably Additive mea-
sures mi. However, because of the results mentioned in Section 1.4.2, there
must be failures of Conglomerability and Disintegrability in certain parti-
tions, even if Countable Additivity is assumed. These authors also show
several results relating these set-theoretic versions of Popper’s system to
probabilities involving infinitesimals (as discussed by Wenmackers, this
volume). However, while McGee claims that the two systems are equiva-
lent, Halpern shows that there are some subtleties to consider. But once
we start looking at Countably Additive set-based systems that are like
Popper’s it is useful to consider a slightly more general formalization that
includes all of the above as special cases.

3.2 Rényi

Alfréd Rényi gave the first English-language version of his system for
conditional probability in his (1955), though it also appears briefly in the
second chapter of the posthumous textbook (1970a) and is developed in
somewhat greater detail in the second chapter of his (1970b). I will gener-
ally follow his (1955) in my discussion, though the structural requirements
on B only appear in the later books. Some of the theory appears slightly
earlier in publications in German or Hungarian.

Although philosophers often lump Popper and Rényi together, Rényi’s
early theory is much more flexible than Popper’s. It does include a set-
based version of Popper’s system as a special case, but it also includes a
version of Kolmogorov’s Regular Conditional Probability as a special case
as well. However, Rényi’s major aim in developing his theory is to account
for a very different application from either of these (and in fact, his later
theory explicitly rules out non-trivial versions of Popper and Kolmogorov’s
systems in favor of these other applications). In statistical practice it is
sometimes relevant to work with an “improper prior”—something much
like a probability function, that can turn into a probability function by
conditioning on some event, but for which the unconditional “probabil-
ities” are infinite. This flexibility also allows Rényi’s theory to include
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actual relative frequencies, as a system where there is no unconditional
probability and all probabilities are conditional.

3.2.1 Overview

The background theory for Rényi’s conditional probabilities (just like for
Regular Conditional Probabilities) is the traditional Kolmogorov axiom-
atization of probability. There is some set Ω of “possibilities,” and the
bearers of probability are subsets of this set. (Different interpretations of
probability will interpret these possibilities and sets of them differently.)
Not every subset of the space of possibilities is a bearer of probability, but
there is some collection A of them that are. A is assumed to be a σ-algebra
or σ-field, which means (as before) that the empty set is an element of A,
the complement of any element of A is an element of A, and if Ai for
i ∈N are any countable collection of elements of A, then

⋃
i∈N Ai is also

an element of A.18

A is the set of bearers of probability. But unlike in Popper’s theory, not
every bearer of probability can be conditioned on. Instead, Rényi considers
a collection B ⊆ A subject to the following conditions. For any B1 and B2

that are both in B, B1 ∪ B2 ∈ B. There exists a countable sequence Bi for
i ∈N of elements of B such that

⋃
i∈N Bi = Ω. And ∅ 6∈ B. While A is a

σ-algebra, B is a “bunch,” that may lack complements and infinite unions,
as well as Ω, and definitely lacks the empty set.

He then defines a conditional probability function p(A | B) for A ∈ A
and B ∈ B to be any function satisfying the following conditions. For
all A ∈ A and B ∈ B, p(A | B) ≥ 0 and p(B | B) = 1. For any count-
able sequence of disjoint sets Ai ∈ A, p(

⋃
i∈N Ai | B) = ∑i∈N p(Ai | B)—

conditional on any fixed element B, probability is Countably Additive.
Finally, if B, C, B ∩ C ∈ B, then p(A ∩ B | C) = p(A | B ∩ C)p(B | C). (In
the later book he adds one more condition, which I will discuss later.)
Although there is no official notion of unconditional probability, if Ω ∈ B,
then we can use p(A |Ω) as a surrogate for p(A). (The fact that B may
lack Ω may make this formalism of particular interest for interpretations
of probability where some positive amount of information is needed to
generate any probabilities, like actual relative frequency, and perhaps
logical and evidential probability. See Section 1.2.)

18 In the previous section, ‘F ’ was used for the field of all bearers of probability and ‘A’ was
used for the sub-field that we are conditioning on. In this section I follow Rényi in using
‘A’ for the field of all bearers of probability, and ‘B’ for the subset that can be conditioned
on. I hope that the change in notation is not too confusing—readers should expect still
other choices of letters in other sources on this topic.
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3.2.2 Simplest Examples

Rényi gives several basic examples of conditional probability spaces satis-
fying these axioms. Many of these examples use the notion of a “measure,”
which is very much like a probability function. A measure is just a Count-
ably Additive function µ assigning non-negative extended real numbers to
elements of a σ-algebra A of subsets of some set Ω. To say that the values
are “extended real numbers” is just to say that in addition to all the non-
negative real numbers, +∞ is also a possible value of the function, with
Countable Additivity defined to include this value in the obvious ways (as
the sum of any non-convergent series of positive real numbers, or as the
sum of any set including +∞). The difference between a measure and a
probability function is that for a standard probability function, p(Ω) = 1,
while for a measure, µ(Ω) can be any non-negative extended real number.
A measure is said to be finite if µ(Ω) is a positive real number, and σ-finite
if there is a countable collection of sets Si for i ∈N with each µ(Si) finite
and Ω =

⋃
i∈N Si.

The most basic example of a Rényi conditional probability space is to
let µ be any finite measure, and let B be the collection of all elements
of A whose measure is positive. Then define p(A | B) = µ(A ∩ B)/µ(B),
and it is straightforward to see that all axioms apply. Of course, this
example is of no help to the problems discussed in Section 1.3, because
it leaves probabilities conditional on many elements of A undefined, and
in particular on any element whose measure is 0, which are exactly the
elements that have unconditional probability 0.

A slightly more general example is to let µ be any measure at all on
Ω, and let B be the collection of all elements of A whose measure is
positive and finite. Then define p(A | B) = µ(A ∩ B)/µ(B). Interestingly,
if µ(Ω) = +∞, then this means that there is no notion of unconditional
probability—all probability is conditional probability. However, in addition
to leaving out probabilities conditional on Ω, this sort of example also still
leaves out p(A | B) when µ(B) = 0. However, this sort of example is the
one that motivated Rényi’s development of the theory, and in his later
books he adds an axiom that entails that every conditional probability
space is of this type, with µ being σ-finite. I will come back to the features
of this class of examples later.

3.2.3 Popper and Kolmogorov

In the slightly more general system defined in his earlier paper, he also
gives several other interesting examples. Instead of a single measure
µ we can consider a countable set of measures µi for i ∈ N. Then we
let B be the collection of all members of A such that there is exactly
one α with µα(B) > 0, and no α such that µα(B) = +∞. If we define
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p(A | B) = µα(A ∩ B)/µα(B) for this unique α, then we have another
example of a Rényi conditional probability function. By Spohn’s result
mentioned in Section 3.1, this means that every Countably Additive Popper
function is an example of a Rényi conditional probability function (where
we leave probability conditional on abnormal sets undefined, rather than
saying it is uniformly equal to 1).

Rényi also considers cases in which Disintegrability or Conglomerability
might be satisfied. Starting on p. 307 of his (1955), he discusses both what
he calls “Cavalieri spaces” and then “regular probability spaces.” These
are spaces in which A is the σ-algebra generated by a random variable
V, and B contains all the sets of the form x < V < y as well as the
sets of the form V = x, and in which the probability function satisfies
Conglomerability with respect to the partition in terms of V = x. As he
notes, his basic definition of a conditional probability space allows for
Conglomerability over A to fail. However, he gives several examples in
which it holds, including an instance of the Borel paradox where B is the
set of longitudes and wedges built up from longitudes. This shows a case
where he allows for non-trivial probabilities conditional on some events of
probability 0. But it leaves conditional probability undefined for any event
that is not composed of longitudes.

As I discussed in Section 1.4.3, if we consider not just one conditional
probability function, but have many, each with its own B, such that every
non-empty set is in one of the B, then we can get an adequate notion of
conditional probability that responds to the problem of conditioning on
events of probability 0 (from Section 1.3) while satisfying Conglomerability.
However, p(A | B) will then depend on which probability function is being
used, which corresponds to the question of which bunch B of sets is
the base of conditioning. Regular Conditional Probability is a special
case of Rényi’s theory, where B ranges only over sub-σ-algebras and
Conglomerability is required to hold.

Thus, Rényi’s theory is mathematically more general than the theory
of Regular Conditional Probability. However, this generality leaves many
choices open to us. If the philosophical interest is in preserving a unique
notion of conditional probability that doesn’t depend on B at all, then
most of this generality is unwanted. Restricting to the case where B just is
the set of all non-empty sets is the subject of Section 3.3.

3.2.4 Infinite Measure

Despite the interest of these sorts of conditional probability spaces, Rényi’s
primary interest is in the second example from Section 3.2.2, where the
conditional probability is defined from a single measure µ that is σ-finite
but not finite. This is made clear by the discussion in the first two pages
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of his (1955) of the importance of unbounded measures in statistical
practice. In his (1970a) he adds an extra axiom to the definition of a
conditional probability space, requiring that for any B, C ∈ B with B ⊆ C,
p(B | C) > 0.19 And in his (1955), most of his discussion is confined to
spaces that satisfy it.

As Theorem 8 in his (1955), and as Theorem 2.2.1 of his (1970a), he
proves that for every conditional probability space satisfying this further
condition, there is a σ-finite measure µ such that p(A | B) = µ(A∩ B)/µ(B)
for all A ∈ A and B ∈ B, and that this measure is unique up to constant
multiple.

The proof is not terribly difficult. Recall that there is a countable se-
quence Bi ∈ B, for i ∈ N with

⋃
i∈N Bi = Ω. Without loss of generality,

we can assume that Bi ⊆ Bj for any i ≤ j. (If they don’t already satisfy
this condition, just replace Bj with the finite union

⋃
i≤j Bi.) Now we can

define µ(B1) = 1, and µ(Bn) = 1/p(B1 | Bn). Then, for any A ∈ A, we can
define µ(A) = limn→∞ µ(Bn)p(A | Bn). Verifying that this definition of µ

is well-defined and gives a measure is somewhat tedious, but not terribly
difficult. It is substantially easier to verify that any other measure giving
the same conditional probability function must be a constant multiple of
this one, and that this one is σ-finite.

By restricting consideration to this sort of probability space, Rényi
eliminates all of the non-trivial Popper functions. This is because under
this new characterization, whenever p(A | B) is defined, p(B | C) will be
positive whenever it is also defined, unless C ∩ B = ∅. However, Popper’s
notion of conditional probability was intended to capture cases where
p(B) = 0 and yet B is normal.

Some philosophers have grouped Popper and Rényi together as giving
similar notions of primitive conditional probability. However, Rényi re-
quires Countable Additivity where Popper can’t even state it, and Rényi’s
mature theory rules out all interesting Popper functions, as well as ruling
out any resolution to the problem of conditioning on events of probability
0. Although Rényi’s theory even more so than Popper’s makes conditional
probability the basic notion (because Ω can fail to be in B), it addresses
only the motivating problem from Section 1.2 (the conceptual requirement
that all probabilities are conditional) and not the one from Section 1.3
(conditioning on events of probability 0).

This mature theory works well for the actual relative frequency inter-
pretation of probability. In fact, one of the standard examples that Rényi
considers has exactly this form. Let Ω be some countable set, let A be
the collection of all subsets of this set, and let µ(A) be the number of

19 He appears to have this same restriction in mind in his (1970b), though he writes the
requirement in a way that is conditional on p(B | C) > 0 rather than requiring it. But that
book develops very little of the theory.
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elements of A. (Since Ω is countable, we see that µ is σ-finite, since Ω
is the union of countably many sets with finitely many elements each.)
If we let B be the set of all non-empty finite subsets of Ω, and define
p(A | B) = µ(A ∩ B)/µ(B), then this just is the definition of finite relative
frequency.

3.2.5 Improper Priors

Another more characteristic example lets Ω be the set R2 of pairs of real
numbers. Let A be the collection of all Lebesgue measurable subsets of
this set, and let µ be standard Lebesgue measure. Then let B be the set of
all Lebesgue measurable subsets of this set with positive finite measure.
The resulting probability measure is uniform conditional on any finite
region, and undefined on infinite or null regions.

If we return to the generality of the early theory (so that we allow B to
contain elements whose probability is 0 conditional on large elements of B),
we can generalize to a slightly more interesting set B as follows. Let Rx2,y2

x1,y1

be the rectangle of points {(x, y) : x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}. Let B be the
set of all such rectangles. When x1 < x2 and y1 < y2, we define p(A |Rx2,y2

x1,y1)

as before, as the ratio of the standard two-dimensional Lebesgue measure
of A∩ Rx2,y2

x1,y1 to the measure of Rx2,y2
x1,y1 , which is just (x2− x1)(y2− y1). How-

ever, when x1 = x2 or y1 = y2, the “rectangle” is actually a line segment.
In such a case we use the relevant one-dimensional Lebesgue measure to
define the conditional probability. (This is effectively an example where
we have a sequence of three measures—two-dimensional Lebesgue mea-
sure µx,y, one-dimensional Lebesgue measure µx with respect to x, and
one-dimensional Lebesgue measure µy with respect to y.) Again, our prob-
ability is uniform conditional on finite rectangles of positive size, but it
is also uniform conditional on finite line segments parallel to the x or y
axis. But again, there is no unconditional probability, because the space as
a whole has infinite measure.

The motivation for this sort of example comes when we generalize it still
further. Instead of using Lebesgue measure, we use a measure with a non-
uniform density. Then the formulas for calculating conditional probabilities
are exactly those given in Section 2.1 for Kolmogorov’s Regular Conditional
Probabilities, except that some of the integrals might be infinite, and we
only officially allow for probabilities conditional on sets where the integrals
are finite. In that section, since there was an unconditional probability
function, the integrals were always guaranteed to be finite, but here we
allow for them to be infinite. When they are infinite, it is standard to say
that the conditional probability function arises from an “improper prior,”
which is not itself a probability function.
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This is the foundation of much Bayesian statistical practice. For instance,
one might be interested in estimating the distribution of values of V in
some population. One might antecedently be sure that, over the relevant
population, V is distributed according to a normal distribution with some
unknown mean µ and variance σ2. In the absence of information one
wants an “uninformative prior,” which should be invariant under changes
of measuring scale of V. (For instance, we might convert feet to meters, or
Fahrenheit to Celsius.) It turns out that the only such prior is one where
the probability that x1 < µ < x2 and 0 < y1 < σ2 < y2 is proportional to
(x2 − x1) log y2

y1
. But without antecedent bounds on how large µ and σ2

might be, this gives rise to an improper prior. In particular, since∫ x2

x1

∫ y2

y1

1
y

dy dx = (x2 − x1) log
y2

y1
,

this means that we can do the calculations with a density given by
d(µ, σ2) = 1/σ2.

In this case, in addition to the population mean and variance, there are
further random variables given by the observed values of V on samples
from the population. We have assumed that each of these samples is
taken from the same normal distribution with mean µ and variance σ2.
If we represent the density of the normal distribution by Nµ,σ2(x), then
our overall density is given by d(x, µ, σ2) = Nµ,σ2(x)/σ2. Interestingly,
although this density yields an improper prior, it turns out that conditional
on any possible observed value of x, the integral over all values of µ and
σ2 is finite (because the normal distribution dies off fast enough in each
direction). It is a classic result of Bayesian statistics that the posterior
distribution of µ conditional on observed x values is given by Student’s t-
distribution. There are many other cases like this, where a density function
over some parameters gives rise to an improper prior, but the natural
likelihood function for some observable evidence yields a proper posterior
conditional on any possible observation.

Of course, all of this Bayesian analysis only works when it is possible
to calculate probabilities by integrating densities. This only works when
the conditional distributions satisfy Conglomerability (and thus Count-
able Additivity) wherever they are defined. Thus, this sort of statistical
application requires both Rényi’s idea that “unconditional probabilities”
can be unbounded, and Kolmogorov’s idea that conditional probabilities
might be relativized to a partition.

However, the notion of an improper prior is also in some ways closely
conceptually related to failures of Countable Additivity. This can be seen
by looking back at the first example we gave of an improper prior. This
was the conditional probability space given by finite counting over a
countable set. There is some sense in which this conditional probability
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space is aiming to represent a uniform unconditional probability over the
countable set, like the de Finetti lottery that (for some) motivates rejection
of Countable Additivity. By the technique of improper priors, Rényi is
able to represent this distribution in a way that captures much that is
important, though it does not give any notion of unconditional probability.
Because the total space is σ-finite, there is a countable sequence of sets
Bi ∈ B for i ∈N such that Ω =

⋃
i∈N Bi. We can define a merely Finitely

Additive probability function over Ω by defining p(A) = limi→∞ p(A | Bi),
though for many sets A this limit is undefined, and in general the limit
will depend on the specific choice of the sequence Bi.

3.3 De Finetti/Dubins—Full Coherent Conditional Probabilities

The final theory of Coherent Conditional Probabilities to be considered
here takes seriously the motivation in these cases to have well-defined
unconditional probabilities while giving up on Countable Additivity. This
theory arises from de Finetti (1974) and Dubins (1975, section 3). However,
it may be useful for many readers to also consult the expositions of this
theory by Seidenfeld (2001), Seidenfeld et al. (2013), or the book length
treatment by Coletti and Scozzafava (2002).

The basic background system is the same as that of Kolmogorov and
Rényi, but I repeat the definitions here so that readers don’t have to flip
back. There is a set Ω of possibilities, and we consider some collection A
of subsets of Ω. If A contains the empty set, as well as complements and
pairwise unions of its members, then A is said to be an algebra. If it also
contains unions of any countable set of its elements, then it is said to be a
σ-algebra. An algebra B is said to be a sub-algebra of A iff every member of
B is a member of A, and a sub-σ-algebra of A if B is a σ-algebra.

Unconditional probability for an algebra A is assumed to be given by
a function p(A) defined for A ∈ A subject to the three basic principles.
p(Ω) = 1, p(A) ≥ 0 for all A ∈ A, and p(A ∪ B) = p(A) + p(B) when
A and B are disjoint members of A. If B is a sub-algebra of A, then a
conditional probability for (A,B) is a two-place function p(A | B) defined
for A ∈ A and non-empty B ∈ B subject to the following constraints.
For any A ∈ A and non-empty B ∈ B, p(A | B) ≥ 0 and p(B | B) = 1.
For any A1, A2 ∈ A and non-empty B ∈ B, if A1 ∩ A2 ∩ B is empty,
then p(A1 | B) + p(A2 | B) = p(A1 ∪ A2 | B). For any B, C ∈ B with B ∩ C
non-empty, and any A ∈ A, p(A ∩ B | C) = p(A | B ∩ C)p(B | C).

These axioms are much like Popper’s axioms, but formulated in terms of
sets rather than sentences of a language. They are much more like Rényi’s
axioms, but without Countable Additivity (and without the requirement
that A be a σ-algebra), and with the additional requirement that p(A |Ω)

be defined (since Ω is a member of any algebra B).
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One further notion is of great interest here. If B = A, then the Coherent
Conditional Probability is said to be Full. The central results in the relevant
section of Dubins’ paper show that for any probability function on an
algebra A there is a Full Coherent Conditional Probability agreeing with
it, and that for any conditional probability function on (A,B) there is an
extension to a Full Coherent Conditional Probability. In fact, he shows that
the same is true for any partial function, each of whose finite fragments can
be extended to a Full Coherent Conditional Probability function on its finite
algebra. In particular, this applies to any Rényi conditional probability
function, and even allows us to extend to the case in which A is the full
power set of Ω. Thus, we are able to get what Popper was after—a notion
of conditional probability that is defined for every non-empty set.

However, the techniques for proving that these Full Coherent Condi-
tional Probabilities exist are non-constructive. Dubins uses Tychonov’s
theorem (which is equivalent to the Axiom of Choice), and cites similar
results by Krauss (1968) arrived at using non-principal ultrafilters (whose
existence is proven using the Axiom of Choice). Similar results extend-
ing linear (i.e., finitely additive) functions on subspaces to full spaces
often appeal to the Hahn-Banach Theorem, which is also independent
of Zermelo-Fraenkel set theory without the Axiom of Choice. Given a
Full Coherent Conditional Probability on the surface of a sphere, one can
generate the paradoxical Banach-Tarski sets (Pawlikowski, 1991). Thus,
we are not usually able to work with these Full Coherent Conditional
Probabilities in any explicit way, if we really want them to be defined on
all subsets of a reasonably-sized probability space. I have argued elsewhere
(Easwaran, 2014) that mathematical structures depending on the Axiom of
Choice in this way cannot be of epistemic or physical relevance, though
they are surely of mathematical interest.

Given the results of Section 1.4.3, Full Coherent Conditional Probabilities
fail to satisfy Conglomerability when some Additivity fails. For instance,
let Ω be the set of pairs (m, n) of natural numbers. Let Sm be the set
of all pairs whose first coordinate is m and let Tn be the set of all pairs
whose second coordinate is n. Let p be any probability function such
that p(Sm | Tn) = p(Tn | Sm) = 0 for all m and n. (We can think of this
probability function as describing two independent de Finetti lotteries.) Let
E be the event that m > n. Then we can see that for any m, p(E | Sm) = 0
(since, conditional on Sm, only finitely many values of n will satisfy E), but
for any n, p(E | Tn) = 1 (since, conditional on Tn, only finitely many values
of m will fail to satisfy E). Since the Sm and the Tn are both partitions,
any value of p(E) will fail to satisfy Conglomerability in at least one of
these partitions. This sort of failure of Conglomerability is inevitable if
one allows failures of Countable Additivity and requires that sets like E
nevertheless have both unconditional and conditional probabilities.
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However, these Finitely Additive Full Coherent Conditional Probabilities
have the advantage of existing even for algebras that are not countably
generated, avoiding the problems for Regular Conditional Probabilities
mentioned in Section 2.3.1. They also always satisfy p(A | A) = 1, even in
the bad algebras where Countably Additive conditional probabilities are
forced to allow for p(A | A) = 0, as mentioned in Section 2.3.2 (Seidenfeld
et al., 2001). In particular, in addition to the case where one adds a non-
measurable set to the collection of Borel sets, one might also consider the
algebra of “tail events,” defined as follows.

Let Ω be the set of all countable sequences (a0, a1, a2, . . . ) of 0s and 1s
(which can be taken to represent the set of all countable sequence of coin
flips). Let A be the σ-algebra generated by the sets of the form

Ai = {(a0, a1, a2, . . . ) : ai = 1}.

Say that an element A ∈ A is a “tail event” if, for any element of A,
changing any finitely many places in the sequence results in another
element of A. (The tail events are exactly those that depend only on the
long-run behavior of the sequence and not on any short-term behavior.)
Let B be the set of all tail events. It is clear that B is a sub-σ-algebra of A.

A classic result of Kolmogorov shows that if the unconditional proba-
bility is that on which each event Ai (“the i-th flip results in heads”) is
independent with probability 1/2, then every event in B has probabil-
ity 1 or 0. A further generalization by Hewitt and Savage shows that if
the unconditional probability is any “exchangeable” probability (in the
sense of de Finetti), then the events in B all have probability 1 or 0. As
a consequence of these results, and a theorem about algebras in which
all probabilities are 1 and 0, it turns out that any element B ∈ B whose
unconditional probability is 0 must also have p(B | B) = 0, if conditional
probability is Countably Additive. (See Blackwell and Dubins, 1975, or
Seidenfeld et al., 2001. This is possible because the algebra of tail events
is not countably generated.) But if conditional probability is allowed to
be merely Finitely Additive, then we can have p(B | B) = 1 for these
tail events. Dubins and Heath (1983) show how to construct such a Full
Coherent Conditional Probability. However, this construction assumes a
particular merely Finitely Additive probability distribution over all subsets
of the natural numbers, and thus indirectly appeals to the Hahn-Banach
Theorem, and thus the Axiom of Choice.

Since these functions are defined on the full power set, there is a sense
in which we no longer need to limit ourselves to an algebra A of “mea-
surable” sets. Even the unmeasurable sets are assigned some probability.
We aren’t able to pin down precisely what the probability is of any such
set, but since the non-measurable sets themselves are only proved to exist
by non-constructive means using the Axiom of Choice, this may not be
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such a problem. The Banach-Tarski Paradox shows that if Ω contains
3-dimensional (or higher) Euclidean space, then any such Finitely Ad-
ditive probability function must fail to be invariant under rotations and
translations. But again, the sets under which these invariances must fail
are only proven to exist by means of the Axiom of Choice.20

Thus, provided that one is not worried about working with non-
constructive methods, Full Coherent Conditional Probabilities can be of
interest when dealing with algebras that aren’t countably generated.

4 conclusion

There are two main families of arguments that conditional probability
should be taken as the basic notion of probability, or at least as equally fun-
damental to unconditional probability. One set of arguments (Section 1.2)
is based on conceptual grounds, but apart from the interpretation of prob-
ability as actual frequency, it doesn’t appear to be decisive. For logical,
evidential, and perhaps even subjective probabilities (if we follow Levi), we
may be able to argue that nearly all probabilities are conditional. But if we
can make sense of conditioning on a tautology, then again the argument
is not decisive. Instead, this argument points out that many probability
functions depend on some background condition that is of a different type
than the events that have probabilities.

The other set of arguments (Section 1.3) is based on mathematical
grounds. Depending on how we treat vague or indeterminate probabilities
(if there even are any), these problem cases may not motivate anything
beyond a supervaluational treatment. I believe that supposed cases of
conditioning on an event with undefined unconditional probability are
either cases of maximally vague probability, cases where the “event” is
actually part of the background for a probability function rather than a
condition, or are cases where the conditional probability also does not
exist.

Instead, it is cases of probability 0 (and particularly those where the
0 arises from an infinite partition) that motivate a reconsideration of the
mathematics of probability theory the most strongly. To deny that these
cases exist is to assume something much stronger than Finite Additivity
or Countable Additivity—it is either to assume Full Additivity for all
cardinalities (and thus discrete probability, distributed only over countably
many possibilities) or else the even stronger assumption that there are only

20 If we replace the Axiom of Choice by the Axiom of Determinacy, then we lose the Hahn-
Banach theorem and the other means by which these Finitely Additive functions were
proven to exist, but Lebesgue measure turns out to already be defined—and Countably
Additive!—over all subsets of Euclidean space. See Bingham (2010, Section 8).
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finitely many possibilities. This seems to go against the meaningfulness of
scientific vocabulary discussing numerical parameters in the world.

I have discussed four different mathematical theories for conditioning
on events of probability 0. Regular Conditional Probabilities may allow
us to say that unconditional probability is prior to conditional probability,
while Popper’s theory, Full Coherent Conditional Probabilities, and the
most general version of Rényi’s theory require conditional probability to
be prior.

Popper’s theory is the one most familiar to philosophers. This theory
has the advantage of deriving the relations of deductive propositional
logic as special consequences of the probability axioms, so it may be
particularly well-suited to the logical interpretation of probability. But
because the bearers of probability are sentences in a language rather than
sets of possibilities, it can’t even express the circumstances that give rise
to the problem of probability 0, much less say anything useful about them.
In any case, it is effectively an instance of the more general Dubins/de
Finetti Full Coherent Conditional Probability.

Rényi’s theory is the most general, having versions of the others as spe-
cial cases (though some require dropping Countable Additivity). Rényi’s
theory is particularly well-suited to the account of probability as actual
relative frequency, and may well be particularly suited to interpretations
of probability where not every proposition can be conditionalized upon,
particularly if the tautology is one of these propositions (so that there is no
such thing as unconditional probability). It also has advantages for certain
calculations in a Bayesian statistical framework that depend on the use of
“improper priors.”

The Dubins/de Finetti Full Coherent Conditional Probabilities, and
the Regular Conditional Probabilities descending from Kolmogorov, have
competing mathematical virtues. Regular Conditional Probabilities can
satisfy Conglomerability in each partition, as well as Countable Additivity,
which appears to be the most well-motivated level of Additivity. However,
Full Coherent Conditional Probabilities allow each conditional probability
to be defined in a unified and coherent way (rather than one depending on
a partition in addition to a conditioning event). I suggested in Section 1.1
that actual applications of conditional probability always come with some
clear sense of the partition that is relevant, so this is not a cost of the theory
of Regular Conditional Probabilities. Full Coherent Conditional Proba-
bilities avoid some problem cases that arise on badly behaved algebras.
However, I claim these algebras are too complicated for a finite human
mind to grasp, so I think they don’t arise in epistemic application in any
case. Regardless, Full Coherent Conditional Probabilities are themselves
so complex that they can’t be proved to exist without some version of the
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Axiom of Choice, while Regular Conditional Probabilities can be given
constructively when the unconditional probability is defined by a density.

The Regular Conditional Probabilities associated with an unconditional
probability are generally only unique up to measure 0. Perhaps there could
be some constraint like continuity, or computability, that might uniquely
define conditional probabilities for each partition given unconditional
probabilities on countably generated algebras. If this is right, then we
may be able to say that unconditional probability is basic after all, and
conditional probability defined in terms of it. But otherwise, there must
be some sense in which conditional probability is either primitive, or at
least equally fundamental to unconditional probability. Or else we can
follow Myrvold (2015) and allow that we can’t always get what we want
in a theory of conditional probability.

Rényi’s fully general theory must be used in a few situations where
conditional probability is required to be independent of unconditional
probability (namely, for actual relative frequency in infinite worlds, and
in applications requiring “improper priors”). For other applications, the
situation is summarized in Table 1 (page 193).
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I N F I N I T E S I M A L P R O B A B I L I T I E S Sylvia Wenmackers

Suppose that a dart is thrown, using the unit interval as a target;
then what is the probability of hitting a point?

Clearly this probability cannot be a positive real number,
yet to say that it is zero violates the intuitive feeling that,

after all, there is some chance of hitting the point.

—Bernstein and Wattenberg (1969, p. 171)

It has been said that to assume that 0 + 0 + 0 + . . . + 0 + . . . = 1 is absurd,
whereas, if at all, this would be true if

‘actual infinitesimal’ were substituted in place of zero.

—de Finetti (1974, p. 347)

Infinitesimals played an important role in the seventeenth century devel-
opment of the calculus by Leibniz and—to a lesser extent—by Newton.
In the twentieth century, calculus was applied to probability theory. By
this time, however, Leibnizian infinitesimals had lost their prominence in
mainstream calculus, such that “infinitesimal probability” did not become
a central concept in mainstream probability theory either. Meanwhile, non-
standard analysis (NSA) has been developed by Abraham Robinson, an
alternative approach to the calculus, in which infinitesimals (in the sense
of Equation 1 below) are given mathematically consistent foundations.
This provides us with an interesting framework to investigate the notion
of infinitesimal probabilities, as we will do in this chapter.

Even taken separately, both infinitesimals and probabilities constitute
major topics in philosophy and related fields. Infinitesimals are numbers
that are infinitely small or extremely minute. The history of non-zero in-
finitesimals is a troubled one: despite their crucial role in the development
of the calculus, they were long believed to be based on an inconsistent
concept. For probabilities, the interplay between objective and subjective
aspects of the concept has led to many puzzles and paradoxes. Viewed
in this way, considering infinitesimal probabilities combines two possible
sources of complications.

This chapter aims to elucidate the concept of infinitesimal probabilities,
covering philosophical discussions and mathematical developments (in
as far as they are relevant for the former). The introduction first specifies
what it means for a number to be infinitesimal or infinitely small and
it addresses some key notions in the foundations of probability theory.
The remainder of the chapter is devoted to interactions between these
two notions. It is divided into three parts, dealing with the history, the
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mathematical framework, and the philosophical discussion on this topic,
followed by a brief epilogue on methodological pluralism. The appendix
(Section 16) reviews the literature of 1870–1989 in more detail.

Infinitesimals

In an informal context, infinitesimal means extremely small. The word
‘infinitesimal’ is formed in analogy with ‘decimal’: decimal means one
tenth part; likewise, infinitesimal means one infinith part. As such, the
word ‘infinitesimal’ suggests that infinitesimal quantities are reciprocal
to infinite ones, and that infinitely many of them constitute a unit. In
Wenmackers (2018), I have introduced the term ‘harmonious’ as a property
of number systems such that “each infinite number is the multiplicative
inverse of a particular infinitesimal number, and vice versa.” In other
words, an harmonious number system does justice to the etymology of
‘infinitesimal.’ Moreover, in such a number system, “neither the infinite
nor the infinitesimal numbers are conceptually prior to or privileged over
the other in any way.”

These suggestions can be formalised in non-standard analysis (NSA),
which allows us to work with so-called hyperreal numbers. The set of
hyperreal numbers, ∗R, contains positive (and negative) infinite numbers,
larger than any (standard) number, as well as their multiplicative inverses,
which are strictly positive (or strictly negative, respectively) infinitesimal
numbers, smaller than any positive real number yet greater than zero.1

The hyperreals are harmonious in the sense just defined.
Let us now state the formal definition for infinitesimals that we consider

in this chapter. A number x is infinitesimal if

∀n ∈N : |x| < 1
n

. (1)

According to this definition, zero is an infinitesimal and it is the only real-
valued infinitesimal.2 Number systems that do not contain strictly positive
or strictly negative infinitesimals, such as R, are called Archimedean; num-
ber systems that do contain non-zero infinitesimals, such as ∗R, are called
non-Archimedean. NSA is certainly not the only framework for dealing with
infinitesimals,3 but currently it is the most common one for representing
infinitesimal probabilities, so that is what this chapter focuses on.

1 Actually, it is more accurate to write ‘a set of hyperreal numbers,’ rather than ‘the set,’
since the definition is not categoric (unlike that of R) and there is no canonical choice
among the ∗R’s. See Section 16.2 for details.

2 Some authors exclude zero in their definition of infinitesimals, but for the exposition in
this chapter it will turn out to be beneficial to include it.

3 Section 11 mentions two alternative frameworks that deal with infinitesimal numbers.
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What is an infinitesimal probability value? The answer depends on
which number system you are using: we already observed that zero is
the infinitesimal number within the real numbers, whereas the hyperreal
numbers contain (infinitely many) strictly positive infinitesimals, which
could serve as strictly positive infinitesimal probability values.

One way to obtain a new number system is by considering a suitable
quotient space. In general, the definition of a quotient space relies on the
definition of some equivalence relation on a collection of objects, which
can be (generalized) sequences.4 Informally, the equivalence relation ex-
presses a condition for two objects to be “indistinguishable” from each
other or for their difference to be “infinitesimal” or “negligible.” In the
case of (generalized) sequences, this condition has to specify (i) a crite-
rion to compare corresponding positions by and (ii) a selection rule that
specifies at which collections of indices said criterion has to hold. Both
the construction of the real numbers and that of the hyperreal numbers
fits this general description, but the relevant equivalence relations impose
different conditions for sequences to be indistinguishable from each other.

(1) The negligibility of a sequence can be formalised as “converging to
zero”: the sequence gets (i) arbitrarily close to the (rational) number
zero (ii) eventually.

(2) Another way to define negligibility of a sequence is as being (i)
exactly equal to the (real) number zero (ii) except for a small index set.

We will define the criteria and selection rules in italics later in this
chapter (see Section 8.5). For now, it suffices to know that two sequences
can be defined to be equivalent if they differ only by a negligible sequence
(in a well-defined sense). Using this equivalence relation, we can define
equivalence classes of sequences; the structure of the collection of these
equivalence classes is a quotient set. For some choices, this set may be
isomorphic to that of the set of real or hyperreal numbers. In particular, the
equivalence class of rational-valued Cauchy sequences that are negligible
in the sense of (1) is the real number zero (0R) and the equivalence class of
real-valued sequences that are negligible in the sense of (2) is the hyperreal
number zero (0∗R).

Since being exactly equal to zero implies being infinitely close to zero,
but not vice versa, we may think of 0R as the infinitesimal in the set of
the real numbers, which corresponds with an infinite equivalence class
of sequences, many of which belong to that of non-zero infinitesimals in
the hyperreal context. In this sense, the hyperreal numbers are capable of
representing finer distinctions (among sequences) than the real numbers
are.

4 For generalized sequences, see Section 9.2.
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After this brief introduction to infinitesimals, let us now give an even
briefer intro to probabilities.

Probabilities

In an informal context, probable means plausible or likely to be true.
Similar words were available in medieval Latin (‘probabilis’ for probable
and ‘verisimilis’ for likely). As such, probability can be seen as a shorthand
for ‘probability of truth’ and likelihood is a measure of appearing to be
true. This suggests that probability is a hybrid concept that combines
objective chances and subjective degrees of belief (or credences). We may
picture it as a two-layered concept with an objective ground layer, which
represents the objective state of affairs (truth), and an epistemic cover
layer, that deals with evidence presented to an agent and quantifying
the possibility of it being misleading concerning what is underneath it
(appearance).

Many authors have tried to capture this duality that is inherent in the
probability concept. Hacking (1975) describes it very aptly as the Janus-
faced nature of probability and Gaifman (1986) paints a colourful picture
of probability as living on a spectrum from purely objective to purely
epistemic forms. It may be helpful to imagine both layers as allowing for
different degrees of opacity. For an agent with limited epistemic (cognitive
and empirical) resources, the outer layer acts as a veil. First assume that
the underlying system is purely deterministic, such that there are no prob-
abilities “out there,” or, put differently, they are all zero or one. However,
the agent does not see things exactly as they are—only approximately so.
Hence, the probabilities that are relevant to such an agent may be other
than just zeros and ones.5 If the underlying system is indeterministic, on
the other hand, even an agent with unlimited epistemic resources (such as
Laplace’s demon), who could see right through the outer layer, would still
need probabilities to describe the system.

Apart from its interpretation, the topic of this chapter also requires
us to pay attention to the mathematical representation of probabilities.
Probability is usually formalised as a function from the event space—a
collection of subsets (often a sigma-algebra) of a given set, the sample
space—to the unit interval of the real numbers or a non-standard extension
thereof. A probability distribution is called fair or uniform if the same
probability is assigned to any singleton from the domain. Depending on
other background assumptions, this may imply slightly stronger properties,
such as translation invariance.

5 This viewpoint helps us to understand that Laplace (1814) was strongly involved in the
development and popularization of probability theory, while also popularizing the idea of
a deterministic universe.
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In this chapter, we will encounter infinitesimals both in the context of
subjective probability (infinitesimal credences or degrees of belief) and in
the context of objective probability (infinitesimal chances), as well as in
contexts that are intermediate on this continuum.

PA RT I

H I S T O R I C A L O V E RV I E W

In this part, we review some essential mathematical developments that
allow us to represent infinitely small probabilities as positive infinitesimals
in a hyperreal field. We also review philosophical discussions of the topic.
A much more detailed list of contributions from the period 1870–1989

can be found in the appendix (Section 16). More recent contributions are
discussed in Part IV.

The concept of infinitesimals was thought to be intrinsically problematic
and inconsistent for most of European history. An important exception
is the work of Archimedes, who allowed infinitesimals as a method to
find new results, though he did not regard them sufficient for establishing
rigorous proofs of those results. In the sixteenth century, a Latin translation
of many of the works of Archimedes was published in Europe, which led
to a revival of scholarly interest in infinitesimals, especially in Italy. (See
Alexander, 2014, for an overview of the seventeenth century response to
infinitesimals in Europe.)

In the second half of the seventeenth century, infinitesimals played a
crucial role in the development of the calculus, especially in the work of
Gottfried Wilhelm Leibniz (see, e.g., Katz & Sherry, 2012; Katz & Sherry,
2013). Whereas the guiding notion in Newton’s calculus was the “fluxion”
(the derivative of a continuous quantity), Leibniz developed his version of
the calculus starting from infinite sums (integrals). Newton’s and Leibniz’s
usage of infinitesimals was criticized early on, famously by Berkeley
(1734), who called them “ghosts of departed quantities.” Around the
1870s, the calculus received its formalisation in terms of real numbers and
standard limits, which do not allow non-zero infinitesimals. This further
consolidated the general belief that infinitesimals do not live up to the
rigour of modern mathematics, but we will see that a formalisation of this
concept was discovered later on, in the 1960s.

The current standard approach to calculus, which is used for instance in
college physics, is based on the nineteenth century formalisation, in which
the epsilon-delta definition of the limit operation takes a central place (see
Section 16.1). As a result, our standard calculus differs from both the New-
tonian and the Leibnizian version of it. The core idea of a limit operation is
closer in spirit to the Newtonian version, while Leibnizian notation proved
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to be more enduring, with, for instance, dx/ dt for the derivative of x to t.
(For Leibniz, this signified an actual ratio of infinitesimals, whereas our
standard calculus defines it as the limit of a ratio of real numbers.)

As we will see below, measure and probability theory was developed
based on the standard calculus. The non-standard approach, based on the
alternative formalisation of the calculus from the 1960s, is more recent.
(Hence the unfortunate name ‘non-standard’.) But, like infinitesimals in
general, also the more specific notion of infinitesimal probability was in
use long before its formal definition. For instance, in his famous wager
argument (Pensées L418/S680), Pascal specifically excluded them from his
argument.6

1 the pre-robinsonian era : 1880–1959

Around 1880, the current foundations of the real numbers and the standard
calculus, with the epsilon-delta definition of the limit, were well in place.
Non-standard analysis was not developed yet.

Standard measure theory was being developed by mathematicians such
as émile Borel, Henri Lebesgue, Johann Radon, Maurice Fréchet, Giuseppe
Vitali, and many others. In response to the sixth problem of David Hilbert
(1900), also the first axiomatization of probability theory was developed:
Kolmogorov (1933) presented an approach that embedded probability the-
ory into standard measure theory. (His axioms are included in Section 7.)

After the foundational work by Kolmogorov, the measure-theoretic
approach to probability became the standard formalism, which represents
probabilities as real numbers. Strictly speaking, non-zero infinitesimal
probabilities (defined as non-Archimedean quantities) are incompatible
with this formalism. Nevertheless, informal usage of the term has remained
in fashion in at least two ways. First, in some contexts it is used to discuss
events that have zero probability but that are logically possible. Second, the
phrase ‘infinitesimal probability’ is also used in the context of continuous
probability distributions, to refer to dp.7

At about the same time, Bruno de Finetti (1931) was developing a
qualitative theory for ranking events in terms of their probability. He
discovered that, in general, these rankings are non-Archimedean. His
rankings can be said to be more fine-grained than what is expressible

6 In Krailsheimer’s translation, the relevant sentence reads as follows (Pascal, 1670/1995,
p. 151, my emphasis): “[W]herever there is infinity, and where there are not infinite chances
of losing against that of winning, there is no room for hesitation, you must give everything.”

7 The notation stems from Leibniz, for whom dp indicated an infinitesimal increment
of a quantity p. In contemporary standard analysis, however, there are no non-zero
infinitesimals and dp merely indicates that the variable of differentiation or integration is
p.
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by the real-valued probability functions in Kolmogorov’s theory. Five
years later, de Finetti (1936) specifically addressed logically possible events
that receive probability zero in Kolmogorov’s theory. Here, we see that
de Finetti explicitly entertained the notion of infinitesimal probabilities,
but he ultimately chose to stick to real-valued probabilities and to reject
countable additivity.

Working on the subjective interpretation of probability, Frank P. Ramsey
and Bruno de Finetti developed the notion of coherence: in order for an
agent’s degrees of belief to be rational (at a given point in time), they
have to conform to Kolmogorov’s axioms for probability. Abner Shimony
(1955) aimed to strengthen this notion to strict coherence (now often called
regularity): it requires that the degree of confirmation of an hypothesis
h given a piece of evidence e is 1 if and only if h logically entails e.
Shimony was aware that strict coherence required infinitesimal betting
quotients—and thus was incompatible with Archimedean values—if the
sample space was infinite. Inspired by this proposal, Rudolf Carnap (1980)
set out to develop a theory for non-Archimedean credences. Although
this interesting approach was written before Robinson’s work, it was only
published afterwards. As a result, it has not been very influential.

Meanwhile, Thoralf Skolem (1934) had discovered non-standard models
of the natural numbers (Peano arithmetic), which we now call hypernatu-
ral numbers. By applying similar model-theoretic techniques to the real
numbers, Robinson would be able to develop non-standard analysis. This
brings us to the next period.

2 robinson’s non-standard analysis : 1960s

Abraham Robinson (1961, 1966) founded the field of NSA: he applied ear-
lier results from mathematical logic (such as that of Skolem) to real closed
fields in order to develop an alternative framework for differential and
integral calculus based on infinitesimals and infinitely large numbers. This
allowed for a formal and consistent treatment of infinitesimal numbers
and provided a harmonious number system (as defined in the introduc-
tion). Soon enough, NSA was applied to measure theory in general and to
probability theory in particular.

For our current purposes, it is good to be aware of two modes of op-
eration of NSA: in one, the hyperreal numbers merely serve as a means
to prove results about the real numbers, but in the other, obtaining a
hyperreal-valued function or some other non-standard object is the final
goal.8 The first mode of operation represents the oldest and still the most

8 This situation is similar to that of the complex numbers. On the one hand, as Painlevé
(1967, pp. 1–2) writes: “entre deux vérités du domaine réel, le chemin le plus facile et le plus court
passe bien souvent par le domaine complexe” (“between two truths of the real domain, the
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common application of NSA, which is to make proofs about standard
analysis shorter, easier, or both—mainly by alleviating epsilon-delta man-
agement (Tao, 2007).9 Although the most common one, this is not the only
application of NSA. The second mode of operation allows us to investigate
non-standard objects in their own right, including those that (roughly
speaking) do not have standard counterparts.10 In particular, if we are
interested in developing a probability theory that allows us to assign
non-zero infinitesimal probabilities to some events, we cannot achieve this
if we move back to the real domain in the final step.

An early example of a non-standard measure was provided by Bernstein
and Wattenberg (1969), who attempted to measure the infinitesimal proba-
bility of hitting a particular point when playing (infinitely precise) darts on
the unit interval of the real numbers. This result was a very important first
step in the development of probability theories in which the numerical
values respect the non-Archimedean ordering of the events (as studied by
de Finetti, 1936). Hence, Bernstein and Wattenberg (1969) have often been
cited by philosophers who work on the foundations of probability theory.
However, since they focused on a particular case, their result is not fully
general: they did not present a non-standard probability theory, although
their approach can be generalized and does in fact contain many of the
essential ingredients present in later developments.

3 post-robinsonian developments : 1970–1989

Seminal contributions to non-standard measure theory were obtained
by Peter A. Loeb (1975). The dominant line of research in non-standard
measure and integration theory is based on real-valued functions that
have a non-standard domain and the main application (like for all of
NSA) is finding new results in standard measure and integration theory.
Although the well-developed theory of Loeb measures has proven fruitful
in many applications, and therefore should not go unmentioned, it is not
of immediate interest to the topic of this chapter (but see Herzberg, 2007,
2010). For, although infinitesimal probabilities do occur in the construction

easiest and shortest route quite often passes through the complex domain”). This analogy
is also employed by Bartha and Hitchcock (1999, p. 416), who write: “Just as imaginary
numbers can be used to facilitate the proving of theorems that exclusively concern real
numbers, our use of nonstandard analysis will be used to facilitate and motivate the
construction of purely real-valued measures.” On the other hand, complex numbers are
also useful by themselves (for instance, to represent phasors in physics).

9 An early expression of this (prior to the development of NSA) can be found with Joseph-
Louis Lagrange, as cited in Błaszczyk, Katz, and Sherry (2013, p. 63). Recent examples are
given by Terence Tao in his blog posts (see, e.g., Tao, 2007–2012).

10 These are “external” objects, as will be defined in Section 4.
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of Loeb measures, the end goal is to obtain real-valued measures, thereby
eliminating all non-zero infinitesimal probabilities.

Although de Finetti lived long enough to see the advent of NSA and was
aware of its existence, he never used it to continue his 1936 observations
regarding infinitesimal probabilities and he did not show much interest in
applying it in his own work on probability.11

To make the earlier, often technical, work accessible to a larger audience,
including philosophers, it was important to summarize and interpret
it. Brian Skyrms played an important role in this regard. For instance,
in Skyrms (1980, Appendix 4), he discussed the trade-off between four
demands—additivity, translation invariance, everywhere-definedness, and
regularity—for standard and non-standard measures. In the same year,
David Lewis (1980) discussed infinitesimal credences, in the same spirit as
Shimony and Carnap had done prior to Robinson’s work. Later on, Lewis
(1986a) also mentioned infinitesimal chances, in wordings very reminiscent
of Bernstein and Wattenberg (1969).

Observe that at this point, there still was no non-Archimedean alter-
native to parallel Kolmogorov’s Archimedean probability theory. It was
Edward Nelson (1987) who provided the first axiomatic approach for a
probability theory with infinitesimal values. His “radically elementary
probability theory” is indeed very simple, but it requires an entirely dif-
ferent mindset than, for instance, Loeb’s approach. In particular, Nelson’s
theory cannot be used to assign probability measures to any standard
infinite set. Instead, one has to go one step back in the modelling process
and represent the set of possibilities by an infinite hyperfinite set rather
than a standard infinite set. We will introduce the notion of hyperfinite
sets in Section 4.3. Since hyperfinite sets are very similar to discrete finite
ones, after that choice, everything resembles Kolmogorov’s theory for
finite sample spaces.

At this point, we end our historical overview. More details can be found
in the appendix (Section 16). Some of the more recent approaches and
debates will be discussed in Section 8, Section 9, and Section 14.

11 See Section 16.3 for details.
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PA RT I I

M AT H E M AT I C A L P R E L I M I N A R I E S

In this part, we will briefly review some common non-standard tools
and the dual notions of filters and ideals. We will apply these notions in
the ultrafilter construction of the hyperreals. We also present the axioms
of standard probability theory. After that, we will be properly equipped to
address infinitesimal probabilities in the context of countable lotteries as
well as other cases.

4 common non-standard tools

In this section, we review some common tools that appear in (nearly) all
approaches to non-standard analysis.12

4.1 Universe

By a universe, we mean a non-empty collection of mathematical objects,
such as numbers, sets, functions, relations, etc.—all of which can be defined
as sets by working in Zermelo–Fraenkel set theory with the Axiom of
Choice (ZFC). This collection is assumed to be closed under the following
relations and operations on sets: ⊆, ∪, ∩, \, (·, ·), ×, P(·), ··. Furthermore,
we assume that the universe contains R and that it obeys transitivity (i.e.,
elements of an element of the universe are themselves elements of the
universe).

In particular, we are interested in the standard universe, which is the
superstructure V(R), and a non-standard universe, ∗V(R).

4.2 Star-map

The star-map (or hyperextension) is a function from the standard universe
to the non-standard universe.

∗ : V(R)→ ∗V(R)

A 7→ ∗A

We assume that ∀n ∈N, ∗n = n and that N 6= ∗N.
In the literature, two notations occur for the star map: before or after

the standard object. In this chapter, I have opted for the former notation,
because it allows us to read the ∗-symbol as the prefix ‘hyper-’. For instance,
∗R are called “hyperreals.”

12 For further information, see also Benci, Di Nasso, and Forti (2006, section 1) and Cutland
(1983, section 1.2).
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4.3 Internal and External Objects

It is important to realize that the star-map does not produce all the objects
in the superstructure of ∗R; it only maps to the internal objects, which live
in ∗V(R) ( V(∗R).

Some examples of internal objects (∈ ∗V(R)):

◦ any element of ∗R, so in particular any element of N or R;

◦ any hyperfinite set, such as {1, . . . , N} with N ∈ ∗N (which can be
obtained via the hyperextension of a family of finite sets);

◦ the hyperextensions of standard sets, such as ∗N and ∗R;

◦ the hyperpowerset of a standard set, A: ∗P(A), which is the collec-
tion of all internal subsets of ∗A.

Some examples of external objects (∈ V(∗R) \ ∗V(R)):

◦ elementwise copies of standard, infinite sets (notation for the ele-
mentwise copy of A in the non-standard universe: σ A), such as σN

or σR (due to the embedding of N and R in ∗R, the σ-prefix is often
dropped);

◦ the complements of previous sets, such as ∗N \ σN and ∗R \ σR;

◦ the halo or monad of any real number, r: hal(r) = {R ∈ ∗R | |r −
R| is infinitesimal}—in particular hal(0), which is the set of all in-
finitesimals;

◦ the standard part function st (also known as the shadow), which
maps a (bounded) hyperreal number to the unique real number that
is infinitesimally close to it (Goldblatt, 1998, section 5.6);

◦ the full powerset of the hyperextension of a standard, infinite set, A:
P(∗A), which is the collection of all subsets of ∗A, both internal and
external.

4.4 Transfer Principle

Consider some standard objects A1, . . . , An and consider a property of
these objects expressed as an elementary sentence (a bounded quantifier
formula in first-order logic): P(A1, . . . , An). Then, the Transfer principle
says:

P(A1, . . . , An) is true ⇔ P(∗A1, . . . , ∗An) is true.

Observe: this is an implementation of Leibniz’s “law of continuity” (or
souverain principe) in NSA (see Katz & Sherry, 2012, section 4.3). It may be
helpful to consider two examples.
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example 1 : well-ordering of N Consider the following sentence:
“Every non-empty subset of N has a least element.” Transfer does not
apply to this, because the sentence is not elementary. Indeed, we can find
a counterexample in ∗N: the set of infinite hypernatural numbers, ∗N \N,
does not have a least element. (Of course, this is an external object.)

If we rephrase the well-ordering of N as follows: “Every non-empty
element of P(N) has a least element,” then we can apply Transfer to this.
The crucial observation to make here is that ∗P(N) ( P(∗N).

example 2 : completeness of R Consider the following sentence:
“Every non-empty subset of R which is bounded above has a least upper
bound.” Again, Transfer does not apply to this, for the same reason as
in Example 1. A counterexample in ∗R is hal(0), the set of infinitesimals.
(Again, an external object.)

If we rephrase the completeness property of R as follows: “Every non-
empty element of P(R) which is bounded above has a least upper bound,”
then we can apply Transfer to it. Similarly as before, the crucial remark is
that ∗P(R) ( P(∗R).

5 filters and ideals

The introduction mentioned two ingredients for a new number system:
the second one is a selection rule. This idea can be formalised using either
filters or ideals. These are dual notions, and both are collections of subsets
from an index set that fulfil additional criteria.

Intuitively, a filter on a set is a collection of its subsets that are “large
enough,” whereas an ideal is a collection of its subsets that are “small
enough” or “negligible.” The meanings of “large enough” and “small
enough” are given by the formal definitions. The ultrapower construction
of the hyperreal numbers crucially relies on the application of a particular
kind of filter: a free ultrafilter. We review the relevant definitions here.13

F is a proper, non-empty filter on X if

F ⊆ P(X), (collection of subsets)

∅ /∈ F , (proper)

X ∈ F , (non-empty)

A, B ∈ F ⇒ A ∩ B ∈ F , (closure under finite meets)

13 Definitions are given, e.g., in Schechter (1997, Ch. 5). For a further discussion of filters,
including free ultrafilters, see, e.g., Goldblatt (1998, p. 18–21) and Cutland (1983, section 1.1).
For an introduction to the meaning and application of ultrafilters, see Komjáth and Totik
(2008).
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(A ∈ F ∧ B ⊇ A)⇒ B ∈ F . (upper set property)

The smallest non-empty proper filter is simply {X}. A filter F is principal
(or fixed) if ∃x0 ∈ X : ∀A ∈ F , x0 ∈ A.

A filter F is free if it is not principal, or equivalently: if the intersection
of all the sets in F is empty. For an infinite set X, its Fréchet filter is the
filter that consists of all the cofinite subsets of X. Such a filter is free, but it
is not an ultrafilter. (For a finite set X, the Fréchet filter is not proper.)
F is an ultrafilter on X if F is a filter on X and

∀A ⊆ X(A /∈ F ⇒ X \ A ∈ F ).

F is a free ultrafilter on X if F is an ultrafilter on X and F is free. This
definition implies that a free ultrafilter contains no finite sets. Given the
ultrafilter condition, it is equivalent to say that it does contain all cofinite
sets. In other words: an ultrafilter is free if and only if it contains the
Fréchet filter. Hence, free ultrafilters do not exist for finite X.

Given a (proper) filter on X, F , the corresponding (proper) ideal in the
Boolean algebra P(X), I , is obtained as follows:

I = {X \ F | F ∈ F}.

The smallest proper ideal is simply {∅}. The ideal corresponding to a free
ultrafilter is called a Boolean prime ideal.

6 application of free ultrafilters : hyperreal numbers

6.1 Constructing the Real and Hyperreal Numbers

In the introduction, we indicated that both the standard real numbers
and the hyperreal numbers can be defined as equivalence classes of se-
quences.14 They differ in the collection of sequences on which they operate
and in the equivalence relation that they impose.

The real numbers can be constructed based on rational-valued Cauchy
sequences. The set of such functions is defined as follows:

C = {(qn) ∈ QN | ∀ε ∈ Q>0, ∃N ∈N : ∀n, m > N
(
|qn − qm| < ε

)
}.

Two sequences in this space are considered to be equivalent to each other
if their difference (which is defined member-wise) is a sequence that gets
arbitrarily close to (the rational number) zero, eventually. This means that for
each target, from some position in the sequences onwards (i.e., eventually

14 We will not consider Dedekind cuts or other constructions.
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or cofinally), their member-wise difference is strictly smaller than the
target. Symbolically, where (qn), (sn) ∈ C:

(qn) ∼ (sn)⇔ ∀ε ∈ Q>0, ∃N ∈N : ∀n > N
(
|qn − sn| < ε

)
.

The hyperreal numbers can be constructed based on real-valued se-
quences (all of RN)—this is called the ultrapower construction of ∗R.15

Two sequences in RN are considered to be equivalent to each other if their
member-wise difference is exactly equal to (the real number) zero, except
for a small set of indices. In this case, the first part of the condition is clear
and all we are left to specify is what counts as a “small” set. If we choose
to define small sets as finite sets, and thus large sets as cofinite ones, this
coincides with the “eventuality” condition used in the construction of the
real numbers. This is equivalent to imposing the Fréchet filter, consisting
of the cofinite subsets of N (the complements of “small” sets, these are
“large” sets), to the indices of the sequences. This setup does allow us to
construct a non-standard model of the real numbers; in fact, it was the first
one that was ever constructed and it is still of interest because it yields a
constructive non-standard model.16 However, such a system is rather weak
(too weak for some of the questions we are interested in). According to
the Fréchet filter, many sets (such as arithmetic progressions17) are neither
small nor large. Usually, small and large sets are defined by fixing a free
ultrafilter on N: a set is large if it is in the ultrafilter and small if it is
not, and the ultra-condition guarantees that for each set either it is in the
ultrafilter, or its complement is.

Informally, the sequence-based construction of the hyperreals can be
thought of as follows. Consider the old equivalence class of the sequences
that we have come to regard as the real number zero and define new
equivalence classes on it, making distinctions among the infinitesimal
sequences depending on their rate of convergence. As such, we dissect
the single infinitesimal real number into infinitely many infinitesimal
hyperreal numbers. In fact, we perform a similar dissection for each of the

15 The ultraproduct construction is a general method in model theory: see Keisler (2010)
(including the references in the introduction) for more information. To see how the
ultrapower construction is related to the existence proof of non-standard models using the
Compactness theorem (see Section 16.2), observe that one way to prove the Compactness
theorem is based on the notion of an ultraproduct (cf. Goldblatt, 1998, p. 11).

16 Schmieden and Laugwitz (1958) were the first to give a construction in this style and they
used a Fréchet filter on N rather than a free ultrafilter. Unlike a free ultrafilter, the existence
of a Fréchet filter does not require any choice axiom. However, in strictly constructivist
approaches, the framework of classical logic as used by Schmieden and Laugwitz (1958)
also has to be replaced by intuitionist logic (Martin-Löf, 1990). More recently, Palmgren
(1998) has investigated constructive approaches to NSA. For an accessible introduction to
a weak system of NSA based on Fréchet filters, see also Tao (2012).

17 Arithmetic progressions are sets of the form aN + b = {n ∈N | n mod a = b} for some
a ∈N and some b ∈ {0, 1, . . . , a− 1}.
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real numbers simultaneously. Does this give us old wine in new packages?
Not quite: it is more like breaking the chemical bonds in the molecules
of the wine, and maybe even breaking the atoms—tearing apart the very
fabric of what the original numbers are made of, and recombining the
fragments in a novel way (with a completely different order structure): we
get an entirely new set of numbers out of the operation. Observe that we
still have infinitely many real-valued sequences in the equivalence class
of the hyperreal number zero (those that differ from zero at only finitely
many positions), but—in as far as they converge in the standard sense at
all—only a strict subset of them converge to the real number zero.

6.2 Remarks on the Ultrapower Construction

When a free ultrafilter is applied in the ultrapower construction of the
hyperreal numbers, its various properties affect the properties of the
hyperreals in the following ways (see Section 8.5):

◦ the upper set property of a filter is required to obtain an equivalence
relation on RN;

◦ the property of an ultrafilter, which ensures that each set is either
large (in the filter) or small (in the corresponding ideal), is required
to obtained trichotomy on ∗R (i.e., for each r, s ∈ ∗R either r < s or
r = s or r > s);

◦ the property of being free in combination with being ultra, which
ensures that every finite set is small, is required to ensure that
R  ∗R.

Although free ultrafilters can be proven to exist (given the usual set-
theoretic assumptions), it can also be proven that no explicit example
of them can be given; they are inherently non-constructible objects or
“intangibles” (Schechter, 1997).

If we drop the condition of being free, and apply the Fréchet filter
instead, we obtain a weaker but constructive model of the hyperreals
numbers. Let us consider the implication for probability by considering
the example of a fair lottery on N. On the one hand, using a Fréchet filter
would still allow us to obtain probability functions that take infinitesimal
values for finite events. On the other hand, the system is too weak to
obtain probability functions that are defined on all of P(N). For instance,
the subset of odd numbers and the subset of even numbers are neither in
the Fréchet filter nor in the corresponding ideal, so according to this filter
and ideal they are neither large nor small, such that these events would
not receive any probability value.
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7 kolmogorov’s axioms for probability theory

Since standard probability theory does not contain actual infinitesimals,
it may seem of less importance for the topic of this chapter. However,
Kolmogorov’s approach was very successful and influential: it lies at the
basis of the contemporary presentation of probability theory as a special
case of measure theory, which itself is a branch of real analysis (calcu-
lus).18 Hence, any later proposal for a new theory of probability, possibly
including infinitesimals, has to compete with it. Therefore, we do include
Kolmogorov’s axioms here, or at least an equivalent formulation thereof
(taken from Benci, Horsten, & Wenmackers, 2013). P is the probability func-
tion and Ω is the sample space, a set whose elements represent elementary
events:

(K0) Domain and range. The events are the elements of A, a σ-algebra
over Ω,19 and P is a function P : A→ R.

(K1) Non-negativity. ∀A ∈ A, P(A) ≥ 0.

(K2) Normalization. P(Ω) = 1.

(K3) Additivity. ∀A, B ∈ A such that A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B).

(K4) Continuity. Let A =
⋃

n∈N

An, where ∀n ∈N, An ⊆ An+1 ⊆ A. Then

P(A) = sup
n∈N

P(An).

18 Kolmogorov’s assumption of Countable Additivity was crucial for the incorporation of
probability theory into measure theory. This move was motivated by mathematical conve-
nience, rather than by philosophical reflection on the meaning of probability. Kolmogorov
stated (with original italics):

Infinite fields of probability occur only as idealized models of real random
processes. We limit ourselves, arbitrarily, to only those models which satisfy Axiom
VI. (Kolmogorov, 1933, p. 15)

Later, de Finetti (1974, Vol. I, p. 119) would write about Countable Additivity:

it had, if not its origin, its systematization in Kolmogorov’s axioms (1933). Its
success owes much to the mathematical convenience of making the calculus
of probability merely a translation of modern measure theory [. . . ]. No-one
has given a real justification of countable additivity (other than just taking it
as a “natural extension” of finite additivity)

Compare to Schoenflies’ reaction to Countable Additivity in Borel measure (footnote 58).
19 A is a σ-algebra over Ω if A ⊆ P (Ω) such that A is closed under complementation,

intersection, and countable unions. A is called the event algebra or event space.
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The triple (Ω,A, P) is called a probability space.
For our present purposes, the continuity axiom is the most important

one, so let me briefly mention two aspects of it. First, (K4) uses a supre-
mum, which is defined in terms of a standard limit; this limit is guaranteed
to exist for real-valued functions, but not on the hyperreal numbers. Still,
the gist of this axiom can be phrased without reference to the specific
limit operation. It can be regarded as a specific form of a more general
idea: that is, to define the absolute probability of any event from an in-
finite domain as the limit (in some sense) of a sequence of conditional
probabilities associated with that event, conditional on a suitable family
of finite events. This more general principle was called the “Conditional
probability principle” in Benci et al. (2013, section 3.2) and Benci, Horsten,
and Wenmackers (2018, section 3.2), where it was further shown how the
same idea can be applied to hyperreal-valued probability functions (using
a different kind of limit operation). Second, assuming the other axioms,
(K4) is equivalent to requiring countable additivity, which is not compati-
ble with hyperreal-valued probability functions (except in the trivial case
of a finite domain).

PA RT I I I

A X I O M AT I Z AT I O N O F I N F I N I T E S I M A L P R O B A B I L I T I E S

In the historical overview, we have already encountered two approaches to
probability theory that allow infinitesimal probabilities: the axiomatization
of Nelson (1987) and the work of Loeb (1975). What is missing so far
is an axiomatization of a theory that assigns probabilities to standard
infinite sets (such as N, on which Nelson’s approach is silent) and that
allows infinitesimal or other hyperreal values in the final result (unlike
Loeb’s approach, which is geared toward obtaining results in the standard
domain). This is the purpose of the current part.

8 infinitesimal probabilities and countable lotteries

Within philosophy, infinitesimal probabilities have often been discussed
in the context of the following example: a lottery on the natural numbers,
N, in particular a fair one (i.e., a lottery in which each individual ticket
receives the same probability as any other one). Since this example is so
common, we discuss it first, before setting up a more general framework in
the next section.20 We start from a real-valued approach (in which zero is

20 In order to describe probability functions on infinite sample spaces, focusing on N as
the sample space may seem like a very natural starting point, because N is the canonical
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the only infinitesimal) and investigate which modifications are required in
order to allow for the assignment of non-zero infinitesimal probabilities.21

8.1 Lotteries on Initial Segments of N

Ultimately, we want to describe a lottery, fair or weighted, on N, but
we start by considering a lottery, fair or weighted, on an arbitrary initial
segment of N: the sample space (set of atomic possible outcomes) is
Ωn = {1, . . . , n}. First, we introduce weights: a real number wi for each
of the elements i of Ωn. Without loss of generality, we may assume these
weights to be normalized, such that ∑n

i=1 wi = 1 (e.g., in a fair lottery
wi = 1/n for all i). Then, we define the probability on Ωn, Pn, of an
arbitrary subset of N, A, as follows:

Pn(A) =
n

∑
i=1

wi × #(A ∩ {i}),

where # is the counting measure for finite sets. (This suffices: although
A can be an infinite set, A ∩ {i} is empty or singleton.) In the case of a
fair lottery, the probability Pn(A) is just the relative frequency of A: the
fraction of elements of A within Ωn. That Pn is finitely additive follows
directly from the counting measure being finitely additive.22

8.2 Taking the Limit

Now, we want to consider a lottery on Ω = N, rather than on Ωn =

{1, . . . , n}. The idea is to consider the lottery on N as the limiting case

example of a set with the smallest infinite cardinality. It will turn out that in some sense
this problem is not the easiest one to describe, because it is in lockstep with other (less
obvious) occurrences of N. Among the infinite sets, N is our usual benchmark, so we
use it in and out of season. As a result, there are hidden symmetries in the problem of a
(fair) lottery on N, which make it harder to analyze it. To understand this statement, we
first need to encounter the problems alluded to, so we will progress as planned, but I will
return to this observation in the middle of Section 8.3.

21 The current section presents some of the ideas originally developed in Wenmackers and
Horsten (2013) in a more straightforward way.

22 For, consider a finite family of mutually disjoint subsets of N, {Ak | k ∈ {1, . . . , m}, Ak ⊆
N} (for some m ∈ N) such that for each i 6= j, Ai ∩ Aj = ∅. Defining the union of
members of the family A =

⋃m
k=1 Ak, we obtain for the probability of A:

Pn(A) = ∑n
i=1 wi × #(

⋃m
k=1 Ak ∩ {i})

= ∑n
i=1 wi ×∑m

k=1 #(Ak ∩ {i})
= ∑m

k=1 ∑n
i=1 wi × #(Ak ∩ {i})

= ∑m
k=1 Pn(Ak).
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of a sequence of finite lotteries. This idea seems apt, since we have Ω =

limn→∞ ∪n
i=1Ωi.23 We will define the probability, P, for an arbitrary subset

of N, A, analogously to the limiting relative frequency:

P(A) = lim
n→∞

Pn(A).

Remarks:

◦ P is not defined for all subsets of N.24

◦ Taking the limit of fair lotteries on Ωn (where P({i}) = 1/n for any
i ∈ Ωn) results in a fair lottery on N, with P({i}) = 0 for all i ∈N.

◦ For a fair lottery on N, P is the natural density (also known as the
arithmetic density or the asymptotic density).

◦ In a fair lottery, P is zero for all finite subsets as well as for some
infinite ones (such as the set of squares and the set of primes),25

unity for cofinite sets as well as for some infinite ones (such as the
complements of the previous examples), and intermediate values
for other infinite sets (such as arithmetic progressions26 that receive
probability 1/n for some n; e.g., 1/2 for the set of even numbers and
for the set of odd numbers).

For those who have the intuition that the probability of a particular
outcome in a fair lottery on the natural numbers ought to be infinitesimal,
the above real-valued function P that assigns probability zero to such
outcomes does fine: zero is the infinitesimal probability, the only one in the
[0, 1] interval of R. Nevertheless, it may bother some that this function does
not allow us to distinguish between the impossible event (represented by
A = ∅) and some infinitely unlikely but possible events. The worry is that

23 On the other hand, the ordered set (N,<) is qualitatively different from any (Ωn,<):
unlike all of its initial segments, N does not have a last element. This observation is
suggestive of taking a different kind of limit, which involves a hyperfinite set (which does
have a last element) rather than a standard infinite one.

24 The collection of subsets for which P is defined does not form a σ-algebra. P can be
extended to all of P(N) but the extension relies on Banach limits and is not unique.
Whereas the usual limit relies on the notion of “eventuality” that can be captured by the
Fréchet filter, which is a free filter that is constructively available, the Banach limit depends
on a free ultrafilter on N, which relies crucially on a non-constructive axiom (the ultrafilter
principle, UF). See Section 8.5 below for more details.

25 As such, this probability function can help us to make sense of Galileo’s paradox, which
revolves around the question of whether or not the set of perfect squares is smaller than
the set of natural numbers (see Mancosu, 2009). As measured by the natural density, the
answer to that question is affirmative: it assigns probability unity to the set of natural
numbers and probability zero to the set of perfect squares. On the other hand, the function
does not discriminate between a finite set, the set of perfect squares, and the set of primes.

26 See footnote 17.



218 sylvia wenmackers

the probabilities of these events are represented by the same infinitesimal,
and since there can only be one zero (i.e., neutral element under addition),
this observation may motivate a search for non-zero infinitesimals. However,
this worry may be partially addressed by considering a non-Archimedean
ordering of the events, which is a question for qualitative probability
theory27 rather than for quantitative probability theory. Despite this, there
is an underlying issue that cannot be addressed without considering
numerical probabilities: it is that of additivity. We consider this in the next
section.

8.3 Additivity of P: Finite, Countable, or Ultra

It was mentioned (Part I) that Leibniz’s approach to the calculus was
based on infinite sums (integrals), unlike Newton’s, for whom the notion
of “fluxions” (derivatives) was more basic. Since infinitesimals were most
prominent in Leibniz’s approach, it should come as no surprise that the
concept of infinitesimal probabilities is closely connected to foundational
discussions concerning the additivity of probability values.

Skyrms (1983b) interprets the intuition that measures should be regular
(that only the null set should receive measure zero) as a Zenonian intuition
(cf. Section 16.3): a whole of positive magnitude should not be made up of
parts of measure zero. He argues that a principle of “ultra-additivity”28

has been present, albeit often implicitly, in discussions concerning mea-
sures at least since the times of Zeno and Aristotle. Since the belief in
ultra-additivity appears to be so deeply rooted in Western thought about
measures, it should not surprise us if it is present, whether presented as an
explicit assumption or a tacit one, in many discussions about probability
measures, too.

In fact, it was exactly such a principle that motivated my own search
for a fair probability function on N. My main motivation for wanting
to assign non-zero probability to non-empty sets is that it should allow
us to make arbitrary unions of events and obtain their probability by an
addition rule for the individual probabilities (in the case of disjoint events,
by taking the analogous arbitrary sum).29

27 Recall the work by de Finetti (1931) as discussed in Section 1. See also Pedersen (2014),
Easwaran (2014, p. 17), and Konek (this volume).

28 Ultra-additivity means additivity for arbitrary collections of disjoint events; it is sometimes
called perfect additivity (see, e.g., de Finetti, 1974, Vol. II, p. 118) or arbitrary additivity
(Hofweber, 2014).

29 Wenmackers (2011, p. 36): “Intuitively, one could expect probabilities to exhibit perfect
rather than countable additivity. However, this is clearly not possible with real-valued
probability functions. Even the weaker requirement of countable additivity may be prob-
lematic, as we have seen in the example of the infinite lottery. Yet, the property of perfect
additivity may be attainable by non-Archimedean probabilities.” Unaware of the work
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Let us return to the probability functions of the previous sections. Finite
additivity obtains for such a P, like it does for all the functions Pn. Since
the function P is the limit of the sequence of functions (Pn), each member
of which has the property of finite additivity (FA), one might suspect P
to have the limiting property of FA: countable additivity (CA). However,
this is not the case: limiting relative frequencies are not CA, because the
relevant limiting operations (from the construction of P and from the
condition of CA) do not commute. To illustrate this, consider a countably
infinite family of mutually disjoint subsets of N, {Ak | k ∈ N, Ak ⊆ N}
such that for each i 6= j, Ai ∩ Aj = ∅, and define the union of members
of the family, A =

⋃
k∈N Ak. We say that CA holds for a function p if the

following equality holds:

p(A) = lim
n→∞

n

∑
i=1

p(Ai). (2)

In the case of P, we find for the lefthand-side of Equation 2:

P(A) = lim
n→∞

Pn(A)

= lim
n→∞

n

∑
i=1

wi × lim
m→∞

m

∑
k=1

#(Ak ∩ {i}).

Let us now consider a fair lottery (substituting wi = 1/n) with Ak = {k}
such that A = N; we find:

P(A) = lim
n→∞

(n× 1/n)

= 1.

Then, we consider the righthand-side of Equation 2, applying it to P in
the fair case, where P(Ai) = 0 for all i:

lim
n→∞

n

∑
i=1

P(Ai) = lim
n→∞

n

∑
i=1

0

= 0.

Clearly, 0 is not equal to 1, so CA does not obtain for P, the real-valued
probability function for a fair lottery on the natural numbers.

by Skyrms (1983b), Wenmackers and Horsten (2013, p. 40) clumsily referred to a “SUM”
intuition: “SUM [is the intuition that] [t]he probability of a combination of tickets can be
found by summing the individual probabilities. [. . . ] The assumption SUM is motivated
by the intuition that the probability of a set containing the winning number supervenes
on the chances of winning that accrue to the individual tickets. The usual assumption of
countable additivity (CA, sometimes also called σ-additivity) is one attempt of making the
intuition that is encapsulated by SUM precise. We will argue, however, that this is not the
right way to do it in this case. In other words, we will argue that the implementation of
SUM is not as straightforward an affair as is commonly thought.”
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The righthand-side requires us to consider the function P and thus to
take the limit of n to infinity of Pn({i}) = 1/n first, which is zero; taking
the limit of a sum of zeros is zero. The lefthand-side requires us to consider
Pn. Sure, as n increases, Pn({i}) tends to zero for any i ∈ Ωn (like 1/n),
but the sum of all singleton probabilities is in lock-step with this decrease:
n× 1/n = 1, such that the sum of probabilities of all singletons equals
the probability of the entire sample space (total number of tickets times
probability of each ticket), which is unity. This is just FA and it holds for
any n, no matter how large. It also holds that limn→∞(n× 1/n) = 1, but
this cannot be read as “the number of tickets times the probability of each
ticket.” It is no additivity principle and it does not suggest an alternative
way of obtaining a real-valued probability function either.30 Yet, it does
suggest the following: that the singleton probabilities in a fair lottery on the
natural numbers ought to be non-zero infinitesimals, such that some sort
of infinite sum over them can result in a non-zero (and non-infinitesimal)
value corresponding to the probability of the corresponding union of
events. In particular, the sum can be unity if we add the probabilities of
all point events.31

There is another strange aspect to setting P({n}) = 0 for all n ∈N: it is
not so much that it can be used to represent a fair lottery on N, but rather
that it can also represent the limit of many kinds of non-fair probability
distributions. Consider, for instance, finite lotteries in which (i) the set of
even numbers is double as likely as the set of odd numbers, (ii) all even
numbers are equally likely and (iii) all odd numbers are equally likely.
For the limit of such weighted lotteries, too, we would have to assign
probability zero to all singleton events (and thus obtain a fair distribution
in the limit).32

8.4 Diagnosis

Within the context of standard probability theory, we have a single in-
finitesimal probability at our disposal: zero. Even for a lottery on a sample
space that is countably infinite, the lowest infinite cardinality, this turns
out to be too little for three reasons.

1. Across lotteries, it does not allow us to obtain different singleton
probabilities for limits of sequences of qualitatively different finite

30 Although this idea is suggestive of a procedure for assigning probabilities in such a way that
we can make sense of infinite sums, it does not allow us to define a probability function.

31 Recall the quote on p. 199 by de Finetti (1974, p. 347) concerning the absurdity of 0 + 0 +
0 + . . . + 0 + . . . = 1. It turns out that this idea is false if the sum represents the usual,
countably infinite sum: such a sum is not defined for infinitesimal terms.

32 As far as I know, this worry has not yet appeared in the literature.
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lotteries (e.g., finite lotteries that assign equal probability to even and
odd versus finite lotteries that do not).

2. Within a fair lottery, it does not allow us to discriminate between the
probability of many events that are strict subsets of each other (e.g.,
all perfect squares versus a single perfect square).

3. Within a fair lottery, it does not allow us to define an adequate
infinite additivity principle; alternatively, if we insist on countable
additivity, it does not allow us to describe a fair lottery on the natural
numbers.

The first reason is related to a more general observation: like any real
number, zero is the limit of qualitatively different sequences (of rational
or real numbers). In particular, sequences may differ in their speed of
convergence. This suggests that within the collection of sequences that
are considered to be infinitesimal, and thus to converge to zero, some
are smaller than others (even though their limits are all defined to be
zero when working within the real numbers). This brings us to reconsider
what the real number zero is, continuing along the lines set out in the
introduction, and to define an alternative limit operation on sequences.
One way to achieve this is found in the construction of a non-standard
model of a real closed field as was shown in Section 6.

8.5 Alternative Approach with Non-Zero Infinitesimal Probabilities

We apply the equivalence relation that is used to construct the hyperreals
(Section 6) to the sequence of relative frequencies belonging to initial
segments of N. This results in a different kind of probability function,
which takes its values in the [0, 1] interval of the hyperreal numbers.33

Wenmackers and Horsten (2013) assumed all of NSA as given, whereas
we mainly needed this alternative equivalence relation on the sequences
of relative frequencies in order to obtain a hyperreal-valued probability
value on N that allows for an infinite additivity principle.

Now that we know the outlines of our labyrinth, we can drastically
reduce the length of our escape route. With the benefit of hindsight, we
see ways to obtain our results with much less baggage. One way, which is
suitable only for fair lotteries and which is alluded to in the 2013 paper, is
to assume a numerosity function on N and to normalize it. Numerosity
theory has been developed to address some of the very same problems

33 Actually, it is more accurate to say: a set of hyperreal numbers (cf. Footnote 1), because
the result of the construction depends on the free ultrafilter and there are uncountably
many. We do not dwell on the issue of non-uniqueness now, but we will come back to it in
Section 14.
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that are also discussed in the literature on a fair lottery on N (Benci &
Di Nasso, 2003; Mancosu, 2009). The main difference is that it is not a
probability function but a measure of set size that should coincide with
the usual counting measure for finite sets, so it is not normalized and
assigns unity to singletons rather than to N. However, because of the nice
algebraic properties of numerosity theory, normalizing the numerosity
function, in order to obtain a fair probability measure, does not cause any
complications at all.

Alternatively and more elegantly, one could set up an axiomatic system
that states the existence of probability functions on N that may assign
non-zero values to singleton outcomes (possibly all equal) and repurpose
the previous results in order to prove its consistency.

For instance, consider this proposal for the axioms governing P.

Everywhere defined. P is defined on all subsets of N: its domain is
the powerset of N, P(N).

Hyperreal-valued. The range of P is the unit interval of some
suitable field R.

Regular. P(A) = 0 iff A = ∅.

Normalized. P(N) = 1.

Finitely additive. ∀A, B ∈ P(N) if A ∩ B = ∅, then P(A ∪ B) =
P(A) + P(B).

Ultra-additive. For any collection of mutually disjoint subsets of
N34 an analogous additivity property holds.

We do not prove the joint consistency of the proposed axioms here: it is a
consequence of what preceded and can be viewed as a special case of the
proof in Benci et al. (2013).

8.6 Examples

Now that we have seen that there exists a hyperreal measure that captures
the idea of a uniform probability distribution over the natural numbers,
let’s illustrate some consequences. In this section, P always refers to such
a distribution. (For proofs, see Benci et al. 2013.)

By assumption, P assigns the same infinitesimal probability to any
singleton outcome of the lottery. If we regard P as a normalized numerosity
function, we see that ∀n ∈ N, P({n}) = 1/α, where α ∈ ∗N \N is the
numerosity of N.

34 The collection can have an arbitrary cardinality, although, of course, at most countably
many of its members can be non-empty.
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For any finite set A ⊂ N, the numerosity equals the finite cardi-
nality (#), so: P(A) = #(A)/α, which is an infinitesimal. For example,
P({1, 2, 4, 8, 16, 32}) = 6/α.

For an infinite subset B, P(B) differs by at most an infinitesimal from
the natural density of B (if the latter exists). For example, if B is the
set of even numbers, the natural density is 1/2 and either P(B) = 1/2
(if the even numbers are in the free ultrafilter used to construct P) or
P(B) = (1− 1/α)/2.

For a set that lacks a natural density, P is infinitesimally close to some
Banach limit. Different Banach limits of the same set and Ps constructed by
a different free ultrafilter can differ by more than an infinitesimal amount.
(See Kerkvliet and Meester, 2016, for an example.) In particular, there are
subsets of N for which the possible P-values range from an infinitesimal
to one minus an infinitesimal. This range can be regarded as a measure of
how pathological a set is.

9 more scenarios involving infinitesimal probabilities

In the previous section, we discussed one particular scenario that involves
infinitesimal probabilities: a lottery on the set of natural numbers. In this
section, we give a more comprehensive overview of common examples
that feature in discussions of infinitesimal probabilities. Then we show
how we can generalize the approach of the previous section to an all
encompassing theory that is able to assign infinitesimal probabilities to all
of these scenarios.

9.1 Common Examples

We list the examples involving infinitesimal probabilities below, sorted
by increasing cardinality of the sample space: finite, countably infinite, or
uncountably infinite.

First, there are some examples with finite sample spaces that allow for
infinitely small differences in probability among the possible outcomes.
The simplest such case is that of an almost fair coin toss, in which there is
an infinitesimal advantage to one of the sides.

Second, there are examples with countably infinite sample spaces, in
particular with uniform probability distributions. We already discussed the
most common example of this kind: a lottery on the set of natural numbers,
in particular a fair one. A fair lottery on N is also known as the de Finetti
lottery (Bartha, 2004) or God’s lottery (McCall & Armstrong, 1989). In
this category, there are also fair lotteries on other countable sets, such as
Z, Q, and the unit interval of the rational numbers: [0, 1]Q. Discussions
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of non-uniform probability distributions on countable domains are less
common, but they do exist, especially in the context of discussions of
the incompatibility between CA and uniform probability distributions on
countable domains.35

Third, there are examples with uncountable sample spaces, with uniform
and arbitrary probability distributions. Two popular ways of presenting
this is as throwing darts uniformly at the unit interval of the real numbers,
[0, 1]R (e.g., Bernstein & Wattenberg, 1969) or as a fair spinner with unit
circumference (e.g., Skyrms, 1995; Barrett, 2010).36 Variations on this theme
include the uniform probability on a unit sphere and the associated Borel–
Kolmogorov paradox of a meridian versus the equator. A different way of
obtaining an uncountable domain is by considering a countably infinite
sequence of stochastic processes, each with a countable number of possible
outcomes. The most common example of this kind is an infinite sequence
of tosses with a fair coin (in which the outcomes of the tosses are taken
to be statistically independent: an infinite Bernoulli process; e.g., Skyrms,
1980; Williamson, 2007; Weintraub, 2008).37

Categorizing a probabilistic problem by one of these three labels need
not be final. Once we have a method of representing probability distri-
butions on uncountable domains, we may arrive back at the finite and
countably infinite case by conditionalization (assuming the relevant events
are measurable; cf. Skyrms, 1983b). It may also happen that we want to
replace a finite sample space by an infinite refinement of it (for instance,
a suitable product space of the initial sample space). For instance, Ped-
ersen (2014, p. 827) mentions a case in which “an agent’s state of belief
cannot rule out arbitrarily deep[ly] nested subdecompositions of a finite
decomposition of a dartboard.”

Some of these scenarios cannot be described by standard probability the-
ory, whereas others—it has been argued—cannot be described adequately
by it, or would benefit from an alternative treatment involving infinitesimal
probabilities. So far, we have seen isolated recipes for hyperreal-valued
probability functions: Bernstein and Wattenberg (1969) gave a recipe to
assign uniform probabilities to subsets of the unit interval of the real

35 For instance, Kelly (1996) has reflected on the consequences of denying the existence of a
fair infinite lottery: this would have the strange implication that when one wants to test
a universal hypothesis by repeated experiments, one would—in the case in which the
hypothesis is false—encounter a counterexample sooner rather than later.

36 This example was also mentioned in Lewis (1980), and many others.
37 It should be noted that Skyrms (1980) refers to the work of Bernstein and Wattenberg

(1969), but they only described a hyperreal-valued probability measure on subsets of [0, 1].
However, for assigning infinitesimal probabilities to infinite sequences of coin tosses, a
hyperreal-valued probability measure on subsets of {0, 1}N would be needed instead.
Yet, the informal account given by Skyrms (1980, pp. 30–31) is consistent with later
developments of hyperreal probability functions on {0, 1}N (see, e.g., Benci et al., 2013).
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numbers. And, in the previous section, we discussed a recipe for assigning
regular probabilities to the canonical countably infinite sample space, N.
In the end, we would like to have a method that is fully general, which
can be applied to all the examples above, and more. We describe such a
method below.

9.2 Non-Archimedean Probability (NAP) Theory

In this section, we will review some crucial elements that allow us to
generalize the approach from Section 8.38 In Section 8.5, we replaced the
standard limit operation that associates at most one real number with a
sequence of (possibly weighted) relative frequencies by a non-standard
limit that associates a hyperreal number with each of these sequences.
Sequences can be thought of as functions from N (the index set) to some
set, X. In the case of relative frequencies X = Q, but in general we
allow real-valued weights, so then X = R. Both the standard and the
non-standard limit operation can be understood such as to involve a
filter on the index set (the Fréchet filter on N and a free ultrafilter on N,
respectively).

A probability function has to assign values to sets in P(N), not to N

itself, so the appropriateness of using countable sequences and filters on N

to set up such a function is not immediately clear, even in cases in which
the sample space is countable. Observe that we used the countable indices
to correspond to the relative frequencies of initial segments of N. Since
the usual ordering of the natural numbers induces a natural ordering on
this collection of initial segments, we are able to work with sequences of
the corresponding relative frequencies and with filters on N.

Our choice for the collection of initial segments may seem self-evident,
because we are familiar with it from the context of natural density, but it
is not canonical: we could have considered Pfin(N), the collection of all
finite subsets of N (or those except the empty set, Pfin(N) \∅). In that
case, we can slightly generalize the approach: Pfin(N) with the subset
ordering forms a directed set.39 We can use this directed set as an index
set, instead of N, obtaining a generalized sequence, also called a net (see,

38 The information given here suffices to get a rough idea of the approach. Further details
(for instance, restrictions on the free ultrafilter to secure certain properties of the resulting
probability functions) can be found in Benci et al. (2013).

39 A directed set (X,4) is a special case of a preordered set (see, e.g., Schechter, 1997, p. 52).
A preordered set is a pair (X,4) consisting of a set X and a preorder 4 on X, i.e., a relation
on X that is transitive (for all x, y, z ∈ X, if x 4 y and y 4 z then x 4 z) and reflexive (for
all x ∈ X, x 4 x). For a directed set, there is an additional condition on the preorder:

∀x1, x2 ∈ X, ∃y ∈ X : (x1 4 y ∧ x2 4 y).
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e.g., Schechter, 1997, pp. 157–158): a function from a directed set, which
serves as the index set, to a set, X. Filters on N are a special case of this
more general setup, since they are collections of subsets of N that can be
directed by the subset relation.

If we want to assign probability functions to subsets of some sample
space Ω other than N, we can follow a similar approach: change the
relevant index set to Pfin(Ω) \∅. In this case, we also have to consider
free ultrafilters on Ω.

These are the axioms for Non-Archimedean Probability (NAP) theory
from Benci et al. (2013), where the triple (Ω, P, J) is called a NAP space:

(N0) Domain and range. The events are all the elements of P (Ω) and P
is a function

P : P (Ω)→ R

where R is a superreal field.

(N1) Non-negativity. ∀A ∈ P (Ω), P(A) ≥ 0.

(N2) Normalization. ∀A ∈ P (Ω), P(A) = 1⇔ A = Ω.

(N3) Additivity. ∀A, B ∈ P (Ω) such that A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B).

(N4) Non-Archimedean Continuity. ∀A, B ∈ P (Ω), with B 6= ∅, let
P(A|B) denote the conditional probability, namely

P(A|B) = P(A ∩ B)
P(B)

.

Then

� ∀λ ∈ P0
fin(Ω), P(A|λ) ∈ R+, and

� there exists an algebra homomorphism

J : F
(
P0

fin(Ω), R
)
→ R

such that ∀A ∈ P(Ω), P(A) = J
(

ϕA
)
, where ϕA(λ) =

P(A|λ) for any λ ∈ P0
fin(Ω).

Axiom (N4) specifies P for an infinite sample space Ω as a non-standard
limit of probability functions restricted to (or conditionalized on) finite
subsets of Ω.

Some properties of NAP theory:
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◦ NAP theory produces regular probability functions. Hence, they
allow us to conditionalize on any possible event by a ratio formula
(i.e., any subset of the sample space, except the empty set).

◦ Within NAP theory, the domain of the probability function can be
the full powerset of any standard set from applied mathematics (i.e.,
of any cardinality), whereas the general range is a non-Archimedean
field. Hence, there are no non-measurable sets.

◦ Kolmogorov’s countable additivity (which is a consequence of the
use of standard limits) is replaced by a different type of infinite
additivity (due to the use of a non-Archimedean limit concept).

◦ For fair lotteries, the probability assigned to an event by NAP theory
is directly proportional to the numerosity of the subset representing
that event.

◦ NAP functions are external objects: they cannot be obtained by taking
a standard object (such as a family of standard sets) and applying
the star-map to it.

A price one has to pay for all this is that certain symmetries, which
hold for standard measures, do not hold for NAP theory. This theory is
closely related to numerosity and has a similar Euclidean property: a strict
subset has a smaller probability, as is necessary by regularity. Hence, for
infinite sample spaces, NAP is bound to violate the Humean principle of
one-to-one correspondence. This principle requires that if the elements of
a given set can be put in a one-to-one correspondence with the elements of
another set, then their “sizes”—or in this case, probabilities—will be equal.
Translation symmetries require that P(A) = P(A + t) (with A, A + t ⊆ Ω
and A + t = {a + t | a ∈ A}). Since this amounts to a particular type of
one-to-one correspondence, these symmetries are not guaranteed to hold
in NAP (cf. Williamson 2007; Parker 2013; and Section 14.1), although they
can hold up to an infinitesimal (Bernstein & Wattenberg, 1969). Bartha
(2004) and Weintraub (2008) have pointed out before that these measures
are strongly label-dependent, but it is probably more accurate to say that
once events have been embedded in a sample space (i.e., each event is
described as a particular subset of a particular sample space Ω), this
embedding needs to be applied in a consistent way henceforth (Hofweber,
2014; Benci et al., 2018).

For more details and proofs, see Benci et al. (2013). The next part
elaborates on the motivation for and the philosophical discussion of these
results.
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PA RT I V

P H I L O S O P H I C A L D I S C U S S I O N

10 motivations for infinitesimal probabilities

In the foregoing parts, we have encountered motivations for introducing
infinitesimal probabilities as given by various authors. Most of these moti-
vations occurred in the context of a particular interpretation of probability,
with some arguing for the relevance of infinitesimal chances and others
advocating for the introduction of infinitesimal credences. In this section,
we search for the leitmotifs that arise from this polyphony.

Let us first revisit Bernstein and Wattenberg (1969): although they gave a
probabilistic scenario as the motivation of their paper, the technical details
of their results do not depend on the interpretation in terms of probability.
If we want a measure that allows us to represent the length of countable
collections of points as a non-zero infinitesimal, we can use the result of
Bernstein and Wattenberg (1969) without modification. On the one hand,
it may fit even better in such a context, since the Lebesgue measure was
originally motivated as an idealization of length measurements. Hence,
obtaining a non-standard measure that is infinitely close to Lebesgue
measure (at least, where the latter is defined) can be regarded as an
alternative idealization of length measurements. On the other hand, the
request for representing the measure of non-null countable sets as an
infinitesimal may seem especially pressing when this measure is a measure
of probability (rather than length). This motivation may be formulated as
follows: probability measure should be maximally sensitive to distinguish
possibility from impossibility. Indeed, we have encountered this motivation
for infinitesimal probabilities via regularity at various instances throughout
this chapter.

Depending on the context, this motivation is related to a different kind
of modality:

◦ objective probability: some chance (quantifying an ontic possibility);

◦ subjective probability: open-mindedness (quantifying an epistemic
possibility).

We have encountered the epistemic motivation under the names ‘strict co-
herence’ and ‘regularity’. Hájek (2012b, p. 1 of draft) “canvass[es] the fluc-
tuating fortunes of a much-touted constraint, so-called regularity,” which
“starts out as an intuitive and seemingly innocuous constraint that bridges
modality and probability, although it quickly runs into difficulties in its
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exact formulation.” He takes “to be its most compelling version: a con-
straint that bridges doxastic modality and doxastic (subjective) probability.”
Easwaran (2014) presents regularity as a normative constraint on ratio-
nal credences, which are related to doxastic modality, but he adds that
other authors allow for various transmodal connections. Dennis Lindley
called this demand, that prior probabilities of zero or one should only be
assigned to logical truths or falsehoods, “Cromwell’s rule.”40 Regarding
the ontic motivation, Hofweber (2014) introduces a minimal constraint
(MC) on the proper measurement of chances, which is akin to but not
quite the same as regularity, which can be phrased in relation to various
modalities. He concludes that: “In the regularity principle, modality is
best understood as epistemic, and chance is best understood as credence.
In (MC) chance should be understood as objective chance” (p. 6).

At the root of this common motivation for infinitesimal chances and
infinitesimal credences, there may be an even more basic motivation or
implicit assumption, which Skyrms (1983b) calls the principle of “ultra-
additivity” (and which also constituted my main motivation for starting
a research project on infinitesimal probabilities). We discussed this in
Section 8.3 (see also Section 16.3). Thus, the motivation for introducing
infinitesimal probabilities can be summarized by the following slogan:41

Without infinitesimals, probabilities just don’t add up.

11 alternatives to hyperreal probabilities

11.1 Other Ways to Introduce Infinitesimal Probabilities

There do exist ways to formalise infinitesimals other than Robinson’s
hyperreal numbers. One of them is smooth-infinitesimal analysis (SIA),
which describes nilpotent infinitesimals: non-zero numbers whose square
is zero. This system relies on intuitionistic logic. However, I am not aware
of any proposals for smooth-infinitesimal probabilities.

40 This is a reference to the following phrase from a 1650 letter by Oliver Cromwell: “I
beseech you, in the bowel of Christ, think it possible you may be mistaken” reprinted in,
Carlyle (1845). Like strict coherence, Cromwell’s rule is clearly intended as a criterion for
open-mindedness: even a well-confirmed theory like Einstein’s general relativity is not as
certain as a logical truth. Lindley (1991, p. 104) asks us to “leave a little probability for the
moon being made of green cheese; it can be as small as 1 in a million, but have it there
since otherwise an army of astronauts returning with samples of the said cheese will leave
you unmoved.” And Lindley (2006, p. 91) links this open-mindedness criterion also to the
Jain maxim “It is wrong to assert absolutely.” (This was probably influenced by statistician
Kantilal Mardia, who practised Jainism.)

41 Benci et al. (2018) list perfect additivity as one among four desiderata for their theory, the
others being: regularity, totality, and weak Laplacianism.
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Then there is the class of Conway numbers, which includes the infinites-
imals from any non-standard field. This option has been suggested for
application to probability theory, for instance, by Hájek (2003; see Sec-
tion 12 below) and by Easwaran (2014). I, too, believe this can be a fertile
approach. A first proposal has been offered by Chen and Rubio (2018), but
it is too early to evaluate it here.

11.2 Related Approaches Without Infinitesimals

Besides the possibility of introducing infinitesimals within a different
framework, there are also relations between hyperreal infinitesimals and
systems that do not include any infinitesimal numbers at all. For instance,
one may combine an Archimedean quantitative probability theory (in par-
ticular, the orthodox approach with real-valued probability functions), with
a non-Archimedean qualitative probability theory.42 Moreover, Halpern
(2010) reveals some deep connections between hyperreal-valued prob-
ability functions, conditional probabilities (including Popper functions;
see also Vann McGee, 1994), and lexicographic probabilities. Recently,
Brickhill and Horsten (2018) have given a representation theorem that
relates NAP functions and Popper functions; they also give a lexicographic
representation.

Skyrms (1983a) considers three ways of giving probability assignments
a memory. One of his proposals was to “utilize orders of infinitesimals
to implement long term-memory,” such that “[s]uccessive updatings do
not destroy information, but instead push it down to smaller orders of
infinitesimals” (p. 158). He evaluates this proposal as having a certain
theoretical simplicity, but lacking practical feasibility. However, given
that the proposal essentially boils down to introducing lexicographical
probabilities, it may turn out that this judgment was too harsh.

11.3 Yet Another Point of View

Introducing non-standard probabilities amounts to changing the range of
the probability function. Skyrms (1995) considers an alternative way to
achieve strict coherence, which involves changing the domain, such that
the events to which infinitesimal probabilities are assigned in the previous
approach are no longer in the event space at all. In this context, he cites
(Jeffrey’s translation of) Kolmogorov (1948):

The notion of an elementary event is an artificial superstructure
imposed on the concrete notion of an event. In reality, events

42 This was suggested by de Finetti, cf. Section 1. See also the discussion of the “numerical
fallacy” by Easwaran (2014).
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are not composed of elementary events, but elementary events
originate in the dismemberment of composite events.

Let me unpack this. In Kolmogorov’s (1933) approach, the sample space
was assumed to contain all fully specific possible outcomes: the elements
of the sample space are called “elementary events.” On the other hand, we
have the informal notion of concrete events or possible outcomes, which
does not presuppose infinite precision. Here we see that Kolmogorov
(1948) rejected his former approach in favour of a more realistic one: if we
take into account the limited precision of any physical measurement, we
can distinguish outcomes only with limited precision, too. With increasing
precision, we can decompose events into more fine-grained ones, but not
up to elementary precision.

Although no infinitesimal probabilities occur in the second approach,
it is still relevant in the context of the current chapter, because of an
interesting analogy: in both cases, starting from the orthodox approach, a
symmetry is quotiented out to arrive at the new structure (cf. the reference
to quotient spaces in the introduction).

12 interplay between infinitesimal probabilities and infi-
nite utilities : pascal’s wager

We have seen in Section 3, that discussions of rational degrees of belief
often proceed via a betting interpretation (e.g., motivating adherence to the
axioms of probability theory by the avoidance of a sure loss). As such, they
involve considerations of monetary loss or gain. However, the subjective
value of money need not be linear. Therefore, it is useful to introduce
utility as a more abstract measure that represents subjective worth directly.
Utility is usually taken to be a real-valued (interval scale) measure.

However, non-Archimedean probabilities do not mix well with real-
valued utilities. Hence, to deal adequately with infinitesimal probabilities
in the context of decision theory, a non-Archimedean utility theory is
needed, such as the one developed by Pivato (2014).

We consider the famous example of Pascal’s wager. With this argument,
found in his Pensées, Pascal purported to show that it is rational to wa-
ger for God’s existence. In modern terminology, we have to consider all
combinations of the existence or non-existence of God, on the one hand,
and an agent’s belief or disbelief in God, on the other hand. This leads
to four cases each with their own expected utility. In the case that God
exists, it is assumed that there are everlasting heavenly rewards for those
who believe (positive infinite expected utility) and everlasting infernal
punishments for those who disbelieve (negative infinite expected utility).
In the case that God does not exist, there are a lifetime of earthly burdens
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for those who believe (negative finite expected utility) and a lifetime of
earthly pleasures for those who disbelieve (positive finite expected utility).
If the agent is maximally uncertain about the existence of God (assigning
50% probability to the possibility of existence and 50% probability to the
possibility of non-existence), the expected utility of believing is infinitely
better than that of disbelieving. So, according to this argument, if one has
to wager, it is better to wager for God’s existence.

In the context of a discussion of Pascal’s wager, Oppy (1990, p. 163)
considers the epistemic possibility “that the probability that God exists is
infinitesimal,” in which case “the calculation of the expected return of a
bet on [the existence of] God is no longer as straightforward as the initial
argument suggested.”

Following up on this suggestion, Hájek (2003) considers whether sal-
vation has an infinite utility. He mentions two formal approaches that
allow us to tell apart various infinite expectation values that occur in Pas-
cal’s wager and related problems. Hájek mentions NSA as one possibility
of dealing with infinitesimal probabilities and infinite utilities, but he
favours Conway’s numbers, citing their ingenuity and user-friendliness.
He speculates that such a formal approach can illuminate a whole range
of problems involving infinitesimal probabilities (such as the two envelope
paradox).

On p. 38, Hájek writes that “the infinitesimal probability can ‘cancel’
the infinite utility so as to yield a finite expectation for wagering for
God.” The idea of cancelling is indeed what NSA allows us to formalise:
each infinitesimal is the reciprocal of an infinite number and vice versa.
Multiplying an infinite hyperreal number and its multiplicative inverse, a
particular infinitesimal, yields unity. So, on the one hand, we may obtain
finite (non-infinite) and non-infinitesimal values by multiplying infinite
and infinitesimal numbers. On the other hand, there are also combinations
of infinite and infinitesimal numbers whose product is an infinitesimal or
an infinite number. More details can be found in Wenmackers (2018). For
a treatment with surreal probabilities and utilities, see Chen and Rubio
(2018): their approach also allows them to treat the St. Petersburg paradox.

13 the lockean thesis and relative infinitesimals

Whereas standard probability measures may seem too coarse-grained for
some applications, where we would like to distinguish between possible
and impossible events, they may not seem coarse-grained enough for other
applications, as we will see in this section.

Suppose that you have detailed knowledge of the probabilities in a given
situation. It has been argued that it may still be beneficial to hold some
full (dis-)beliefs (Foley, 2009). But when is it rational to believe something
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in this case? The Lockean thesis suggests that it is rational to believe
a statement if the probability of that statement is sufficiently close to
unity.43 This is usually modelled by means of a probability threshold. As is
demonstrated by the Lottery Paradox (Kyburg, 1961), the threshold-based
model is incompatible with the Conjunction Principle. Moreover, it can be
objected that the actual probabilities are too vague to put a sharp threshold
on them, and that a threshold should be context-dependent.

Based on certain analogies between large and infinite lotteries, Wen-
mackers (2012) suggests the use of NSA to introduce a form of vagueness
or coarse-graining and context-dependence in the formal model of the
Lockean thesis.44 Hrbáček (2007) develops relative or stratified analysis,
an alterative approach to NSA that contains “levels” as a formalisation
of the intuitive scales-of-magnitude concept. Applying Hrbáček’s frame-
work, Wenmackers (2013) introduces “Stratified Belief” as an alternative
formalisation of the Lockean Thesis.45

The basic idea is to interpret the Lockean thesis as follows: it is rational to
believe a statement if the probability of that statement is indistinguishable
from unity (in a given context). The context-dependent indistinguishability
relation is then modelled using the notion of differences up to a level-
dependent, ultrasmall number. These ultrasmall numbers, also called
“relative infinitesimals,” are ordinary real numbers, which are merely
unobservable, or do not have a unique name, in a given context. The
aggregation rule for this model is the “Stratified conjunction principle,”
which entails that the conjunction of a standard number of rational beliefs
is rational, whereas the conjunction of an ultralarge number of rational
beliefs is not necessarily rational.46

14 recent objections and open questions

In this section, we give a brief overview of developments from the two last
decades in which new objections against and defences for infinitesimal
probabilities have been added to the literature. It may be too early to
evaluate the most recent collection of attempted refutations and acclaims
for infinitesimal probabilities. Still, we briefly mention some here. More
discussion can be found in Benci et al. (2018).

43 This is reminiscent of the concept of “moral certainty”; see also footnote 79.
44 An earlier version can be found in Wenmackers (2011, Ch. 4).
45 An earlier version can be found in Wenmackers (2011, Ch. 3).
46 Although this model is intended to describe beliefs that are almost certain, it can be used

for weaker forms of belief by substituting a lower number instead of unity.
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14.1 Symmetry Constraints and Label Invariance

In a number of publications, Bartha applies ideas from non-standard
measure theory to problems in the philosophy of probability. Bartha and
Hitchcock (1999) use NSA in the usual way, i.e., in order to obtain a real-
valued probability function. Bartha and Johns (2001) also consider the
application of NSA to a probabilistic setting, but they favour a simpler
appeal to symmetry in order to obtain the conditional probabilities relevant
to their problem. (Later, Bartha, 2004, discusses de Finetti’s lottery and
uses infinitesimal probabilities as one way to escape the conclusion that
CA is mandatory, since they exhibit hyperfinite additivity instead.)

Considering the case of an ω-sequence of coin tosses, Williamson (2007)
demonstrates the incompatibility between infinitesimal probabilities and
requiring the equiprobability of what he calls “isomorphic events,” which
are “events of exactly the same qualitative type” (p. 175). In particular, for
ω-sequences of coin tosses, he argues that the probability assigned to the
event should not depend on when exactly the tossing started. Williamson
contrasts his finding with that of Elga: whereas Elga (2004) finds regularity
to lead to too many eligible non-standard distributions, Williamson finds
regularity in combination with what he calls “non-arbitrary constraints”
to rule out all candidate distributions.

Weintraub (2008) attempts to demonstrate that Williamson’s argument
depends on the assumption of label-independence, which is itself in-
compatible with infinitesimal probabilities. More recently, Benci et al.
(2018) analyze Williamson’s argument in the light of NAP theory. They,
too, conclude that isomorphic events cannot be assigned equal hyper-
real-valued probabilities without contradicting the assumptions on which
this theory relies. Simultaneously, Howson (2017) argues—without using
any details of NAP theory—that “it is not regularity which fails in the
non-standard setting but a fundamental property of shifts in Bernoulli
processes.” However, Parker (2018) argues that these objections to the
argument of Williamson (2007) fail.

14.2 Non-uniqueness of Hyperreal Probabilities

Elga (2004) considers the zero-fit problem of the “best system” analysis
of laws: if all systems of laws assign probability zero to the actual history
up to now, then one cannot identify the best system based on a measure
of goodness-of-fit. He entertains the option of applying non-standard
probability functions and thus to assign a non-zero infinitesimal probability
to the actual history, thereby escaping a zero fit. Ultimately, however, he
rejects this proposal:
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We have required our nonstandard probability function to be
regular, and to approximate given standard probability func-
tions. But those requirements only very weakly constrain the
probabilities those functions assign to any individual outcome.
[. . . ] And the fit of a system associated with such a function
is just the chance it assigns to actual history. So the fit of such
a system indicates nothing about how well its chances accord
with actual history.

The relevant construction of a non-standard probability function is given
in an appendix, where Elga phrases the conclusion as follows: “[T]he
probabilities that these approximating functions ascribe to actual history
span the entire range of infinitesimals [. . . ]. So by picking an appropriate
approximating function, we can get any such system to have any (infinites-
imal) fit we’d like.” In other words, Elga concludes that there are too many
ways of assigning different infinitesimal probabilities to the same history
and that there is no principled way to prefer one over the others.

Herzberg (2007) contrasts Elga’s viewpoint, in which all hyperreal-
valued functions that differ from a particular real-valued function by at
most an infinitesimal (where the latter is defined) are to be treated on a
par, with the praxis of NSA. As Herzberg points out, applications of NSA
typically involve the construction of a particular non-standard object, usu-
ally some hyperfinite combinatorial object, leading to a particular internal
probability measure. In order to appreciate how Herzberg’s viewpoint
differs from Elga’s, it is helpful to consider an example.47 Anderson (1976)
presents an internal representation of Brownian motion, which makes it
possible to treat Brownian motion in terms of (infinite) combinatorics.48 In
order to be scientifically relevant, however, such an alternative description
has to fulfil two criteria: (1) it has to approximate the standard probability
function associated with the process (in this case, the Wiener measure)49

and (2) it has to promote further research (as is indeed the case for Ander-
son’s work; consider, for instance, Perkins’, 1981, work on Brownian local
time). Although many non-standard measures fulfil the first condition, the
vast majority of them do not fulfil the second one.

Many worries and some open questions about infinitesimal probabilities
arise due to the non-uniqueness and associated arbitrariness of hyperreal-
valued probability measures (also discussed, e.g., by Hofweber, 2014).50

47 I am grateful to Frederik Herzberg for this suggestion.
48 See also Albeverio, Fenstad, Hoegh-Krøhn, and Lindstrøm (1986, section 3.3).
49 Since internal probability functions differ from standard ones both in terms of domain

and of range, this approximation can be thought of as a two-step procedure, the second of
which involves the standard part function.

50 As mentioned in Section 5, free ultrafilters are intangible objects. As a result, non-standard
probability functions that rely on these filters are intangibles, too.
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When comparing the situation to that of real-valued probability functions
that are CA, there is a trade-off between definiteness of the domain and
definiteness of the range. In the case of an infinite sample space, CA
functions have many non-measurable events in the powerset of that sample
space. Which subsets of the sample space are measurable and which are
not is to a certain extent arbitrary. If we settle for FA, we can extend
the real-valued function to the entire powerset (by considering Banach
limits; see for instance Schurz & Leitgeb, 2008), but then we introduce a
lot of arbitrariness. Again in the case of an infinite sample space, NAP
functions allow for the same kind of variation in their standard part as the
FA functions do, and more given that also the infinitesimal part may vary
(see for instance Kremer, 2014). Given that it reappears in slightly different
guises across different frameworks, we cannot set aside this arbitrariness
as a flaw of one particular theory. Rather, it reminds us that the powerset
of an infinite sample space contains a lot of uncharted territory.51

At least some of the worries related to arbitrariness are alleviated if we
take into account the distinction between the ontology of infinitesimal
probabilities and the deductive procedures they encourage: very similar
modes of reasoning can be applied in related frameworks that suggest a
different ontology (recall Section 11).52

More generally, various authors argue that hyperreal numbers are not
quite right for the task at hand (e.g., that the infinitesimals are too small;
Easwaran, 2014; Pruss, 2014). Easwaran (2014, pp. 34–35) argues that “the
structure of the hyperreals goes beyond the physical structure of cre-
dences” and that they “can’t provide a faithful model of credences of the
sort wanted by defenders of Regularity.” On the other hand, Hofweber
(2014) tries to defend infinitesimal chances and outlines some additional
principles (non-locality, flexibility, and arbitrary additivity) that are re-
quired for a theory to capture our concept of chance. Also Benci et al.
(2018) are optimistic that NAP theory can be defended against many of
the previously raised objections.

51 In particular, even if the sample space is just countably infinite, its powerset (which
contains the events to which we want to assign probabilities) is uncountably large. Among
the uncountably many sets that are neither finite nor co-finite, there is a wild variety
(for instance, in terms of Turing degrees or other complexity measures) and it is here
that we should take heed of Feferman’s reservations about considering the totality of all
arbitrary subsets of N, P(N), as a well-defined notion; see, e.g., Feferman (1979, p. 166)
and Feferman (1999). I am grateful to Paolo Mancosu for suggesting this connection.

52 Following a distinction introduced by Benacerraf (1965), a similar remark has been made
by Katz (2014, section 2.3) regarding interpretations of the work of Euler (and also that of
Leibniz) in the context of standard or non-standard analysis.
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14.3 Cardinality Considerations

Hájek (2012b) argues that regularity is an untenable constraint on cre-
dences, even if we allow probability functions to take hyperreal values.
He invites us to “imagine a spinner whose possible landing points are
randomly selected from the [0, 1) interval of the hyperreals,” concluding
that regularity fails if we apply the same interval of hyperreals as the
range of a function that assigns probabilities to events associated with this
hyperreal spinner. He envisages

a kind of arms race: we scotched regularity for real-valued
probability functions by canvassing sufficiently large domains:
making them uncountable. The friends of regularity fought
back, enriching their ranges: making them hyperreal-valued. I
counter with a still larger domain: making its values hyperreal-
valued

and so on. Following up on Hájek’s informal suggestion of an arms race,
Alexander Pruss (2013) proves that for each set of probability values, possi-
bly including hyperreal values, there exists a domain on which regularity
fails.

However, as NAP theory illustrates, the defender of regularity need not
participate in this race at all and Hájek considers this option, too: “Perhaps
we could tailor the range of the probability function to the domain, for
each particular application?” However, he worries “that in a Kolmogorov-
style axiomatization the commitment to the range of P comes first.” He
continues by saying that “[i]t is not enough to say something unspecific,
like ‘some non-Archimedean closed ordered field. . . ’ Among other things,
we need to know what the additivity axiom is supposed to be.” Of course,
NAP theory does exactly this: by requiring ultra-additivity, for any sample
space a range can be constructed that ensures regularity. However, one
cannot switch the quantifiers: in agreement with Pruss (2013), there is no
universal range that can ensure regularity for all sample spaces.53

14.4 Non-conglomerability

Before we can address this worry, we first have to introduce the notion of
conglomerability.

We will call a (hyper-)real-valued probability function P finitely, count-
ably, or uncountably conglomerable if and only if for any finite, countable,

53 Hájek (2012b) also states that “[i]f we don’t know exactly what the range is, we don’t know
what its notion of additivity will look like.” Maybe prolonged exposure to real-valued
measures, in which ultra-additivity is clearly unattainable, makes us overlook this very
natural notion of additivity that does not depend on any further parameters?
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or uncountable (resp.) partition {A1, A2, . . .} of the sample space (whose
members are measurable according to P) and for any event A that is mea-
surable according to P, the following conditional statement holds. If a and b
are (hyper-)real numbers such that ∀An ∈ {A1, A2, . . .}, a ≤ P(A|An) ≤ b,
then a ≤ P(A) ≤ b.

In standard probability theory, both finite and countable conglomerabil-
ity are guaranteed to hold. The proof of this relies crucially on the axiom
of normalization and on the axiom of finite or countable additivity (resp.).
Even in the standard approach, uncountable conglomerability does not
hold in general.

Theories that lack normalization or countable additivity, are not guar-
anteed to be countably conglomerable. In particular, both de Finetti’s
proposal for FA probability theory and NAP theory are finitely but not
countably conglomerable.54

Pruss (2012, 2014) raises this as an objection to theories that allow in-
finitesimal probabilities. In recent work, DiBella (2018, p. 1200) shows
that the failure of countable conglomerability already arises in qualitative
probability theories that are non-Archimedean and that this carries over to
any quantitative theory that is non-Archimedean (of which NAP theory
is an example). Since it is such a general feature of the underlying proba-
bility ordering, he suggests that non-conglomerability is not suitable as a
criticism of non-Archimedean theories.

15 epilogue : on the value of methodological pluralism

I would like to end this chapter with some remarks that may apply to
formal epistemology (and related endeavours) more generally. Only by
comparing different methodologies may one obtain some indication of
their strengths and limitations and how they distort the results.

We tend not to notice what is always present. An atmosphere was
present before our ancestors developed eyes and to this day the air between
us remains invisible to us. By experimenting with other gas mixtures, we
learn, not only about those new substances, but also about the air that
surrounds us. We become aware of its weight, its oxygen content, and its
capacity to carry our voice. And although we keep living in air for most
of the time, for particular purposes, we may prefer other mixtures over air
(e.g., increasing the oxygen content to help someone breathe or decreasing
the oxygen content to avoid oxidation).

54 The failure of countable conglomerability can be seen by considering a uniform distribution
over the sample space N×N and two countable partitions: Ai = {(i, n)|n ∈ N} and
Bi = {(n, i)|n ∈ N}. For the demonstration in the case of FA probability, see de Finetti
(1972, Ch. 5).
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Like the air in our biosphere, the real numbers are equally pervasive in
our current mathematical practice. It appears to me that we are subjected
to methodological adaptation to an extent no less than we are to sensory
adaptation. The study of infinitesimal probabilities involves a departure
from the standard formalism of real-valued probability functions. By
changing our methodological environment, we may start to notice certain
assumptions in the usual approach. Dealing with a familiar problem in
an unfamiliar way thus presents a unique opportunity: it allows us to
distinguish elements that are essential to its solution from aspects that are
merely artifacts due to the method that has been applied.

Investigating a rich concept such as probability cannot be carried out
within the bounds of any single formalisation, but challenges us to combine
perspectives from an equally rich selection of frameworks. In particular, I
believe that methods involving hyperreal probability values, while detract-
ing nothing from the merits of the monometric standard approach, have
much to add to this polymetric selection.

16 appendix : historical sources concerning infinitesimal

probabilities (1870–1989)

This part does not contain an overarching story arc, but it can be used as
an annotated bibliography or to look up specific details.

Despite its length, this appendix does not pretend to be exhaustive;
some developments—especially the early ones—are merely sketched. The
subdivision into decades is indicative rather than strict. Usually, the pub-
lication date is taken as the decisive factor for the chronology, except for
Carnap’s work from 1960: this work was only published in 1980, but it is
included in an earlier section, for thematic reasons.

16.1 Before 1960: pre-Robinsonian era

The 1870s: The Real Numbers and the Standard Limit

The modern approach to standard analysis was developed by “the great
triumvirate” (Boyer, 1949, p. 298): Georg Cantor, Richard Dedekind, and
Karl Weierstrass. First, Cantor gave a construction of the real numbers via
Cauchy sequences (recall Section 8.5). Then, Dedekind gave an alternative
construction of the real numbers via Dedekind cuts (which we will not
discuss). Weierstrass introduced the modern epsilon-delta definition of the
limit (which builds on earlier work by Bernard Bolzano in the 1810s and
by Augustin-Louis Cauchy in the 1820s).
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As an example, we consider the derivative as a limit of the quotient of
differences and express this limit in terms of an epsilon-delta definition:

dy
dx

= lim
∆x→0

∆y
∆x

= lim
∆x→0

y(x + ∆x)− y(x)
∆x

,

where
lim

∆x→0

∆y
∆x

= L

if and only if

∀ε > 0 ∈ R, ∃δ > 0 ∈ R : ∀∆x ∈ R

(
0 < |∆x| < δ⇒ |∆y

∆x
− L| < ε

)
.

The 1880s: The Archimedean Axiom

In the introduction, we encountered the criterion to decide whether a
number system is Archimedean or non-Archimedean (Equation 1). In par-
ticular, hyperreal fields are non-Archimedean and those can be employed
to represent infinitesimal probabilities. Here, we investigate the origins of
this sense of the word ‘Archimedean’.

Around 225 BC, Archimedes of Syracuse published two volumes known
in English as “On the Sphere and Cylinder”. At the beginning of the
first book, Archimedes stated five assumptions. The fifth assumption is
that,55 starting from any quantity, one may exceed any larger quantity by
adding the former quantity to itself sufficiently many times.56 In a paper
on ancient Greek geometry, Otto Stolz (1883) discussed this postulate,
which he calls “das Axiom des Archimedes” for ease of reference. Although
Stolz was well aware that Archimedes himself attributed an application
of this axiom to earlier geometers, apparently he did not notice that the
axiom also appeared in Euclid’s Elements (Bair et al., 2013, p. 888). In his
textbook on arithmetic, which was very influential according to Ehrlich
(2006, p. 5), Stolz (1885) presented examples of Grössensysteme (systems of
magnitudes) that fail to satisfy this Archimedean axiom, whereas systems
that are continuous in the sense of Dedekind do satisfy it.

55 Heath (1897, p. 4) translates the assumption as follows: “Further, of unequal lines, unequal
surfaces, and unequal solids, the greater exceeds the less by such a magnitude as, when
added to itself, can be made to exceed any assigned magnitude among those which are
comparable with [it and with] one another.”

56 This formulation suggests a strong relation between Archimedean quantities and addition.
Additivity also plays an important role in intuitions concerning infinitesimal quantities,
including infinitesimal probabilities, even though these are non-Archimedean probabilities:
recall the discussion of ultra-additivity (Section 8.3 and Section 16.3).
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The 1890s: Infinitesimal Probabilities in a Geometric Context

In 1891, Giulio Vivanti and Rodolfo Bettazzi discussed infinitesimal line
segments in the context of probability (see Ehrlich, 2006). In these early
discussions, infinitesimal probabilities are considered in the context of a ge-
ometric interpretation of probability. As such, this provides an interesting
contrast to the more recent literature, in which infinitesimal probabili-
ties are usually introduced in the context of subjective interpretations of
probability (related to a criterion of open-mindedness).

Later on, in the 1910s, Federigo Enriques discussed the (impossibility of)
infinitesimal probabilities on two occasions, again in a geometric context.57

The 1900s: Measurability and Non-measurability

Building on émile Borel’s countably additive measure from the 1890s,
Henri Lebesgue introduced his translation invariant and countably addi-
tive measure in 1902. In 1905, Giuseppe Vitali gave the first example of a
non-Lebesgue measurable set. See for instance Skyrms (1983b) for some
discussion.58

The 1930s: Kolmogorov, Skolem, and de Finetti

kolmogorov’s probability measures Andrey Kolmogorov (1933)
introduced probability as a one-place function with as the domain a field
of sets over a given sample space and as the range the unit interval of the
real numbers. In the first chapter of his book, he laid out an elementary
theory of probability “in which we have to deal with only a finite number
of events.” The axioms for the elementary case stipulate non-negativity,
normalization, and the addition theorem (now called “finite additivity,”
FA). In the second chapter, dealing with the case of “an infinite number of
random events,” Kolmogorov introduced an additional axiom: the Axiom
of Continuity. Together with the axioms and theorems for the finite case
(in particular, FA), this leads to the generalized addition theorem, called
“σ-additivity” or “countable additivity” (CA) in the case where the event

57 Thanks to Philip Ehrlich for this addition. He is planning an article on the work of Enriques;
meanwhile, Ehrlich (2006) contains the relevant references.

58 Skyrms (1983b) argues that the Peano-Jordan measure (which preceded the Borel measure)
only employs ideas that were available in Plato’s time, whereas Borel measure crucially
relies on distinctions among infinite cardinalities only introduced by Cantor. Peano-Jordan
measure is finitely additive, which follows from its definition, and it lacks the stronger
property of countable additivity (CA). Borel measure is CA, but this has to be specified in
the definition by hand. Skyrms observes that this approach was contested, for instance by
Schoenflies in 1900, who objected that the matter of extending additivity into the infinite
cannot be settled by positing it. Lebesgue measure is CA, too, and it is translation invariant,
which is appealing to our intuitions.
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space is a Borel field (or σ-algebra, in modern terminology). We reviewed
his axiomatization in Section 7.

skolem’s non-standard models of peano arithmetic The
second-order axioms for arithmetic are categoric: all models are isomorphic
to the intended model 〈N, 0,+1〉, a triple consisting of the domain of
discourse (infinite set of natural numbers), a constant element (zero), and
the successor function (unary addition). Dedekind (1888) was the first to
prove this. His “rules” for arithmetic were turned into axioms by Giuseppe
Peano (1889), giving rise to what we now call “Peano Arithmetic” (PA).

The first-order axioms for arithmetic are non-categoric: there exist non-
standard models 〈∗N, ∗0, ∗+1〉 that are not isomorphic to 〈N, 0,+1〉. Tho-
ralf Skolem (1934) was the first who proved this.59 With the Löwenheim-
Skolem theorem, it can be proven that there exist models of any cardinality.
∗N contains finite numbers as well as infinite numbers. We now call ∗N a
set of hypernatural numbers.60

de finetti on non-archimedean probability rankings In
1931, Bruno de Finetti addressed the relation between qualitative and
quantitative probability. Qualitative probability deals with ordering or
ranking events by a partial order relation, �, interpreted as “at least as
likely as.” Quantitative probability deals with probability functions that
assign numerical values—usually real numbers—to events.

On pp. 313–314, de Finetti (1931, section 13) presented four postulates
for the probability ordering.61 In particular, the second postulate states
that every event that is merely possible (rather than impossible or certain)
is strictly more likely than the impossible event and strictly less likely than
the certain event. He considers the question whether such a ranking is
compatible with the usual way of measuring probabilities by real numbers.

59 See Stillwell (1977, section 3) and Kanovei, Katz, and Mormann (2013, section 3.2) for some
comments on the direct construction given by Skolem (1934). In contrast to Skolem’s result,
the proof given in modern presentations usually relies on the Compactness property of
first-order logic. First, consider a first-order language for arithmetic, LPA, which has a
name for each natural number. Call PA the set of sentences in LPA that are true about
arithmetic. Then, add a new constant, c, to the language and consider PA’, which is the
union of the PA and {c > 0, c,> 1, c > 2, . . .}. Since each finite subset of PA’ has a model
(in which c is a natural number that is larger than any of the other natural numbers that
are named in the the finite subset), it follows from the Compactness of first-order logic
that PA’ has a model (which contains a copy of the natural numbers and in which c is an
infinite hypernatural number).

60 For a discussion of the order-type of countable non-standard models of arithmetic, see e.g.
Boolos, Burgess, and Jeffrey (2007, Ch. 25, p. 302–318) and McGee (2002). More advanced
topics can be found in the book by Kossak and Schmerl (2006).

61 Thanks to Paul Pedersen for some pointers to de Finetti’s early work on non-Archimedean
probability rankings.
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De Finetti observed that such a probability ranking has a non-Archimedean
structure, whereas real-valued probability functions are Archimedean.
Related to this point, de Finetti (1931, p. 316) wrote:

However, it is anyway possible to satisfactorily measure prob-
abilities by numbers, that is by making such a structure
Archimedean by neglecting the infinitely small probabilities

Since this was written well before the development of NSA, we should
be careful not to interpret “infinitely small probabilities” as the values
of a hyperreal-valued probability function, which can subsequently be
truncated by the standard part function. On the other hand, de Finetti
was not merely referring to infinitesimal probabilities in an informal
sense, either. In the continuation of the sentence quoted above, he stated,
concerning infinitely small probabilities:

that, when multiplied [. . . ] by a number n, however large, they
never tend to certainty, that is in other words, they are always
less than the probability 1/n of one among n incompatible,
identically probable events forming a complete class.

As a result, the partial order on the probability of events (which is just the
order relation on the real numbers, ≥) does not coincide with the partial
order on events (�): taking A and B to be events, P(A) ≥ P(B) implies
A � B, but not vice versa, and A � B together with B � A implies P(A) =

P(B), but not vice versa. (Counterexamples to the inverse implications
can be obtained by considering A to be the impossible event, ∅, and B
a possible event with P(B) = 0.) The non-Archimedean partial ordering
of events can be said to be more fine-grained than the Archimedean
partial ordering of probabilities of those events, since the former leads to
more equivalence classes (sets of events {B | B � A ∧ A � B} for some
event A) than the latter (with equivalence classes of events of the form
{B | P(A) = P(B)} for some event A).

In 1936, de Finetti reflected on the meaning of possible events (i.e., events
represented by non-empty sets) that have probability zero. He agrees with
Borel and Lévy62 that these are merely theoretical constructs: they do not
represent events that are practically observable, but are merely defined
as limiting cases thereof. They would require information from infinitely
many experiments or an experiment involving an absolutely exact mea-
surement, both of which exceed what is practically achievable.63 In this

62 See also footnote 79 for the relation to Cournot’s principle.
63 This is the relevant quote in French (de Finetti, 1936, p. 577): “Il n’y a pas de doute, ainsi que

l’a remarqué M. Borel, et comme cela se trouve très clairement expliqué dans le traité de M. Lévy,
que la notion d’événement possible et de probabilite nulle est purement théorique, car il s’agit en
géneral d’événements définis comme des cas limites d’événements pratiquement observables, et leur
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context, and unlike the 1931 article, de Finetti did consider the option
of infinitesimal probability values and even an infinite hierarchy thereof
(“chacune infiniment petite par rapport á la précédente”, p. 583). Ultimately,
however, he advocated sticking to real numbers as probabilities and drop-
ping the assumption of countable additivity (p. 584), which is a position
he stood by throughout all of his later work (see Section 16.3).

The 1950s: From Weak to Strict Coherence

In the context of Bayesianism and decision theory, infinitesimal probabili-
ties have been discussed in relation to “strict coherence”64 and “regularity.”
This discussion started in the 1950s, with the Ph.D. dissertation of Abner
Shimony followed by the publication of Shimony (1955).

Earlier, both Frank P. Ramsey (1931) and de Finetti (1937) had combined
a subjective interpretation of probability with an important rationality
constraint, imposed on the set of an agent’s degrees of belief: in order to
be considered rational, a person’s set of beliefs must meet the condition of
“coherence.” This condition can be regarded as a probabilistic extension
of the consistency condition from classical logic. In particular, an agent’s
degrees of belief are coherent just in case no Dutch book can be made
against the agent: no finite combination of bets, of which the prizes are set
in accordance with the agent’s degrees of belief, should lead to a sure loss.
De Finetti (1937) showed that an agent’s degrees of belief are coherent
(and thus that no Dutch Book can be made against him) just in case his
degrees of belief are such that they respect the axioms for finitely additive
probability functions.

shimony’s strict coherence Shimony (1955) strengthened the ear-
lier notion of coherence (now called “weak coherence”) to that of coherence
“in the strong sense” (now “strict coherence”): no finite combination of
bets, of which the prizes are set according to the agent’s degrees of belief,
should lead to a sure loss (as before) or a possible net loss without the
possibility of a net profit (stronger condition). To obtain strong coherence,
Shimony had to strengthen one of the probability axioms accordingly.
The original axiom says that the degree of confirmation (or conditional
credence) of some hypothesis h given a piece of evidence e is 1 if e entails
h, whereas the stronger version reads: the degree of confirmation of h
given e is 1 if and only if e entails h.

vérification exigerait par conséquent une infinité d’expériences ou une expérience comportant une
mensuration absolument exacte.”

64 In the early literature, there circulated other names for this criterion as well: ‘strict fairness’
(Kemeny) and [strong] ‘rationality’ (Lehman, Adams). See Carnap (1971a, p. 114) for a
helpful overview of the terminology in the early literature.
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Initially, Shimony (1955) only defined (strict) coherence for finite sets of
beliefs, but in a later section he did discuss “[t]he difficulty of extending
the notion of coherence so as to apply to infinite sets” (p. 11). In this
context, he wrote (p. 20):

An appropriate betting quotient would be an ‘infinitesimal’,
which is neither 0 nor finite; but this is impossible because of
the Archimedean property of the positive real numbers.

Shimony also remarked that strong coherence on infinite sets of belief
cannot be used to justify CA (which he calls “the Principle of Complete
Additivity” on p. 18).

strict coherence without infinitesimals The work on strict
coherence initiated by Shimony was soon picked up by others. Some of
the ensuing publications were related to the notion of “regularity.” In the
context of finite sample spaces, Rudolf Carnap (1950, Ch. 5) had introduced
regularity as the condition that a function should assign positive values to
state descriptions that sum to unity. In particular, he applied this condition
to credence functions (probability functions in the sense of rational degrees
of belief) associated with a finite set of state descriptions (finite sample
space).65

Combining the earlier result of Shimony (1955) on the one hand and
that of John G. Kemeny (1981) and R. Sherman Lehman (1955) on the
other hand, we have that a probability function on a finite sample space is
strictly coherent if and only if it is “regular” (cf. Carnap, 1971b, p. 15).

Ernest W. Adams (1959, 1962–63, 1964) was interested in the case of
infinite sample spaces: he focused on the issue of additivity. Walter Ober-
schelp (1962–63) wrote on a similar topic in German: he looked for a
similar, but weaker constraint for the infinite case than Adams’.

So, none of these authors did follow up on Shimony’s remark regard-
ing infinitesimal probabilities. An important exception was Carnap: in
1960, he explicitly considered the option of non-real-valued degrees of
belief that admit infinitesimal values. (Although this work was published
posthumously, in 1980, we do discuss it already at this point.)

carnap’s quest for non-archimedean credences Inspired
by Shimony’s work on strict coherence, Carnap (1980) considered a lan-

65 For infinite sample spaces, Carnap (1950) considers limits of unconditional and conditional
probability functions; although those limit functions may assign zero to state descriptions,
Carnap calls them “regular,” too. This usage should be contrasted with that in contempo-
rary writings on infinitesimal credences, where regularity is (equivalent to) the condition
that a probability function should assign strictly positive values to singleton events, even
for infinite sample spaces.
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guage with real-valued functions, L, and a credence function with non-
Archimedean range, C. He wrote (p. 146):

we could regard these axioms as axioms of regularity for L;
and we would call C regular iff it fulfilled all these axioms.
However, to carry out this program would be a task beset with
great difficulties.

The first problem he considered is that of finding axioms for the binary
relations IS (to be read as: ‘is Infinitely Small compared to’) and SEq (to
be read as: “is Smaller or Equal in size to”), both defined on the class of
all subsets of the set of real numbers.66 Further on, Carnap considered
the problem of constructing a measure function π that is defined on all
subsets of the set of real numbers. He stated (p. 154, italics in the original):
“The values of π are not real numbers but numbers of a non-Archimedean
number system Ω to be constructed.”

16.2 The 1960s: Robinson’s NSA and Bernstein & Wattenberg’s Non-standard
Probability

The development of non-standard analysis by Abraham Robinson in the
1960s allowed for a formal and consistent treatment of infinitesimal num-
bers. Soon enough, this work was applied to measure theory in general
and to probability theory in particular. Beyond this point, some technical
notions from NSA appear: please consult Section 4 and Section 5 for the
meaning of unfamiliar terms.

Non-standard Models of Real Closed Fields and Robinson’s NSA

Robinson (1961, 1966) founded the field of NSA: he combined some ear-
lier results from mathematical logic67 in order to develop an alternative
framework for differential and integral calculus based on infinitesimals
and infinitely large numbers.

Robinson’s hyperreal numbers are a special case of a real closed field
(RCF). In general, a RCF is any field that has the same first-order properties
as R. The second-order axioms for the ordered field of real numbers are
categoric: all models are isomorphic to the intended model 〈R,+,×,≤〉,
a quadruple consisting of the set of real numbers, the binary operations

66 Upon publication of these notes, Hoover (1980) remarked that one of the axioms Carnap
had proposed for SEq was in contradiction with the others (axiom 3f on p. 147 amounted
to countable additivity, which is incompatible with a non-Archimedean range); also one of
the proposed axioms for IS was in contradiction with the others (axiom 7p on p. 148).

67 See Robinson (1966, p. 48) for some references. In particular, Hewitt (1948) had constructed
hyperreal fields using an ultrapower construction and Łoś (1955) had proven a transfer
theorem for these fields.
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of addition and multiplication, and the order relation. Skolem’s existence
proof of non-standard models of arithmetic (Section 16.1) can be applied
to RCFs, too.68 The axioms for RCFs (always in first-order logic) are non-
categoric: there exist non-standard models 〈∗R, ∗+, ∗×, ∗≤〉 that are not
isomorphic to 〈R,+,×,≤〉.

Applying the Löwenheim-Skolem theorem, it can be proven that there
exist models of any cardinality; in particular, there are countable models
(cf. the “paradox” of Skolem, 1923). In the context of hyperreal numbers,
however, only uncountable models are considered. First of all, in this
context the uncountable set of real numbers is assumed to be embedded in
the non-standard model. Moreover, in the context of NSA also functions are
transferred, which requires uncountably many symbols, thereby blocking
the construction of a countable model.

The standard real numbers are Archimedean, i.e., they contain no non-
zero infinitesimals in the sense of Equation 1:

∀a ∈ R \ {0}, ∃n ∈N :
1
n
< |a|.

In particular, 〈R,+,×,≤〉 is the only complete Archimedean field.69 In con-
trast, non-standard models do not have such a property: 〈∗R, ∗+, ∗×, ∗ ≤〉
is a non-Archimedean ordered field and it is not complete. Saying that ∗R
is non-Archimedean means that it does contain non-zero infinitesimals in
the sense of Equation 1:

∃a ∈ ∗R \ {0}, ∀n ∈N :
1
n
≥ |a|.

In other words: ∗R contains infinitesimals. As a consequence, for any such
a hyperreal infinitesimal a it holds that

∀n ∈N :
n

∑
i=1
|a| < 1.

∗R contains finite, infinite and infinitesimal numbers; we call ∗R a set of
hyperreal numbers.

Bernstein & Wattenberg’s Non-standard Probability Function

The infinitesimal numbers contained in the unit interval of a non-standard
model of a RCF can be used to represent infinitesimal probabilities. Allen

68 Applying the idea of footnote 59 to RCF instead of PA, c will represent an infinite hyperreal
number and its multiplicative inverse will represent an infinitesimal number.

69 Here, ‘complete’ can refer both to Cauchy or limit completeness (meaning that each Cauchy
sequence of real numbers is guaranteed to converge in the real numbers) and to Dedekind
or order completeness (meaning that each non-empty set of real number that has an upper
bound is guaranteed to have a least upper bound), because Cauchy completeness together
with the Archimedean property implies Dedekind completeness.
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R. Bernstein and Frank Wattenberg (1969) were the first to apply Robin-
son’s NSA in a probabilistic setting and thus to describe infinitesimal
probabilities in a mathematically rigorous framework. On p. 171, they
stated the following goal: “Suppose that a dart is thrown, using the unit
interval as a target; then what is the probability of hitting a point?” They
followed up this question with an informal answer:

Clearly this probability cannot be a positive real number, yet
to say that it is zero violates the intuitive feeling that, after all,
there is some chance of hitting the point.

In their paper, Bernstein and Wattenberg formalised this intuitive answer
using positive infinitesimals from Robinson’s NSA.70 Their measure is
based on a hyperfinite counting measure of a hyperfinite subset of the
hyperextension of the sample space.71 The non-standard result for any
Lebesgue-measurable set is infinitely close to its Lebesgue measure:72 “In
particular, nonempty sets of Lebesgue measure zero will have positive
infinitesimal measure.” They stated that:

Thus, for example, it is now possible to say that ‘the probability
of hitting a rational number in the interval [0, 1

4 ) is exactly half
that of hitting a rational number in the interval [0, 1

2 ),’ despite
the fact that both sets in question have Lebesgue measure zero.

Of course, the former probability being half that of the latter also applies
if both probabilities are zero, rather than infinitesimals.73 This observation
is only relevant if an additional assumption is made, for instance that the
probabilities are non-zero or that the former should be smaller than the
latter.

16.3 After 1969: Further Developments and Philosophical Discussions

The 1970s: Further mathematical developments

parikh & parnes’ conditional probability functions Start-
ing from a standard absolute probability function, the ratio formula does

70 Observe that, in order to assign non-zero infinitesimals to point events, they have to depart
from the usual application of NSA. Moreover, the function that they obtain is an external
object, which means (roughly) that it does not have a counterpart within standard analysis
(cf. Section 4). On the other hand, it is possible to take the standard part of the function’s
output, which yields the unique real value that is closest to the hyperreal value.

71 Recall Section 4 for the meaning of ‘hyperfinite’ and ‘hyperextension.’
72 One may object against the use of measure theory to represent probability, since measures

are motivated by a desire to idealize the notions of physical length, area, and volume,
and not probability per se. Hence, the usual reservations of representing probability by
measure functions, be they standard or non-standard, may apply here.

73 This observation is due to Alan Hájek, whose copy of the article I was allowed to copy.
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not always suffice to define a conditional probability function. This may fail
in two ways: the probabilities may be undefined (non-measurable events)
or the conditioning event may have probability zero. The non-standard
absolute probability function obtained by Bernstein and Wattenberg (1969)
does allow us to define a non-standard absolute probability function for all
pairs of subsets of the real numbers by the usual ratio formula, provided
that the conditioning event is non-empty. By taking the standard part, we
obtain a real-valued function defined for all pairs of subsets of the real
numbers (as long as the conditioning event is non-empty). However, Rohit
Parikh and Milton Parnes (1974) remarked that the conditional probability
function so obtained does not necessarily exhibit translation invariance in
the following sense:

∀A, B ⊆ R such that B 6= ∅, ∀x ∈ R, P(A + x, B + x) = P(A, B),

where A+ x is the set obtained by adding x to all elements of A and P is the
standard conditional probability function obtained by applying the ratio
formula to a non-standard absolute probability function as constructed by
Bernstein and Wattenberg (1969) and then taking the standard part.

Parikh and Parnes did not consider non-standard conditional probability
functions. Instead, they merely used NSA as a means of obtaining standard
functions. Using techniques from NSA (in particular, hyperfinite sets),
Parikh and Parnes constructed standard conditional probability functions,
each fulfilling a number of algebraic conditions that correspond with
our intuitions. Apart from a condition that entails the above criterion of
translation invariance, they also obtained: (i) P(B, B) = 1 for all B, (ii) if
B = [0, 1]Q (the unit interval of Q with endpoints included) and 0 ≤ a <

b ≤ 1, then P([a, b], B) = b− a, and (iii) P(A, B) = 0 whenever A is finite
and B is not.74 It requires a bit more effort (choosing a suitable ideal on R,
cf. Section 5) to obtain a function P such that the following stronger version
of (iii) also holds: P(A, B) = 0 whenever A is countable and B is not. After
proving the relevant existence theorems, they showed that the cardinality
of the set of standard conditional probability functions satisfying the
various combinations of properties is 2c, with c the cardinality of the
continuum.

henson’s representation theorem Meanwhile, C. Ward Hen-
son (1972) showed that for every standard, finitely additive probability
measure that assigns zero to finite sets there exists a non-standard repre-
sentation. Once again, the proof relies on a hyperfinite counting measure
on a hyperfinite subset of the hyperextension of the sample space of the

74 Observe that these conditional probability functions violate regularity, but this should not
be surprising since they are real-valued.
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standard function. He also considered the special case in which the stan-
dard measure is countably additive. As is typical in the context of NSA,
Henson showed how to apply his result in order to obtain a shorter proof
of a standard result (in section 2 of his paper).75

loeb measure Seminal contributions to non-standard measure theory
were obtained by Peter A. Loeb (1975). A good overview of this topic (up
to the early 1980s) can be found in Cutland (1983). Loeb measures require
more advanced technical knowledge than any of the other approaches
covered in this chapter. In particular, they require non-standard models
with a saturation beyond countable saturation.76

de finetti’s response As indicated in Section 16.1, de Finetti wrote
on the topic of non-Archimedean probability rankings well before the
development of NSA. Although he lived long enough and was aware of
the development of NSA, he never showed much interest in applying it
to his own work on probability. This can be seen by inspecting his work
from the 1970s.

In the second volume of his 1974 book, de Finetti famously returned to
the discussion of possible events with zero probability—a topic already on
his mind (and in his publications) in the 1930s. In particular, he wondered
whether it is “possible to compare the zero probabilities of possible events”
and whether “a union of events with zero probabilities [can] have a positive
probability” (de Finetti, 1974, Vol. II, p. 117). On p. 118, he remarks that the
latter question can be rephrased in terms of additivity and he distinguishes
three cases: finite additivity, countable additivity, and perfect additivity
“if the additivity always holds.”77 On p. 119, he discusses weak and strong
coherence; of the latter he writes “This means that ‘zero probability’ is
equivalent to ‘impossibility’.” However, he warns us that besides “these
serious authors” who have written on this topic, there are others “who refer
to zero probability as impossibility, either to simplify matters in elementary
treatments, or because of confusion, or because of metaphysical prejudices.”
So, according to de Finetti, if we are careful enough not to interpret zero
probability as impossibility, we do not need infinitesimal probabilities at
this point—in fact, he does not mention them on these pages.

75 See also Hofweber and Schindler (2016) for “a new and completely elementary proof of
this fact.”

76 In the construction of ∗R, we used a free ultrafilter on N (see Part II). This is sufficient to
obtain a model with countable saturation. It is possible to fix a free ultrafilter on an infinite
index set of higher cardinality. In particular, by choosing “good” ultrafilters, it is possible
to arrive at the desired level of saturation in a single step (Keisler, 2010, section 10). See
Hurd and Loeb (1985, pp. 104–108) for more on saturation.

77 Cf. ultra-additivity in the terminology of Skyrms (1983b).
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Elsewhere in his book, however, de Finetti does consider non-zero
infinitesimal probabilities in relation to additivity. De Finetti (1974, p. 347)
writes:

Let us just mention that the consideration of probability as
a non-Archimedean quantity would permit us to say, if we
wished, that ‘zero probabilities’ are in fact ‘infinitely small’
(actual infinitesimals), and only that of the impossible event is
zero. Nothing is really altered by this change in terminology,
but it might sometimes be useful as a way of overcoming
preconceived ideas. It has been said that to assume that 0 + 0 +
0 + . . . + 0 + . . . = 1 is absurd, whereas, if at all, this would be
true if ‘actual infinitesimal’ were substituted in place of zero.
There is nothing to prevent one from expressing things in this
way

This seems to be a welcoming invitation to adopt techniques from NSA
in order to deal with infinitesimal probabilities and associated puzzles
concerning their additivity. However, de Finetti continues his sentence less
enthusiastically: “apart from the fact that it is a useless complication of
language, and leads one to puzzle over ‘les infiniment petits’.”78

Moreover, in 1979 (as transcribed in de Finetti, 2008, Ch. 12, p. 122), a
graduate student asked de Finetti about his thoughts concerning NSA. The
student (referred to as ‘Alpha’ in the transcript) asked: “do you consider
it plausible that this hierarchy of zero probabilities could be replaced by a
hierarchy of actual infinitesimals in the sense of non-standard analysis?”
To which de Finetti responded:

I only attended a few talks on non-standard analysis and I
have to say that I am not sure about its usefulness. On the
face of it, it does not persuade me, but I think I have not
delved enough into this topic in order to be able [to] give [a]
well thought-out judgment. [. . . ] I made those speculations
on infinitely small probabilities to see the extent to which the
idea of a comparison between zero probabilities is plausible.
However, I did not attach much importance to it and I am

78 The French expression ‘les infiniment petits’ was in use since the development and popular-
ization of the calculus; consider, for instance, the title of de l’Hôpital’s 1696 book, Analyse
des Infiniment Petits pour l’Intelligence des Lignes Courbes. The use of infinitesimals in calculus
was discredited in subsequent years (in favour of epsilon-delta constructions developed in
the work of Weierstrass, cf. Section 16.1). Although NSA did much to reinstate them, this
process of rehabilitation of infinitesimals was neither immediate nor uniform (and remains
incomplete, even today). So, it seems that de Finetti held on to the post-Weierstrassian
and pre-Robinsonian viewpoint of infinitesimals as a suspect concept, to be avoided when
possible.
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not sure whether one needs sophisticated theories, such as
non-standard analysis, for that goal.

The 1980s: Skyrms, Lewis, and Nelson

skyrms on infinitesimal chances Skyrms (1980) argued that
propensity (for instance, the bias parameter in a binomial distribution)
does not equal the limiting relative frequency (for instance, of an infinite
Bernoulli process). He did so by appealing to infinitesimal probabilities
(pp. 30–31):

If we extend our language so that we can talk in it about
limiting relative frequencies in an infinite sequence of trials
and make a few assumptions about limiting probabilities, we
can state what appears to be a more powerful version of the
law of large numbers: the probability that, in a given sequence
of independent and identically distributed trials, the limiting
relative frequency will either fail to exist or diverge by some
positive real number from the probability of the outcome is
infinitesimal. Then, if our coin is flipped an infinite number of
times, the probability that the limiting relative frequency fails
to be one-half is infinitesimal.

He then went on to show that this viewpoint is not compatible with the
idea “that infinitesimal propensity implies impossibility.” The stance that
Skyrms is refuting here is sometimes called the “principle of Cournot.”79

[T]he assumptions that get the striking version of the strong
law of large numbers give us infinitesimal probability not only
for the outcome sequence All Heads, but for each other definite
sequence of outcomes as well. But the coin has to do something!
There is nothing more probable than that something improba-
ble will happen, but it is impossible that something impossible
should happen. Small probability, even infinitesimally small
probability, does not mean impossibility. Then even if, for each
process, the propensity for a divergence between propensity
and relative frequency is infinitesimal, it hardly follows that
the propensity for a divergence for some process, somewhere
in the world, is infinitesimal. But this is just what those who

79 The principle of Cournot is named after Augustin Cournot, because of his writings on the
notion of “physical impossibility” (of events corresponding to infinitesimal probabilities
in a geometric context). The roots of the concept go back to that of “moral certainty”
(practical certainty) in the work of Jacob Bernoulli. Similar ideas also arose in the work
of Paul Lévy and émile Borel (which inspired de Finetti’s speculations on hierarchies of
infinitesimals). The name for the principle was introduced by Maurice Fréchet. For more
details, see, e.g., Shafer (2008).
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wish to turn the law of large numbers into a philosophical
analysis of propensity must assume.

Here, Skyrms used infinitesimal probabilities to illustrate the qualitative
difference between possible events and the impossible event. In particular,
in cases of equiprobability it may be certain that a highly unlikely event
will occur. This seems to be diametrically opposed to Cournot’s principle
and similar ideas such as the Lockean thesis (but see also Section 13).

lewis on infinitesimal chances and credences David Lewis
(1980) introduced his “Principal Principle” as a way to connect subjec-
tive credences to objective chances. In this context, he discussed how
infinitesimal chances lead to the introduction of infinitesimal credences
(p. 269):

The Principal Principle may be applied as follows: you are
sure that some spinner is fair, hence that it has infinitesimal
chance of coming to rest at any particular point; therefore (if
your total evidence is admissible) you should believe only to an
infinitesimal degree that it will come to rest at any particular
point.

On pp. 267–268, Lewis (1980) discussed infinitesimal credences in the
context of regularity (cf. Section 16.1) and a “condition of reasonableness”:

I should like to assume that it makes sense to conditionalize on
any but the empty proposition. Therefore I require that [any
reasonable initial credence function] C is regular: C(B) is zero,
and C(A/B) is undefined, only if B is the empty proposition,
true at no worlds. You may protest that there are too many
alternative possible worlds to permit regularity. But that is so
only if we suppose, as I do not, that the values of the func-
tion C are restricted to the standard reals. Many propositions
must have infinitesimal C-values, and C(A | B) often will be
defined as a quotient of infinitesimals, each infinitely close but
not equal to zero. (See Bernstein and Wattenberg [1969].) The
assumption that C is regular will prove convenient, but it is
not justified only as a convenience. Also it is required as a
condition of reasonableness: one who started out with an irreg-
ular credence function (and who then learned from experience
by conditionalizing) would stubbornly refuse to believe some
propositions no matter what the evidence in their favor.

skyrms on regularity and ultra-additivity Skyrms (1983b)
gave an intriguing analysis of the Zenonian intuition of regularity. His



254 sylvia wenmackers

text focused on length measurement, but the argument carries over to
probability measures; hence, we present it in some detail. Zeno’s paradox
of measure is a scholarly reconstruction of an argument against plurality
emerging from Zeno’s four paradoxes of motion. The conclusion of this
argument is that something of non-zero, finite length cannot be composed
of infinitely many parts. The Zenonian argument starts by assuming
the opposite: if the whole is composed of infinitely many parts, then
either those parts all have no magnitude or they all have a non-zero
magnitude, but then the whole would either have no magnitude or an
infinite magnitude, respectively, both of which are in contradiction with the
whole having a non-zero, finite length. Skyrms argued that this argument
crucially relies on some implicit assumptions: that the parts all have equal
size (invariance), that they are not infinitesimal (Archimedean axiom), and
that we can make sense of an infinite sum of the individual magnitudes
(ultra-additivity). As such, Zeno’s paradox of measure has a very similar
structure to the proof that shows that there is no real-valued, countably
additive probability function that assigns equal probabilities to single
tickets in a lottery on the natural numbers (cf. Section 8.3): it shows that
either assigning zero probability or non-zero probability to individual
tickets both fail to yield a normalizable measure, because either the sum
over all tickets is zero or it diverges. Analogous assumptions are in place
in both arguments: an invariant partition such that the parts have equal
magnitudes versus equiprobability; no infinitesimal magnitudes versus
real-valued probability; and a way to make sense of infinite sums of
magnitudes versus countable additivity.

Skyrms named the additivity assumption in the Zenonian argument the
principle of ultra-additivity, which he specified as follows (p. 227):

the principle that the magnitude of the whole is the sum of the
magnitudes of its parts continues to hold good when we have
a partition of the whole into an infinite number of parts.

This way of phrasing it—as a property known for finite quantities that is
assumed to hold for infinite quantities, too—resembles Leibniz’s souverain
principe (see Katz & Sherry, 2012, section 4.3), which in turn can be for-
malised by the Transfer principle of NSA (as was explained in Section 4). In
this light, it is curious to observe that the term for the Zenonian principle
chosen by Skyrms, ultra-additivity, resonates well within the context of
NSA, which is replete with ultrafilters. (This resonance may be curious,
but it need not be coincidental—given Skyrms’ familiarity with NSA.)

Skyrms also argued that the step in the Zenonian argument that im-
plicitly assumes the principle of ultra-additivity was not contested by the
school of Plato, the school of Aristotle, or the atomists. So, it appears that
the principle of ultra-additivity was—possibly without reflection—widely
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accepted, which suggests that it represents a deeply anchored intuition
about magnitudes: if finite magnitudes are to be infinitely divisible (which
of course the Zenonian argument tries to refute), then it is hard to imagine
for the magnitudes of the parts in the partition not to sum to the magnitude
of the whole. Skyrms wrote (p. 235): “It is ironic that it is just here that the
standard modern theory of measure finds the fallacy.”

In the context of measure theory, and thus of standard probability,
the principle of ultra-additivity is formalised—and thereby restricted to
countable collections—in terms of CA. However, as the failure of the
existence of a countably additive fair probability measure on the natural
numbers demonstrates, it does not do justice to the underlying intuition
of universal summability.

lewis on infinitesimal chances In a postscript to “Causation”
(an article that appeared in 1973) and in a passage that appears between
brackets, Lewis (1986b, pp. 175–176) discussed infinitesimal chances and
presented real-valued probabilities as a rounding off of the true hyperreal
chances (with original italics):80

They say that things with no chance at all of occurring, that
is with probability zero, do nevertheless happen; for instance
when a fair spinner stops at one angle instead of another, yet
any precise angle has probability zero. I think these people
are making a rounding error: they fail to distinguish zero
chance from infinitesimal chance. Zero chance is no chance,
and nothing with zero chance ever happens. The spinner’s
chance of stopping exactly where it did was not zero; it was
infinitesimal, and infinitesimal chance is still some chance.

Although they are not mentioned here, Lewis’ wording is very reminiscent
of Bernstein and Wattenberg (1969), who wrote “there is still some chance
of hitting the point.” Also observe that according to the definition that we
gave in the introduction, zero is an infinitesimal. Hence, what Lewis is
arguing for must be called “non-zero infinitesimals” in our terminology.

nelson’s radically elementary probability theory Previ-
ously, Edward Nelson (1977) had provided the first axiomatic approach to
NSA, which he called “Internal Set Theory” (IST),81 but he also provided
an important alternative approach to infinitesimal probabilities. Nelson

80 Hájek (2012a) cites this passage and calls Lewis work on this topic “[t]he most important
philosophical defence of regularity” of which he is aware (p. 414).

81 According to Luxemburg (2007, p. xi):

[F]rom the beginning Robinson was very interested in the formulation of an
axiom system catching his non-standard methodology. Unfortunately he did
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(1987) developed a “Radically elementary probability theory,” which relies
on internal probability functions: these functions can be obtained by ap-
plying the Transfer principle (recall Section 4) to sequences of standard
Kolmogorovian probability functions on finite domains. Internal probabil-
ity functions do not assign probability values to any infinite standard sets,
but only to hyperfinite sets. The resulting additivity property is hyperfi-
nite additivity. Nelson’s probability functions are regular and they admit
infinitesimal values. Unlike much previous work on non-standard prob-
ability functions, this approach does not aim at providing a real-valued
probability measure (by the standard part function, cf. Section 4). Precisely
by leaving out this step, this framework has the benefit of making proba-
bility theory on infinite sample spaces equally simple and straightforward
as the corresponding theory on finite sample spaces.
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6
C O M PA R AT I V E P R O B A B I L I T I E S Jason Konek

On the Bayesian view, belief is not just a binary, on-off matter. Bayesians
model agents not as simply categorically believing or disbelieving propo-
sitions, but rather as having degrees of confidence, or degrees of belief, or
credences in those propositions. Rather than flat out believing that your
Kimchi Jjigae will turn out splendidly, you might, for example, be 0.7
confident that it will turn out splendidly. Or you might have less precise
opinions on the matter. You might be more confident than not that it will
turn out splendidly. You might be at least 0.6 confident and at most 0.9
confident that it will turn out splendidly. You might have any number of
more or less informative opinions, but nevertheless fall short of having a
precise credence on the matter. In that case, we say that your credences are
imprecise.

Credences, whether precise or imprecise, play a number of important
theoretical roles according to Bayesians. For example, a rational agent’s
credences determine expectations of measurable quantities—quantities like
the size of the deficit 10 years hence, or the utility of an outcome—which
capture her best estimates of those quantities. Those best estimates, in turn,
typically rationalise or make sense of her evaluative attitudes and choice
behaviour.

Suppose that you are considering donating to charity. You have cre-
dences regarding the cost of bulk food, shipping, and other matters
relevant for estimating how good different donation options are. Your
credences, let’s imagine, determine a higher expected utility for giving
cash directly to the poor than for investing in infrastructure development.
These expected utilities, on the Bayesian view, capture your best estimates
of how much good each option would produce. And these best estimates,
in turn, rationalise or make sense of your evaluative attitudes—your opin-
ion that direct-giving is the better action, perhaps. Evaluative attitudes,
in turn, rationalise choice behaviour. In the case at hand, your evaluative
attitudes rationalise your choice to give cash directly to the poor rather
than invest in infrastructure development.

According to many Bayesians, e.g., Koopman (1940a, 1940b), Good (1950),
de Finetti (1951), Savage (1954), and Joyce (2010), certain types of doxastic
attitudes—opinions of the form “X is at least as likely as Y,” known as
comparative beliefs—play an especially important role in explicating the
concept of credence. These explications typically involve an important
bit of mathematics known as a representation theorem. The aim of this
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chapter is straightforward, but fundamental. We will explore three very
different approaches to explicating credence using comparative beliefs
and representation theorems. Along the way, we will introduce a brand
new account of credence: epistemic interpretivism. We will also evaluate
how these respective accounts stand up to the criticisms of Hájek (2009),
Meacham and Weisberg (2011), and Titelbaum (2015).

The rest of the chapter proceeds as follows. Section 1 outlines the main
interpretations of comparative probability orderings, which mirror the main
interpretations of quantitative probability functions. Section 2 homes in on
one interpretation of comparative probability in particular: the subjec-
tivist interpretation. Then it briefly surveys some important representation
theorems from Kraft, Pratt, and Seidenberg (1959), Scott (1964), Suppes
and Zanotti (1976), and Alon and Lehrer (2014). Section 3 outlines three
different “comparativist” accounts of credence: the measurement-theoretic,
decision-theoretic, and epistemic interpretivist accounts. Comparativist ac-
counts explain what it is to have one credal state or another in terms of
subjective comparative probability relations (or comparative belief rela-
tions) and representation theorems. Epistemic interpretivism is an entirely
new account of credence. So we spend a bit of time developing it. Section 4

examines criticisms of comparativist accounts by Hájek (2009), Meacham
and Weisberg (2011), and Titelbaum (2015). Finally, Section 5, Section 6,
and Section 7 explore the extent to which our three different approaches
can withstand these criticisms. We will pay special attention to the question
of whether they vindicate probabilism: the thesis that rational credences
satisfy the probability axioms.

1 main interpretations of comparative probability

Probabilities seem to pop up all over the place. They feature in the re-
spective explanations of all sorts of different phenomena. They help to
explain, for example, singular events, such as the outcomes of particular
experiments, particular one-off historical events, and the like. Consider
some examples:

(1a) Why did the die land with a blue face up?

(1b) It has 1 blue faces and 1 red face. And it’s fair. So it had a 5/6
probability of coming up blue.

(2a) Why did Rose get lung cancer?

(2b) She smoked for 30 years. And the probability of getting lung cancer
if you smoke for so long is really high.

The high probability (= 5/6) of this particular die coming up blue on
this particular toss helps to explain why it in fact came up blue. And the
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high probability of this particular person—Rose—getting lung cancer (as
a result of her 30 years of smoking) helps to explain why she in fact got
lung cancer. Probabilities also help to explain why we ought to have high
or low confidence in certain hypotheses. Consider:

(3a) Why should we think that Quantum Electrodynamics is true?

(3b) It’s the best confirmed physical theory ever. It’s extremely probable
given the current evidence.

(4a) Why should we think that Jones stole the paintings?

(4b) Given his acrimonious history with the art museum’s curator, the
eyewitness testimony, and the DNA evidence, it’s quite probable that
Jones is guilty.

The extremely high probability of Quantum Electrodynamics given the
current evidence at least partially explains why we ought to think that it is
true. Likewise, the high probability that Jones stole the paintings given the
eyewitness testimony, the DNA evidence, etc., at least partially explains
why we ought to think that he is guilty. Finally, probabilities explain and
rationalise our behaviour. For example:

(5a) Why did you bet Aadil £100 that Manchester City would win their
match against Newcastle?

(5b) Have you seen Newcastle lately? They’re a joke. It’s extremely prob-
able that Manchester City will win.

(6a) Why did you go to Better Food Company rather than Sainsbury’s?

(6b) I wanted fresh herbs, and it’s more probable that the Better Food
Company will have them.

The fact that it is extremely probable, in your view, that Manchester City
will win the match helps to explain why you took the bet. It also helps
to rationalise or make sense of your decision. And the fact that it’s more
probable, in your view, that the Better Food Company will have fresh
herbs than Sainsbury’s helps to explain and rationalise your choice to go
to the Better Food Company.

So, probabilities seem to do quite a lot of explanatory work. But no
single thing is shouldering the whole explanatory load in (1)–(6). Different
kinds of probability do the explaining in different examples. In (1)–(2), it is
the physical probability or chance of the singular event in question that helps
to explain why the event actually occurs. (See Hájek, 2009, Gillies, 2000,
and Hitchcock, 2012, for discussion of different theories of chance.) In
(3)–(4), it is the logical probability or degree of confirmation of the hypothesis
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in question (conditional on the current evidence) that helps to explain
why we ought to accept it. (See Earman, 1992, Hájek and Joyce, 2008, and
Paris, 2011, for discussion of Bayesian confirmation theory and some of its
issues.) Finally, in (5)–(6), it is the subjective probability, or degree of belief, or
credence, of the agent in question that helps to explain and rationalise her
choice.

Formally, a probability function is just a particular type of real-valued
function. Let Ω be a universal set, which we can think of as the set of
“possible worlds” or “basic possibilities.” And let F be a Boolean algebra
of subsets of Ω, which we can think of as a set of “propositions.” More
carefully, we can think of each X ∈ F as the proposition that is true at
each world w ∈ F , and false at each w∗ 6∈ F . A Boolean algebra F of
subsets of Ω has three important properties: (i) F contains Ω (i.e., Ω ∈ F );
(ii) F is closed under complementation (i.e., if X ∈ F , then Ω− X ∈ F );
and (iii) F is closed under unions (i.e., if X, Y ∈ F , then X ∪ Y ∈ F ). A
real-valued function p : F → R is a probability function if and only if it
satisfies the laws of (finitely additive) probability.

1. Normalization. p(Ω) = 1.

2. Nonnegativity. p(X) ≥ p(∅).

3. Finite Additivity. If X ∩Y = ∅, then p(X ∪Y) = p(X) + p(Y).

Axiom 1 says that p must assign probability 1 to the tautologous proposi-
tion Ω. Axiom 2 says that p must assign at least as high a probability to
every proposition X as it does to the contradiction ∅. Axiom 3 says that
the probability that p invests in a disjunction of incompatible propositions
X and Y must be the sum of the probabilities that it invests in X and Y,
respectively.

The three main interpretations of probability—physical probability, or
chance; logical probability, or degree of confirmation; and subjective probabil-
ity, or degree of belief, or credence—correspond to the three main types of
phenomena that we use probability functions to model. For example, ac-
cording to propensity theories of chance, chance functions measure how
strongly a causal system is disposed to produce one outcome or other on
a particular occasion. Chance functions, on this view, are just probability
functions that are used to model one type of physical system (causal
systems) as having one type of gradable property (causal dispositions of
varying strengths). Likewise, logical probability functions measure how
strongly a body of evidence E supports or confirms a given hypothesis H.
Logical probability functions are just probability functions that are used to
model another type of target system (systems of propositions describing
data and hypotheses) as having another type of gradable property (as
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having hypotheses which are supported to varying degrees by data propo-
sitions). Finally, subjective probability functions, or credence functions,
measure (roughly) how confident an agent with some range of doxastic
attitudes can be said to be of various propositions. Subjective probability
functions are just probability functions that are used to model yet another
type of system (an agent’s doxastic attitudes) as having yet another type
of gradable property (as either constituting or licensing varying degrees
of confidence).

Of course, sorting out the precise relationship between these various
models—probability functions—and their respective target systems is a
delicate task. The “interpretations” above provide only rough, first-pass
descriptions of that relationship. Part of this chapter’s goal is to explore
the relationship between subjective probability functions, in particular, and
the underlying system of doxastic attitudes that they model.

Just as there are a few main interpretations of quantitative probability
functions, corresponding to the main types of phenomena that we use
those probability functions to model, so too are there a few main interpre-
tations of “comparative probability orderings.” Formally, a comparative
probability ordering is just particular type of relation � on a Boolean alge-
bra F of subsets of Ω. On each of the three main interpretations, “X � Y”
means roughly that X is at least as probable as Y. (What exactly this amounts
to, however, will vary from interpretation to interpretation.) Traditionally,
a relation � on F is said to be a comparative probability ordering if and
only if it satisfies de Finetti’s (1964, pp. 100–101) axioms of comparative
probability.

1. Nontriviality. Ω � ∅ and ∅ 6� Ω.

2. Nonnegativity. X � ∅.

3. Transitivity. If X � Y and Y � Z, then X � Z.

4. Totality. X � Y or Y � X.

5. Quasi-Additivity. If X ∩ Z = Y ∩ Z = ∅, then X � Y if and only if
X ∪ Z � Y ∪ Z.

Axiom 1 says that the tautology Ω is strictly more probable than the
contradiction ∅. Axiom 2 says that every proposition X is at least as
probable as the contradiction ∅. Axioms 3 and 4 guarantee that � is a
total preorder (i.e., reflexive, transitive, and total). Finally, axiom 5 says
that disjoining X and Y with some incompatible Z does nothing to alter
their comparative probability; so X is at least as probable as Y if and only
if the disjunction of X and Z is at least as probable as the disjunction of Y
and Z.
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The three main interpretations of comparative probability correspond to
the three main types of phenomena that we use comparative probability
orderings to model. Physical comparative probability orderings, or chance or-
derings—on one theory of chance anyway, viz., propensity theory—model
causal systems. In particular, they model causal systems C as being more or
less strongly disposed to produce one outcome or another on a particular
occasion:

X � Y
iff

C is at least as strongly disposed to produce an outcome w ∈ X
and thereby make X true as it is to produce an outcome w∗ ∈ Y
and thereby make Y true.

Logical comparative probability orderings model a rather different type of
target system: systems of propositions describing data and hypotheses. In
particular, they model certain data D as supporting or confirming certain
hypotheses H more than other data D∗ support other hypotheses H∗:

〈H, D〉 � 〈H∗, D∗〉
iff

D supports or confirms H at least as much as D∗ supports or
confirms H∗.

Finally, subjective comparative probability orderings model yet another type
of target system: an agent’s doxastic attitudes. In particular, they model
agent A as being more or less confident that one proposition or another is
true:

X � Y
iff

A is at least as confident that X is true as she is that Y is true.

Of course, the three main interpretations of comparative probability are
really families of interpretations. All three types of comparative probability
orderings come in different flavours. For example, behaviorists like de
Finetti (1931, 1964) and Savage (1954) treat subjective comparative prob-
ability orderings as particular types of preference orderings. To be more
confident that X is true than Y is, roughly speaking, to prefer a dollar
bet on X to a dollar bet on Y. They subscribe to what Jeffrey calls the
thesis of the primacy of practical reason, which says that between belief and
preference, “it is preference that is real and primary” (Jeffrey, 1987, p. 590).
Hence, “belief states that correspond to identical preference rankings of
propositions are in fact one and the same” (Jeffrey, 1965/1983, p. 138).

Jeffrey (1965, 2002) and Joyce (1999), in contrast, do not subscribe to this
thesis. On their view, being more confident that X is true than Y involves
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making a peculiarly doxastic judgment. Such doxastic judgments partially
explain and rationalise our preferences. But they do not even supervene
on preferences, let alone reduce to them. (Two agents, for example, could
both be in a state of nirvana on this view, and so be indifferent between
every prospect and the status quo, but nevertheless make different compar-
ative probability judgments.) And the laws governing rational subjective
comparative probability judgments, on this account, are not simply special
cases of the laws governing rational preference. Rather, they derive from
peculiarly epistemic considerations, e.g., considerations of accuracy.

To have a general way of talking about comparative beliefs, without
assuming that they satisfy de Finetti’s axioms, let’s introduce some termi-
nology. Call any relation � on an algebra F of subsets of Ω that is used to
model an agent’s comparative beliefs a comparative belief relation. And call
〈Ω,F ,�〉 a comparative belief structure. Comparative belief relations may
or may not be comparative probability orderings. That is, they may or may
not satisfy de Finetti’s axioms of comparative probability.

Why the hubbub about comparative belief? Why think that comparative
belief relations have a particularly important role to play in modeling
rational agents’ doxastic states? What are they especially suited to do that
precise, real-valued credence functions are not?

There are a number of common answers to these questions. The first is
that comparative belief relations provide a more psychologically realistic
model of agents’ doxastic attitudes than precise, real-valued credence
functions. Often I simply lack an opinion about which of two propositions
is more plausible. I am not more confident that copper will be greater than
£2/lb in 2025 (call this proposition C) than I am that nickel will be greater
than £3/lb in 2025 (call this proposition N). Neither am I less confident in
C than N, nor equally confident. I simply lack an opinion on the matter. We
can model this using comparative belief relations. Just choose a relation �
that does not rank C and N:

C 6� N and N 6� C.

The incompleteness in � reflects my lack of opinionation. Precise credence
functions, on the other hand, do not allow for this sort of lack of opiniona-
tion. Any agent with precise credences for C and N takes a stand on their
comparative plausibility. She is either more confident in C than N, less
confident in C than N, or equally confident in the two.1

The second answer is evidentialist. Not only do real agents in fact have
sparse and incomplete opinions, but they ought to have such opinions. If
your evidence is incomplete and unspecific, then your comparative beliefs

1 See Suppes (1994, p. 19), Kyburg and Pittarelli (1996, p. 325), Kaplan (2010, p. 47), and
Joyce (2010, p. 283) for similar remarks.



274 jason konek

(and your other qualitative and comparative opinions) should be corre-
spondingly incomplete to reflect the unspecific nature of that evidence.
This is the response that is most justified, or warranted, or appropriate in
light of such evidence. Again, we can capture this sort of lack of opinion-
ation using comparative belief relations, but not using precise credence
functions. Having precise credences requires having total or complete
comparative beliefs (as well as total conditional comparative beliefs, total
preferences, and so on).2

The third answer is information-theoretic. Proponents of maximum en-
tropy methods, for example, argue that you ought to have the least infor-
mative doxastic state consistent with your evidence. And according to any
plausible informativeness or entropy measure for comparative beliefs, any
incomplete comparative belief relation will be less informative than any
extension of it.3 As a result, minimizing informativeness will often require
adopting incomplete comparative beliefs. Precise credences, however, do
not allow for incomplete comparative beliefs. As Joyce puts it, adopting
precise credences, in many evidential circumstances, “amounts to pretend-
ing that you have lots and lots of information that you simply don’t have”
(Joyce, 2010, p. 284).

The final common answer is that comparative belief is more explanato-
rily fundamental than precise credence. Comparative beliefs figure into
the best explanation of what precise credences are, but not vice versa. It is
worthwhile, then, exploring the various accounts of credence that aim to
furnish such an explanation. We will turn our attention to them shortly.
Each of these accounts, however, makes use of an important bit of mathe-
matics known as a representation theorem. So our first task is to get familiar
with the nuts and bolts of representation theorems.

2 representation theorems

Suppose that Monty Hall invites you to choose one of three doors: either
door a, b, or c. Behind one of these doors: a car. Behind the other two: a
goat. You are more confident that the car is behind a than b, let’s imagine.
You are also more confident that it’s behind b than c. But that is all. You
do not take a stand, for example, on whether it’s more likely to be behind
either b or c than a, or vice versa. You abstain from judgment on all other
matters.

Let wa be the world in which the car is behind door a, wb be the world
in which the car is behind door b, and wc be the world in which the car is

2 See Joyce (2005, p. 171) for similar remarks.
3 See Abellan and Moral (2000, 2003) for measures of entropy for imprecise probability

models which might also serve as measures of entropy for comparative belief relations.
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behind door c. Then we can represent you as having comparative beliefs
about propositions in the following Boolean algebra:

F =


{wa, wb, wc}

{wa, wb} , {wa, wc} , {wb, wc} ,

{wa} , {wb} , {wc} ,

∅


.

And we can represent those fragmentary comparative beliefs as follows:

{wa, wb, wc} � {wa} � {wb} � {wc} � ∅,

where X � Y is shorthand for X � Y and X 6� Y.4

Your comparative belief relation � is not a comparative probability
ordering, i.e., � does not satisfy de Finetti’s axioms of comparative proba-
bility. Relation � violates Quasi-Additivity, for example, as well as totality.
You are, after all, more confident that the car is behind a than b:

{wa} � {wb} .

So de Finetti’s Quasi-Additivity axiom demands that you also be more
confident that it is behind a or c than you are that it is behind b or c. But
you abstain from judgment on the matter:

{wa, wc} 6� {wb, wc} and {wa, wc} 6� {wb, wc} .

A few back-of-the-envelope calculations suffice to show that de Finetti’s
axioms are necessary for probabilistic representability. Following Savage
(1954), we say that:

p fully agrees with �
iff

X � Y ⇔ p(X) ≥ p(Y).

We say that � is (fully) probabilistically representable iff there is a probability
function p that fully agrees with �. Since your comparative belief relation
� does not satisfy de Finetti’s axioms, in our little example, it is not
probabilistically representable.

4 This shorthand is inadequate. You may well think X � Y and X 6� Y without thinking
X � Y. Imagine for example that you recently learned that Y entails X. So you think that
X is at least as likely as Y, i.e., X � Y. But you have no idea whether the entailment goes
both ways. So you withhold judgment about whether Y is at least as likely as X, i.e., X 6� Y.
For exactly the same reason you withhold judgment about whether X is strictly more
likely than Y, i.e., X 6� Y. We would do better, then, to represent your doxastic state with a
pair of relations 〈�,�〉. But historically one or the other has been taken as primitive. For
ease of exposition, we follow de Finetti (1951), Savage (1954), and Krantz, Luce, Suppes,
and Tversky (1971), who take � as primitive.
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De Finetti (1951) famously conjectured that his axioms encode not only
necessary conditions for probabilistically representability, but sufficient
conditions as well. The question: was de Finetti right?

Let 〈Ω,F ,�〉 be an agent’s comparative belief structure. (For now,
assume that F is finite.) Probability functions that fully agree with � show
that we can think of that structure 〈Ω,F ,�〉 numerically, so to speak. We
can map the propositions X in F to real-valued proxies p(X). And we
can do so in such a way that one proxy p(X) is larger than another p(Y)
exactly when our agent is more confident in X than Y. So the familiar
“greater than or equal to” relation ≥ on the real numbers R is a mirror
image of our agent’s comparative belief relation � on F .

Kraft et al. (1959) show that de Finetti’s conjecture is false. Though de
Finetti’s axioms are necessary for probabilistic representability, they are not
sufficient. To establish this, Kraft et al. construct a clever counterexample
involving a comparative belief relation � over the Boolean algebra G of all
subsets of Ω = {wa, wb, wc, wd, we}. Their relation � satisfies de Finetti’s
axioms of comparative probability, and also the following inequalities:

{wd} � {wa, wc} , (1)

{wb, wc} � {wa, wd} , (2)

{wa, we} � {wc, wd} . (3)

As a result, any probability function p that fully agrees with � satisfies the
corresponding inequalities (to simplify notation, we let p({w}) = p(w)):

p(wd) > p(wa) + p(wc), (4)

p(wb) + p(wc) > p(wa) + p(wd), (5)

p(wa) + p(we) > p(wc) + p(wd). (6)

But any p that satisfies (4)–(6) also satisfies (7) (simply sum the inequali-
ties).

p(wb) + p(we) > p(wa) + p(wc) + p(wd). (7)

Notice, however, that {wb, we} and {wa, wc, wd} appear nowhere in (1)–(3).
So Transitivity does not constrain how you order them. Neither do any
supersets of {wb, we} or {wa, wc, wd} appear there. So Quasi-Additivity
does not constrain how you order them either. Hence, for all de Finetti’s
axiom say, you can order {wb, we} and {wa, wc, wd} any way you please.
So Kraft et al. make � satisfy (8).

{wb, we} � {wa, wc, wd} . (8)

But if p fully agrees with �, then (8) requires:

p(wb) + p(we) ≤ p(wa) + p(wc) + p(wd). (9)

Lines (7) and (9), however, are jointly unsatisfiable. So no probability
function p fully agrees with �.
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2.1 Scott’s Theorem

So de Finetti’s conjecture is false. De Finetti’s axioms of comparative prob-
ability are not necessary and sufficient for probabilistic representability.
Luckily, Kraft et al. (1959) and Scott (1964) provide the requisite fix. They
provide stronger axioms that are both necessary and sufficient for prob-
abilistic representability. Scott’s axioms are more straightforward, so we
will focus our attention on them.

Before stating Scott’s theorem, it is worth noting that our formulation
abuses notation a bit. Expressions ‘Xi’ and ‘Yi’ refer both to propositions
in F , as well as their characteristic functions, i.e., functions that take the
value 1 at worlds w where Xi (or Yi) is true (i.e., w ∈ Xi), and take the
value 1 at worlds w′ where Xi is false (i.e., w′ 6∈ Xi). This will turn out to
be a helpful bit of sloppiness.

Scott (1964) proves the following:

Scott’s Theorem. Every comparative belief structure 〈Ω,F ,�〉
(with finite F ) has a probability function p : F → R that fully
agrees with � in the sense that

X � Y ⇔ p(X) ≥ p(Y)

if and only if � satisfies the following axioms.

1. Non-triviality. Ω � ∅.

2. Non-negativity. X � ∅.

3. Totality. X � Y or Y � X.

4. Isovalence. If X1 + . . . + Xn = Y1 + . . . + Yn and Xi � Yi
for all i ≤ n, then Xi � Yi for all i ≤ n as well.

Axiom 4—sometimes called Scott’s axiom, the Isovalence axiom, or the Finite
cancellation axiom—is the one new axiom of the bunch. To see what it
says, note that X1(w) + . . . + Xn(w) counts the number of truths in the set
{X1, . . . , Xn} at world w. Ditto for Y1(w) + . . . + Yn(w). So

X1 + . . . + Xn = Y1 + . . . + Yn

says that the two sets of propositions, {X1, . . . , Xn} and {Y1, . . . , Yn}, con-
tain the same number of truths come what may, i.e., in every possible world.
We call such sets of propositions isovalent.

In light of this, the Isovalence axiom says that if {X1, . . . , Xn} and
{Y1, . . . , Yn} are isovalent, then you cannot think that the Xis are uniformly
more plausible than the Yis. (“Uniformly more plausible” here means that
you think that Xi is at least as plausible as Yi for all i, and that Xj is strictly
more plausible than Yj for some j.) After all, an equal number of the Xis
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and Yis are guaranteed to be true! So you can only think that the Xis are
at least as plausible as the Yis across the board if you think that they are
equally plausible.

But how exactly does Scott prove his representation theorem? It is worth
walking through the proof strategy informally. This will help interested
readers dig through the mathematical minutia in Scott (1964).

Indeed, it will prove instructive to use Scott’s strategy to establish
something slightly stronger than Scott’s theorem.

Generalised Scott’s Theorem (GST). For any comparative be-
lief structure 〈Ω,F ,�〉 with finite F and a comparative belief
relation � that satisfies

1. Non-triviality. Ω � ∅,

2. Non-negativity. X � ∅,

the following two conditions are equivalent.

3. Isovalence. If X1 + . . . + Xn = Y1 + . . . + Yn and Xi � Yi
for all i ≤ n, then Xi � Yi for all i ≤ n as well.

4. Strong representability. there exists a probability func-
tion p : F → R that strongly agrees with � in the sense
that

(i) X � Y ⇒ p(X) ≥ p(Y),

(ii) X � Y ⇒ p(X) > p(Y).

Scott’s theorem, as we shall see at the end of Section 2, follows fairly
straightforwardly from GST. We prove the GST in the appendix.

The key insight required for proving GST is this. In the presence of
Non-triviality and Non-negativity, strong representability boils down to
sorting almost desirable gambles from undesirable gambles.5 On top of this,
Scott (1964) shows that sorting almost desirable from undesirable gambles
is equivalent to satisfying Isovalence.6 Figure 1 summarizes the situation.

Given Non-triviality and Non-negativity

Strong rep. ⇔ Sort gambles ⇔ Isovalence

Figure 1: Logical relations between properties of �

5 For an accessible introduction to desirable gambles, see Walley (2000). See Quaeghebeur
(2014) for more detail.

6 More carefully, Scott (1964) shows that for any comparative belief relation � that satisfies
Non-triviality and Non-negativity, satisfying Isovalence is sufficient for sorting almost
desirable from undesirable gambles. Showing that it is necessary is straightforward. See
the appendix for proof.
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Gambles are measurable quantities G : Ω→ R. Say that a gamble G is
almost desirable relative to � iff it is a non-negative linear combination of
almost desirable components:

(X1 −Y1), . . . , (Xn −Yn).

And say that each component Xi − Yi is almost desirable iff Xi � Yi.
Gamble G is a non-negative linear combination of (X1−Y1), . . . , (Xn −Yn)

just in case:
G = ∑

i
λi(Xi −Yi)

for some λ1, . . . , λn ≥ 0.
We call components Xi − Yi almost-desirable if Xi � Yi because any

probability function p that strongly agrees with � determines a non-
negative expected value for Xi −Yi:

Xi � Yi ⇒ p(Xi) ≥ p(Yi)

⇔ Ep[Xi] ≥ Ep[Xi]

⇔ Ep[Xi −Yi] ≥ 0.

So if we interpret those values as payoffs in utility, then p expects Xi −Yi
to be at least as good as the status quo (i.e., its expected utility is non-
negative).

Likewise, we call G almost desirable if it is a non-negative linear combi-
nation of almost-desirable components because any probability function p
that strongly agrees with � determines a non-negative expected value for
G:

Xi � Yi for all i ⇒ Ep[Xi −Yi] ≥ 0 for all i

⇒ ∑
i

λiEp[Xi −Yi] ≥ 0

⇔ Ep

[
∑

i
λi(Xi −Yi)

]
≥ 0

⇔ Ep[G] ≥ 0.

Similar remarks apply to undesirable gambles. We call a gamble G∗ undesir-
able relative to � iff it is a convex combination of undesirable components

(X∗1 −Y∗1 ), . . . , (X∗n −Y∗n ),

so that
G∗ = ∑

i
λ∗i (X∗i −Y∗i ).

for some λ∗1 , . . . , λ∗n ≥ 0 with ∑i λ∗i = 1. A component X∗i − Y∗i is unde-
sirable iff X∗i ≺ Y∗i . The reason is the same as before. Any probability
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function that strongly agrees with � determines a negative expected value
for undesirable components, as well as convex combinations of undesirable
components.

Now say that � sorts almost desirable gambles from undesirable ones iff the
two sets of gambles are disjoint. That is, if

A =
{
G | G is almost desirable rel. to �

}
and

U =
{
G∗ | G∗ is undesirable rel. to �

}
,

then � sorts almost desirable gambles from undesirable ones iff

A∩U = ∅.

If � fails to sort gambles in this way, then some gamble is both almost
desirable and undesirable, i.e., G = G∗ for some almost desirable gamble
G and some undesirable gamble G∗. And if that is the case, then there is no
probability that strongly agrees with it. (Moreover, since full probabilistic
representability entails strong representability, there is no probability
function that fully agrees with it either.) If it were strongly representable,
then we would have both

Ep[G] = Ep[G∗]

and
Ep[G∗] < 0 ≤ Ep[G]

for some probability function p.
This shows that sorting almost desirable from undesirable gambles is

necessary for strong agreement with a probability function, which is itself
necessary for full agreement with a probability function, i.e., probabilistic
representability. Scott’s insight, though, is that it is also sufficient, in the
presence of Non-triviality and Non-negativity. Given that � satisfies Non-
triviality and Non-negativity, it sorts almost desirable from undesirable
gambles if and only if it strongly agrees with a probability function. What’s
more, if � is total as well, then strong agreement is equivalent to full
agreement. So non-trivial, non-negative, total comparative belief relations
sort almost desirable from undesirable gambles if and only if they are
probabilistically representable. See Figure 2.

To prove this, Scott uses what is known as a hyperplane separation theorem.
The hyperplane separation theorem guarantees that for any two closed,
convex, disjoint sets, there is a hyperplane that strictly separates them
(Kuhn & Tucker, 1956, p. 50). Now note that A is the closed, convex
polyhedral cone generated by the set

{
X−Y | X � Y

}
. Likewise, U is the

convex hull of
{

Y− X | X � Y
}

—a closed and convex set. And if � sorts
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Given Non-triviality, Non-negativity and Totality

Strong rep. ⇔ Full prob. rep.
m

Sort gambles ⇔ Isovalence

Figure 2: Logical relations between properties of �

−1 0 1
−1

0
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U

Figure 3: Hyperplane strictly separating A and U

almost desirable from undesirable gambles, then they are also disjoint. So
there is a hyperplane that strictly separates A and U (see Figure 3).

This hyperplane determines (in effect) an expectation operator E. Gam-
bles G on one side of the hyperplane get positive expected values according
to E. Gambles on the other side get negatives ones. Precisely how high or
low E[G] happens to be is determined by G’s distance from the hyperplane.

The resulting expectation operator E assigns a non-negative value to
every almost desirable gamble G in A, and a negative value to every
undesirable gamble G∗ in U:

E[G] ≥ 0 for all G ∈ A,

E[G∗] < 0 for all G∗ ∈ U.
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And from this expectation operator, E, it is fairly straightforward to extract
a probability function p that strongly agrees with �. Just let p(X) = E[X]

for all X ∈ F .7 Then we have:

Xi � Yi ⇒ E[Xi −Yi] ≥ 0

⇔ E[Xi] ≥ E[Yi]

⇔ p(Xi) ≥ p(Yi).

We also have:

X∗i ≺ Y∗i ⇒ E[X∗i −Y∗i ] < 0

⇔ E[X∗i ] < E[Y∗i ]

⇔ p(X∗i ) < p(Y∗i ).

The upshot: sorting almost desirable from undesirable gambles is both
necessary and sufficient for strong agreement with a probability function
(in the presence of Non-triviality and Non-negativity).

Now for the kicker: a comparative belief relation �—whether or not it
satisfies Non-triviality and Non-negativity—sorts almost desirable from
undesirable gambles (in the sense that A ∩U = ∅) if and only if it
satisfies Isovalence.8 Hence non-trivial and non-negative � are strongly
representable if and only if they satisfy Isovalence. What’s more, as we
mentioned above, for total comparative belief relations it’s easy to see
that strong agreement with a probability function is equivalent to full
agreement. So non-trivial, non-negative, total � are fully probabilistically
representable if and only if they satisfy Isovalence. This is the main thrust
of Scott’s theorem.

2.2 Varieties of Representability

There are, of course, other types of representability besides just strong and
full probabilistic representability. For example, a probability function p
strongly agrees with � just in case it satisfies two conditions:

X � Y ⇒ p(X) ≥ p(Y),

X � Y ⇒ p(X) > p(Y).

7 More methodically, the hyperplane separation theorem gives a strictly separating linear
functional, φ. But given that � satisfies Non-triviality and Non-negativity, A and U have
a certain structure, which guarantees that we can normalise φ to arrive at an expectation
operator E. For example, Non-triviality ensures that ∅ − Ω ∈ Y . Hence φ(Ω) > 0.
Normalising then gives us E[Ω] = 1. Similarly, Non-negativity ensures that X −∅ ∈ X .
Hence φ(X) ≥ 0, and in turn E[X] ≥ 0.

8 See Scott (1964, pp. 235–6) for the proof of sufficiency. We present a simplified version of
both necessity and sufficiency in the appendix.
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We can pick apart these two conditions to arrive at two weaker notions of
representability. Say that

p almost agrees with �
iff

X � Y ⇒ p(X) ≥ p(Y),

and also that

p partially agrees with �
iff

X � Y ⇒ p(X) > p(Y).

A comparative belief relation � is almost representable if there is a proba-
bility function p that almost agrees with �. Likewise, � is partially rep-
resentable if there is a probability function p that partially agrees with
�.

Kraft et al. (1959) show that � is almost representable if and only if it
satisfies the Almost-Cancellation axiom.

Almost-Cancellation. If

X1 + . . . + Xn < Y1 + . . . + Yn

and Xi � Yi for all i 6= j, then Xj 6� Yj.

Similarly, Adams (1965) and Fishburn (1969) show that � is partially
representable if and only if it satisfies the Partial-Cancellation axiom.

Partial-Cancellation. If X1 + . . . + Xn ≤ Y1 + . . . + Yn and
Xi � Yi for all i 6= j, then Xj 6� Yj.

It does not, to be clear, follow from these two results that � is strongly
representable if and only if � satisfies both the Almost and Partial-
Cancellation axioms. Satisfying Almost and Partial-Cancellation would
simply guarantee that (i) some probability function p almost agrees with
�, and (ii) some possibly distinct probability function q partially agrees
with �. But strong representability requires that a single probability func-
tion do both types of agreeing. It is an open question what exactly is
required for strong representability. (Of course, GST identifies necessary
and sufficient conditions for strong representability given Non-triviality and
Non-negativity. But clearly neither of those conditions is itself necessary
for strong representability.)

Almost, partial, and strong representability all place negative demands
on your comparative beliefs. They require you to avoid certain sets of
comparative beliefs. Say that

p endorses � iff p(X) ≥ p(Y)⇒ X � Y.
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For your comparative belief relation � to be almost representable, you
must avoid having weak comparative beliefs that no probability function
whatsoever endorses. Likewise, for � to be partially representable, you
must avoid having strict comparative beliefs that no probability function
endorses. For � to be strongly representable, you must avoid both.

Full probabilistic representability is stronger. It makes positive demands
as well as negative demands on your comparative beliefs. Full probabilistic
representability requires your comparative beliefs to be sufficiently rich
and specific that some probability function endorses exactly those compar-
ative beliefs. So not only must you avoid comparative beliefs that are not
endorsed by any probability function, but you must positively go in for all
of the comparative beliefs endorsed by some probability function.

Imprecise representability, or IP-representability, strikes a balance between
these previous types. Like strong representability, IP-representability
places negative demands on your comparative beliefs. It requires you to
avoid comparative beliefs that no probability function endorses. But like
full probabilistic representability, it also makes positive demands on your
comparative beliefs. It does not go so far as to demand that you go in for
all of the comparative beliefs endorsed by some probability function. But
it does say that you must already be more confident in X than Y if every
probability function that endorses your other comparative beliefs endorses
X � Y as well. In this way, it requires you to draw out the “probabilistic
consequences” of your other comparative beliefs.

Formally, a comparative belief relation � is imprecisely representable if
and only if there is a set of probability functions P that fully agrees with
it:

P fully agrees with �
iff

X � Y ⇔ p(X) ≥ p(Y) for all p ∈ P .

Rios Insua (1992) and Alon and Lehrer (2014) show that � is IP-
representable if and only if it satisfies Reflexivity, Non-negativity, Non-
triviality, and the Generalised Finite-Cancellation axiom.

Generalised Finite-Cancellation axiom. If

X1 + . . . + Xn + A + . . . + A︸ ︷︷ ︸
k times

= Y1 + . . . + Yn + B + . . . + B︸ ︷︷ ︸
k times

and Xi � Yi for all i ≤ n, then A � B.

IP-representability is clearly stronger than strong representability.
IP-representability implies strong-representability. But a strongly repre-
sentable comparative belief relation � might fail to satisfy Reflexivity,
Non-negativity, and Non-triviality. No IP-representable � will do so,
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Full prob. rep.

Imprecise rep.

Strong rep.

Partial rep.Almost rep.

Figure 4: Logical relations between different types of representability

however. So strong-representability does not imply IP-representability.
Moreover, Harrison-Trainor, Holliday, and Icard (2016) show that even for
non-trivial, non-negative, and reflexive �, IP-representability is stronger
than strong representability.

To wrap up, let’s taxonimise these various types of representability
according to their logical strength: see Figure 4.

2.3 Loose Ends: Infinite Algebras, Conditional Comparative Beliefs, Etc.

Scott (1964, p. 247) claims that his theorem extends to comparative belief
structures 〈Ω,F ,�〉 with infinite algebras F , by a clever application of the
Hahn-Banach Theorem. The proof however remains unpublished. Suppes
and Zanotti (1976) also provide necessary and sufficient conditions for a
comparative belief relation on an infinite algebra to be fully probabilisti-
cally representable. Suppes and Zanotti’s axioms, however, do not directly
constrain comparative beliefs. Rather, they show that � is probabilistically
representable if and only if it is extendable to a comparative estimation rela-
tion over a larger set; a set containing not just propositions—sets of worlds,
or equivalently, functions from worlds to 1 (true) or 0 (false), i.e., indicator
functions—but to real-valued quantities Q : Ω→ R more generally.

To get the rough idea, consider a travel agent. She might not have
a precise estimate of how many travelers will go to Hawaii this year.
(Perhaps her evidence is incomplete and ambiguous.) Likewise, she might
not have a precise estimate of how many travelers will go to Acapulco.
Despite this, she might well estimate that more travelers will go to Hawaii
than Acapulco. Or consider the weather. Alayna might not have a precise
estimate of how much rain London will receive in June. She might not
have a precise estimate of how much rain Canterbury will receive in June.
Despite this, she might estimate that London will receive more rain than
Canterbury.

Ditto for stock prices, or the number of MPs that different parties will
lose or gain in the next election, or any other quantity you might care about.
You can have comparative estimates regarding those respective quantities—
i.e., estimate that one quantity Q will have a higher/equal/lower value
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than another quantity Q∗—without having a unique, precise best estimate
for any of them.

Call a relation �∗ on a set F ∗ of real-valued quantities defined on Ω
a comparative estimation relation if it is used to model an agent’s compara-
tive estimates. And call a comparative estimation relation �∗ qualitatively
satisfactory if it satisfies the following (putative) coherence constraints.

1. �∗ is transitive and total.

2. Ω �∗ ∅.

3. X �∗ ∅.

4. X �∗ Y iff X + Z �∗ Y + Z.

5. If X �∗ Y then for all W, Z ∈ F ∗, there’s an n > 0 such that

X + . . . + X︸ ︷︷ ︸
n times

+W �∗ Y + . . . + Y︸ ︷︷ ︸
n times

+Z.

Suppes and Zanotti (1976) show that a comparative belief relation � on
an algebra F of propositions (indicator functions), whether F is finite
or infinite, is fully probabilistically representable if and only if there is a
comparative estimation relation �∗ on the set F ∗ of non-negative integer-
valued quantities

F ∗ =
{
Q | Q : Ω→ Z≥0

}
,

which both (i) extends �, and (ii) is qualitatively satisfactory.
This shows that whatever latent structural defect prevents a comparative

belief relation � from being fully probabilistically representable rears its
head explicitly when you extend the relation. If � has this defect, then
when you extend it, so that it encodes not just comparative estimates of
truth-values of propositions, but also comparative estimates of the values
of non-negative integer-valued quantities more generally, what you end up
with—your new, larger comparative estimation relation �∗—will violate
one of Suppes and Zanotti’s putative coherence constraints. And vice versa.
If � does not have this latent defect, then there is some way of extending it
that does not violate those constraints.9

Of course, the representation theorems surveyed here are just the tip
of the iceberg. For example, we said that a comparative belief relation
� is imprecisely representable if and only if there is a set of probability
functions P that fully agrees with it. But we could explore full agreement
(or almost agreement, or partial agreement, or strong agreement) with any

9 Suppes and Zanotti’s axiom 5 is an “Archimedean axiom,” which guarantees (roughly)
that differences in one’s best estimates are not “infinitely small.” For a non-Archimedean
theory of comparative estimation, see Pederson (2014).
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number of imprecise probability models: Dempster-Shafer belief functions,
n-monotone Choquet capacities, coherent lower previsions/expectations,
or coherent lower probabilities (cf. Walley, 1991, 2000; Augustin, Coolen,
de Cooman, and Troffaes, 2014; Troffaes and de Cooman, 2014).

Alternatively, we could focus not on comparative belief relations, but
conditional comparative belief relations. Hájek (2003)—following Rényi
(1955), Jeffreys (1961), de Finetti (1974), and others—argues forcefully
that we should treat precise conditional credence as more fundamental
than precise unconditional credence. Similarly, we might treat conditional
comparative beliefs of the form

A | B � C | D

as more fundamental than unconditional comparative beliefs. A | B � C |D
says that the agent in question is at least as confident in A given B as she
is in C given D. We can then recover unconditional comparative belief
relations from comparative ones by conditioning on the tautology, Ω:

A � B⇔ A |Ω � B |Ω.

Say that a conditional comparative belief relation � on F is probabilisti-
cally representable if there is a conditional probability function that fully
agrees with it. More carefully: there is a probability function p : F → R

such that for any two propositions A, B ∈ F , and any two non-null propo-
sitions C, D ∈ F , we have

A | B � C | D ⇔ p(A ∩ B)
p(B)

≥ p(C ∩ D)

p(D)
.

A proposition X is non-null just in case it is not just as likely as the
contradiction, i.e.,

X |Ω 6≈ ∅ |Ω.

Now we can ask: when are conditional comparative belief relations prob-
abilistically representable? Domotor (1969) extends the results of Scott
(1964) to provide necessary and sufficient conditions for probabilistic rep-
resentability when � is defined on a finite algebra F . Suppes and Zanotti
(1982) extend the results of Suppes and Zanotti (1976) to provide necessary
and sufficient conditions in the general case (whether or not F is finite).
See Suppes (1994) for additional detail.

With a basic understanding of representation theorems and their me-
chanics in hand, we can now turn our attention to the central question of
this chapter: do comparative beliefs and representation theorems figure
into the best explanation of what precise credences are? If so, how? What
do these accounts of credence look like? And how do they stand up to the
criticisms of Hájek (2009), Meacham and Weisberg (2011), and Titelbaum
(2015)?
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3 the comparative belief-credence connection

To a first approximation, an agent’s credence function measures how
confident she can be said to be in each proposition. If c(X) = 1, then she is
maximally confident that X is true, i.e., 100% confident. If c(X) = 0, then
she is minimally confident that X is true, i.e., 0% confident. If c(X) = 2/3,
then she is more confident than not that X is true, but not quite fully
confident.

But what does this really mean? What does it mean to say that an agent
is 100%, or 80%, or 23.9556334% confident in a proposition?

We might have similar questions for imprecise Bayesians. Imprecise
Bayesians model rational agents’ opinions not with a single credence
function c, but with a set of credence functions C. Sets of credence func-
tions are called imprecise credal states (see Mahtani, this volume).10 To a
first approximation, imprecise credal states also measure how confident
agents can be said to be in various propositions. But they allow for a
strictly greater range of opinions than precise credal states. For example,
if c(X) = 1 for all c in C, then our agent is 100% confident that X is true.
If, however, 0.6 ≤ c(X) ≤ 0.9 for all c in C, and nothing stronger, then she
is at least 60% confident and at most 90% confident that X is true. But she
has no precise level of confidence for X. Precise credence functions allow
for the first sort of opinion, but not the second.

But again, what exactly does this mean? What does it mean to say
that an agent is at least 60% confident and at most 90% confident in a
proposition?

The history of Bayesianism is chock-full of different accounts of credence
that aim to answer this question. Very roughly, we can lump them into
three groups: measurement-theoretic accounts, decision-theoretic accounts,
and interpretivist accounts. Before exploring the differences between these
various accounts, it is worth emphasising one similarity. They all treat
‘credence function’ or ‘credal state’ in roughly the way Carnap treated
theoretical terms more generally. They carve out some theoretical role (or
set of roles) R as constitutive of what it is for a real-valued function, c, or
a set of such functions, C, to count as “your credal state.” The better c (or
C) plays role R, the more eligible it is as a “credal state candidate.” What
these accounts disagree on is what the relevant theoretical role R is.

10 Precise credal states are special cases of imprecise credal states, on the imprecise Bayesian
view. Formally, C is precise just in case C = {c} for some credence function c.
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3.1 Measurement-Theoretic Account of Credence

Measurement-theoretic accounts, like those of Koopman (1940a, 1940b), Good
(1950), and Krantz et al. (1971), treat credal states as mere numerical mea-
surement systems for comparative beliefs (or more generally, for some
underlying structure of comparative and qualitative opinions). Compare:
numerical measurement systems for length, mass, velocity, etc., allow
engineers, scientists and the like to measure certain parts of the system
of interest, perform numerical calculations, and draw inferences about
other parts of the system. Imagine, for example, measuring the length of
two pieces of wood arranged at a right angle, and using the Pythagorean
theorem to infer how long the diagonal must be.

Similarly, on the measurement-theoretic view, credal states are mere
numerical measurement systems. They allow you to measure certain
parts of an agent’s system of comparative beliefs, perform numerical
calculations, and draw conclusions about what other comparative beliefs
she must have (or must not have). Imagine, for example, that you elicit a
sufficient number of an agent’s comparative beliefs � to be quite confident
that (i) she satisfies Scott’s axioms, so that � fully agrees with some
probability function c, and further that (ii) c(X) = 0.3, c(Y) = 0.4, and
c(X ∩ Z) = c(Y ∩ Z) = 0. Given these measurements, you can use the
probability axioms to calculate that c(X ∪ Z) ≤ c(Y ∪ Z). Since c fully
agrees with �, you can infer that X ∪ Z � Y ∪ Z. (See Section 5 for a more
complete introduction to the measurement-theoretic view.)

The upshot: just like measurement systems for physical quantities
(length, etc.), credal states allow you to represent comparative beliefs
in an elegant, easy-to-use, numerical fashion. And modeling comparative
(and qualitative) beliefs with numbers is useful. Numerical measurement
systems are designed specifically to reflect important structural features
of the underlying target system, so that you can use them to straightfor-
wardly extract information about one part of the system from information
about other parts.

Where does this leave us? The measurement-theoretic view takes a
particular stand on the nature of the theoretical role R that a function c
(or set of functions C) must play in order to count as “your credal state.”
More specifically, c (or C) must fully agree (or almost agree, or partially
agree, or strongly agree) with the agent’s comparative beliefs, �, in the
way required to count as a numerical measurement system for �. The
better c (or C) plays this role R, the more eligible it is as a credal state
candidate. Equally good measurement systems are equally eligible credal
state candidates.
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3.2 Decision-Theoretic Account of Credence

Decision-theoretic accounts of credence, like those of Ramsey (1931), de Finetti
(1931, 1964), and Walley (1991), carve out a rather different theoretical
role for credal states. Credal states, on these views, encode an agent’s fair
buying and selling prices. An agent’s fair buying price for a gamble G is,
roughly, the largest amount that she could pay for G while still leaving
herself (in her own view) in at least as good a position as the status quo.
An agent’s fair selling price for a gamble G is, roughly, the smallest amount
that someone else would have to pay her in exchange for G in order to
leave herself (in her own view) in at least as good a position as the status
quo.

To illustrate, imagine that you have an urn. The urn contains 10 balls.
Each ball is either red or black. There are at least 3 black balls, and at most
7 black balls. But you have no absolutely no idea whether the urn contains
3, 4, 5, 6, or 7 black balls.

Let G be the gamble that pays out £10 if a random draw from the urn
yields a black, and £0 otherwise. Given what you know about the contents
of the urn, you would likely judge that paying a measly £1 for G is a good
deal. Maybe £2 is a good deal too. But let’s imagine that £3 is your limit.
Paying any more than £3 would leave you in a situation where you are
no longer, in your own view, determinately doing at least as well as the
status quo. Then your fair buying price for G is 3. More carefully, your fair
buying price for G is 3 iff you weakly prefer paying 3 and receiving G to
the status quo, but not so for any amount higher than 3.

Similarly, suppose that a friend wants to buy G from you. They will
pay you some initial amount. Then you will pay them £10 if the draw
comes up black and £0 otherwise. Given what you know about the urn,
you would likely judge that selling G to your friend for £9 is a good deal
(for you, anyway). Maybe £8 is a good deal too. But let’s imagine that £7
is your limit. If they offer you any less than £7, then you would be left
in a position where you are no longer, in your own view, determinately
doing at least as well as the status quo. Then your fair selling price for G
is 7. More carefully, your fair selling price for G is 7 iff you weakly prefer
receiving 7 and selling G to the status quo, but not so for any amount
lower than 7.

On the decision-theoretic view, the principal theoretical role of an agent’s
credal state is to encode her fair buying and selling prices. A set E of real-
valued functions e counts as “your credal state” just in case its lower and
upper envelope for gambles G,

E [G] = inf
{

e(G) | e ∈ E
}

,

E [G] = sup
{

e(G) | e ∈ E
}

,
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are equal to your fair buying and selling prices for G, B(G) and S(G),
respectively, i.e., E [G] = B(G) and E [G] = S(G). (Treat a single real-valued
function e as the singleton E = {e}.) The better E plays this role R—the
closer its lower and upper envelopes are to your fair buying and selling
prices—the more eligible it is as a credal state candidate.

Your credal state only captures information about your beliefs, on this
view, insofar as they are reflected in your fair buying and selling prices.
For any proposition X ∈ F , let GX be the unit gamble on X, i.e., the gamble
that pays out £1 if X and £0 otherwise. Your lower and upper “previsions”
for GX, E [GX] and E [GX] (i.e., the value of the lower and upper envelopes
of E at GX), encode your fair buying and selling prices for GX. If you are
willing to pay something near £1 for a unit gamble on X (E [GX] ≈ 1),
then for the purposes of decision-making you are quite confident in X. If you
would be happy to sell a unit gamble on X to a friend for mere pennies
(E [GX] ≈ 0), then for the purposes of decision-making you have extremely
low confidence in X. If you would only buy a unit gamble on X for next to
nothing (E [GX] ≈ 0), and would only sell a unit gamble on for close to its
maximum payout (E [GX] ≈ 1), then for the purposes of decision-making
you have no idea whether X is true. Your opinions are rather imprecise.

The decision-theoretic view comes in many flavours—one for each way
of thinking about the preferences that determine your fair buying and
selling prices. On a flat-footed behaviourist view, B(G) is your fair buying
price for G just in case you actually buy G for B(G), and actually refuse to
buy G for any higher price (or perhaps do so a sufficiently high proportion
of the time). On a more sophisticated behaviourist view, B(G) is your fair
buying price for G just in case you are disposed to buy G for B(G), and
disposed to refuse to buy G for any higher price. Alternatively, we might
reject behaviourism in its various guises, and say that the preferences that
fix your fair buying/selling prices are irreducibly evaluative attitudes.

But where do comparative beliefs enter the picture? It may not appear
that comparative beliefs play an especially important role in explicating
the concept of credence on the decision-theoretic view. After all, on this
view, an agent’s credal state encodes her fair buying and selling prices.
And fair buying and selling prices are fixed by one’s preferences, not
their comparative beliefs. Even on Savage’s view, where comparative belief
reduces to preference, different fragments of an agent’s preference relation
fix her fair buying/selling prices and comparative beliefs, respectively.
Nonetheless, rational comparative beliefs and fair buying/selling prices
hang together in a certain way (Section 6). So comparative beliefs (and
representation theorems) will be important for answering the normative
question, even on the decision-theoretic view.

Also worth noting: if an agent has a precise credal state E = {e}, then

E [G] = E [G]
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for all gambles G. That is, her fair buying prices just are her fair selling
prices. The maximum amount she is willing to pay for G is precisely the
minimum amount she is willing to accept in exchange for selling G. Agents
with genuinely imprecise credal states (non-singleton E ), in contrast, may
well think that buying is worthwhile only at very low prices, and selling is
worthwhile only at very high prices. Imprecise Bayesians typically see this
as the proper (or at least a permissible) type of evaluative attitude to bear in
decision contexts where evidence is unspecific or ambiguous.

One final note: measurement-theoretic and decision-theoretic accounts
of credence can be difficult to distinguish in practice. Consider a propo-
nent of the measurement-theoretic account, such as Savage, who treats
comparative belief as reducible to preference (Savage, 1954, Section 3.2).
You judge that X � Y iff whenever you prefer one outcome to another, you
also prefer getting the better outcome if X than if Y. Then certain types
of measurement systems for comparative belief—viz., sets of probability
functions—encode fair buying and selling prices (see Section 6). Whence
the difference, then, between this sort of measurement-theoretic account
of credence, and a decision-theoretic account?

The difference is this. On the measurement-theoretic view, any numerical
measurement system for � does the work necessary to count as “your
credal state”—not just ones that encode your fair buying and selling
prices. Likewise, on the decision-theoretic view, any numerical system that
encodes your buying and selling prices counts as “your credal state.” But
some of those systems (viz. upper and lower previsions) carry too little
information to determine a numerical representation of your preference
relation (Walley, 2000, Section 6).

Shorter: even though some numerical systems do both jobs (measu-
rement-theoretic and decision-theoretic), it is possible to do one without
doing the other. So the two accounts make different predictions about
which functions (sets of functions) count as “eligible credal state candi-
dates.”

3.3 Interpretivist Account of Credence

Our final account of credence is the interpretivist account, of the sort es-
poused by Lewis (1974) and Maher (1993). According to preference-based
interpretivist accounts, like Patrick Maher’s, “an attribution of probabili-
ties and utilities is correct just in case it is part of an overall interpretation
of the person’s preferences that makes sufficiently good sense of them
and better sense than any competing interpretation does” (Maher, 1993, p.
12). And according to Maher, if some probabilistically coherent credence
function c and cardinal utility function u jointly agree with an agent A’s
preferences, in the following sense:



comparative probabilities 293

A weakly prefers α to β

iff
Ec[α] ≥ Ec[β]

(where Ec[α] and Ec[β] are the expected utilities of acts α and β relative to
c and u, respectively), then c and u perfectly rationalise or make sense of that
agent’s preferences.

On Maher’s view, both credence functions and utility functions earn
their theoretical keep by rationalising preferences. If c and u rationalise
your preferences better than any competing c∗ and u∗, then c plays the
appropriate theoretical role to count as “your credal state,” and u plays
the appropriate theoretical role to count as “your utility function.” This
presupposes the thesis of the primacy of practical reason. Whether or
not c rationalises your comparative and qualitative beliefs, understood as
irreducibly doxastic attitudes, is neither here nor there. What makes c “your
credence function” is the fact that it helps to rationalise your preferences.

But we can distinguish another brand of interpretivism: epistemic inter-
pretivism. This is a new account of credence. So we will spend a bit of time
developing it.

According to epistemic interpretivism, credal states are assignments of
truth-value estimates (or sets of such assignments) that rationalise one’s
comparative beliefs (or more generally, her comparative and qualitative
opinions), understood as irreducibly doxastic attitudes. A function c :
F → R (or set C) counts as “your credal state” just in case it encodes truth-
value estimates (or constraints on such estimates) that best rationalise or
make sense of your comparative beliefs.

Spelling out epistemic interpretivism requires two things: (i) saying
something about what truth-value estimates are, and (ii) explaining what
it means for truth-value estimates to best rationalise a set of comparative
beliefs.

Estimates are familiar enough. For example, an analyst’s best estimate
of Tesla’s stock price 1 years hence might be $425. Your best estimate of
the number of bananas in a randomly selected bunch might be 5.7. And so
on. In each of these examples, there is the agent doing the estimating, there
is the quantity being estimated, and there is the estimate of that quantity.
For the purposes of spelling out epistemic interpretivism, it is the last of
these that matters most.

Estimates are numbers. But not all numbers are estimates. For example,
the numbers in the expression

1, 000, 000 > 2

are not estimates. What sorts of numbers are estimates then? Plausibly,
they are numbers that are subject to a certain standard of evaluation. A
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number is an estimate in a context iff it is evaluated qua estimate in that
context. In typical contexts of evaluation, numbers like 2 in expressions like
the above are not estimates because they are not evaluated qua estimates.
There is no quantity that it would be better or worse for 2 to be close to. It
is no better or worse for being close to the actual price of stock X, or the
actual dosage of drug Y, etc. In contrast, the number at the bottom of a
contractor’s quote—a paradigm of an estimate—is evaluated qua estimate.
It is quite bad, for example, if it is £20, 000 off the actual price of the job.

What exactly is it to evaluate a number qua estimate? We will not provide
a full answer here. But we can say something informative.

The type of phenomenon under consideration—evaluating an entity E
qua X—is a common one. You might be brilliant qua scientist, mediocre
qua mentor, and terrible qua conversationalist. The reason seems to be
this: scientists, mentors and conversationalists all perform characteristic
functions. And you can perform some functions well while performing
others poorly. Microbiologists, for example, carefully dissect tissue samples,
meticulously document their experiments, write up academic papers,
communicate their results at conferences, etc. Conversationalists, on the
other hand, ask engaging questions, are familiar with current events, and
so on. You might well dissect tissue samples masterfully, but have no idea
what the news of the day is.

This suggests the following. Evaluating an entity E in some capacity X , or
qua X , is a matter of evaluating E on the basis of how well it performs the
characteristic functions F1, . . . ,Fn associated with X . What to say about
estimates in particular then? What characteristic functions do they serve,
for example, in scientific inquiry, engineering, finance, etc.? Whatever the
full answer is, the following seems non-negotiable: an estimate of quantity
Q serves the function of approximating the true value of Q. So ceteris
paribus it is better the closer it is to the true value of Q.

Note that, on the present account, for a number to count as an estimate in
a context, there must be an evaluator in that context; an agent evaluating the
number qua estimate. (This need not require having the concept estimate,
or anything of the sort. Evaluating a number qua estimate might be a fairly
cognitively undemanding task.) But there need be no estimator; no agent
producing the estimate; no agent explicitly judging that this is the best
estimate of that, etc.

Thermometers provide estimates of temperature. Geiger counters pro-
vide estimates of radiation. Ditto for other measurement devices. In each
of these cases, there is an estimate (38◦C, 0.10mSv, etc.), but no estimator;
no agent doing the estimating. Similarly, a tree’s rings provide an estimate
of its age. Your parents’ income provides an estimate of your income.
Again, estimates without estimators. And estimates, of course, do not need
to be good. The number of tea leaves concentrated in one part of your cup
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provides a (thoroughly unreliable) estimate of the number of fortunate
events in your future. Once more: estimate, but no estimator.

The upshot: we can talk of estimates doing this or that—for example,
rationalising a set of comparative beliefs—even if those estimates do not
“belong” to anyone. Estimates without estimators.

Back to our original question: what are truth-value estimates? We have
made some progress in saying what estimates are more generally. Now,
following de Finetti and Jeffrey, treat a proposition X as an “indicator
variable” that takes the value 1 at worlds where X is true, and 0 where X
is false. Truth-value estimates, then, are simply estimates of the value, 0 or
1, that the proposition takes at the actual world.

To finish spelling out the epistemic interpretivist account of credence, we
need to explain what it means for truth-value estimates to “best rationalise”
a set of comparative beliefs. To get a feel for how this might work, consider
an example. Grandma relies on folklore methods for predicting the weather.
She feels things in her bones, observes the behaviour of the cows in the
pasture, etc. You are not sure whether the weather-related opinions that
Grandma comes to on this basis make much sense or not. But then you
open your weather app. Lo and behold, you find a bunch of estimates—
probabilities for sun, clouds, rain, etc., estimates of rainfall amount, hour-
by-hour temperature estimates, etc.—that recommend thinking precisely
what Grandma thinks. For example, Grandma thinks it is likelier than not
to rain this evening. And the weather app recommends thinking that too.
It specifies a greater than 50% probability of rain. (We will explore a few
different accounts of recommendation shortly.)

The weather app’s estimates recommend having Grandma’s opinions.
And these estimates are themselves eminently rational. In virtue of this,
they rationalise or make sense of those opinions.

Note, however, that the weather app itself is not essential to this story.
Estimates do not need an estimator. If there exists some rational set of
estimates that recommend Grandma’s opinions, then whether or not
any weather app actually spits those estimates out, or any meteorologist
actually judges those estimates to be best—or indeed whether any artificial
or human system is in the business of explicitly estimating quantities
at all—Grandma’s opinions are nonetheless rationalisable. The rational
estimates that recommend her opinions provide that rationale.

Before saying something more general about when a set of truth-value
estimates best rationalises a set of comparative beliefs, we should key
in on two important features of our example. The first is the strength
of the recommendation in question. The second is the quality of that
recommendation.

We stipulated that the weather app’s estimates recommend having
Grandma’s opinions. This makes it seem as though recommendation is
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an on-off matter. But recommendations plausibly come in degrees. You
can recommend a trip to the Alps a little more strongly than a trip to
Tahoe, but much more strongly than a trip to Cudahy, Wisconsin. In our
example, the weather app’s estimates most strongly recommend thinking
precisely what Grandma thinks. We might have stipulated, however, that
they recommend a similar but distinct state of opinion most strongly, and
recommend Grandma’s state of opinion a little less strongly. In that case,
the weather app’s estimates provide a fairly strong, but not maximally
strong rationale for Grandma’s state of opinion.

In addition to the strength of a recommendation, we can consider the
quality of that recommendation. We stipulated that the weather app’s
estimates are eminently rational. But our weather app could have been a
bit glitchy and delivered mildly irrational estimates (ones that violate the
probability axioms, perhaps, but not by much). Those estimates might still
recommend thinking what Grandma thinks just as strongly. But in virtue
of their mild irrationality, they provide a slight lower quality rationale for
Grandma’s state of opinion.

The distinction between strength and quality is important. If Grandma’s
state of opinion is epistemically defective, it may turn out that no estimates
unreservedly recommend it, i.e., recommend it at least as strongly as any
other state of opinion. Every set of estimates might recommend some other
state of opinion more strongly. Nonetheless, some sets of estimates might
recommend Grandma’s state of opinion more strongly than others. And
amongst the sets of estimates that recommend it as strongly as possible
(at least as strongly as any other set of estimates), some might provide a
higher quality recommendation than others. The extent to which a set of
estimates rationalises or makes sense of a state of opinion depends on both
strength and quality. To provide the best possible rationale for Grandma’s
state of opinion, for example, a set of estimates must (i) recommend
that state as strongly as possible, and (ii) must provide the highest quality
recommendation from amongst the sets of estimates that satisfy (i).

Let’s take stock. According to epistemic interpretivism, a function c :
F → R (or set of functions C) counts as “your credal state” just in case
it encodes truth-value estimates (or constraints on such estimates) that
best rationalise or make sense of your comparative beliefs. We gave a brief
account of estimatehood to fill this out a bit. And we quickly unpacked
what it means for c (or C) to “best rationalise” your comparative beliefs,
�. To best rationalise �, c should provide at least as strong a rationale for �
as any other set of truth-value estimates c∗. And on the picture sketched
above, c provides a rationale for � by recommending �. So for c to count
as “your credal state,” no other c∗ can recommend � more strongly than
c. Moreover, amongst the truth-value estimates that provide a maximally
strong rationale for � (recommend it as strongly as possible), c should
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provide at least as high quality a rationale as any other c∗. On the picture
sketched above, the quality of c’s rationale depends on how close c itself
is to rational. So for c to count as “your credal state,” no other c∗ that
recommends � as strongly as possible should be more rational than c.
Pulling this all together, c (or C) counts as “your credal state” just in case
it encodes truth-value estimates (or constraints on such estimates) that
recommend your comparative beliefs as strongly as possible, and are as
rational as possible whilst doing so. See Figure 5.

c1 c2 c3

Estimates that recom-
mend your compara-
tive beliefs as strongly
as possible

Maximally
rational
estimates

Provides some
rationale for
your
comparative be-
liefs

Provides a
higher quality
rationale

Provides the
highest quality
rationale

Figure 5: More rational estimates provide higher quality rationales.

The big lingering question is this: when exactly does a set of truth-
value estimates recommend a certain set of comparative beliefs more or less
strongly? There are a number of ways one could spell this out. We will not
defend a particular account of recommendation here. But here are three
options.

Metaphysical Account. The truth-value estimates given by
c : F → R recommend � to degree k iff it is metaphysically
necessary that any agent who explicitly judges c(X) to be the
best truth-value estimate for X, for all X ∈ F , has comparative
beliefs �c and D(�c,�) = 1/k, where D is some reasonable
measure of distance between comparative belief relations.

On the metaphysical account, judging c : F → R to encode the best truth-
value estimates for propositions in F entails having certain comparative
beliefs �c. Since having comparative beliefs �c is part and parcel of judg-
ing c best, c recommends �c as strongly as possible. And c recommends
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other comparative beliefs, �, less strongly the further away they are from
�c. See Deza and Deza (2009) and Fitelson and McCarthy (2015) for more
information on measures of distance between comparative belief relations.

Our next account says that while judging c to encode the best truth-value
estimates may not entail that you have some set of comparative beliefs
or other, it nevertheless rationally requires you to have those beliefs. And
we can use this fact to say what it is for a set of truth-value estimates to
recommend comparative belief relations to different degrees.

Normative Account. The truth-value estimates given by c :
F → R recommend � to degree k iff it is rationally required
that any agent who explicitly judges c(X) to be the best truth-
value estimate for X, for all X ∈ F , has comparative beliefs �c

and D(�c,�) = 1/k, where D is some reasonable measure of
distance between comparative belief relations.

A proponent of the normative account might treat the principles of
rationality that generate the relevant requirement as properly basic compo-
nents of her epistemology. Alternatively, she might provide a teleological
explanation of why those principles have the normative force that they do
by appealing to facts about epistemic value or utility. One final account of
recommendation—the epistemic utility account—explains recommendation
more directly in terms of epistemic value/utility facts. Informally, the epis-
temic utility account says that c recommends � to degree k just in case the
most rational way of adding estimates of the value of comparative beliefs
to the stock of truth-value estimates encoded by c involves estimating �
to have epistemic utility k.

Let’s make this a little more precise. An assignment of truth-value
estimates c : F → R (or set C) maps a very specific kind of measurable
quantity—propositions or indicator functions—to estimates. Let Q be the set
of all measurable quantities Q : Ω → R. An assignment est : Q → R of
estimates to measurable quantities extends c just in case c(X) = est(X) for
all X ∈ F .

To make sense of something being closer or further from rational, we
need two things: an epistemic utility function U and laws of preference L.

First let’s talk about U . For any assignment of truth-value estimates
c, U (c, w) measures how epistemically valuable c is at world w. What-
ever properties make truth-value estimates epistemically valuable at a
world, U (c, w) captures the extent to which c has a good balance of these
properties at w. Likewise, U (�, w) measures how epistemically valuable
comparative beliefs � are at world w. For a philosophically rich discussion
of how to measure the epistemic value of estimates, see Joyce (2009) and
Pettigrew (2016).
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Laws of preference L are familiar from decision theory. In conjunction
with U , they specify rationally permissible ways of structuring one’s
preferences over options. For example, the law of dominance says that if
one option o is guaranteed to have higher utility than another option o∗,
then you ought to prefer o to o∗. Likewise, the law of (first-order) stochastic
dominance says: if for any possible utility value x, o is guaranteed to have
greater chance than o∗ of having higher-than-x utility, then you ought to
prefer o to o∗. And so on.

Let T be the set of rational truth-value estimates, relative to U and L,
i.e., the set of c that are not dispreferred to some other c∗. Let E be the set
of rational estimates more generally relative to U and L, i.e., the set of est
that are not dispreferred to some other est∗.

Say that est is the maximally rational extension of c to Q iff (i) est extends
c to Q, and (ii) est is closer to rational (i.e., closer to E ) than any other est∗

that extends c to Q.
We can now state the epistemic utility account more precisely.

Epistemic Utility Account. The truth-value estimates given by
c : F → R recommends� to degree k iff the maximally rational
extension of c to Q, estc, is such that such that estc(U (�)) = k.

The basic thought here is that while c might not directly encode estimates
of quantities other than truth-values, it nonetheless takes a stand on how
to estimate those quantities. It encodes such estimates indirectly. There is
some most rational way of adding estimates of other measurable quantities
Q to the stock of truth-value estimates encoded by c. These estimates,
estc(Q), are the best estimates of those quantities, from c’s perspective.
So, in effect, the epistemic utility account says that c recommends � to
degree k just in case it indirectly estimates � to be epistemically valuable
to degree k.

There are no doubt myriad unanswered questions about each of these
accounts of recommendation. It is not our purpose to provide a full defense
of any particular account. Just note that you can choose your favourite
(or one not on the list) and slot it into our official version of epistemic
interpretivism.

Epistemic Interpretivism. A function c (or set C) counts as
“your credal state” iff it best rationalises your comparative
beliefs �. Moreover, c (or set C) best rationalises � iff (i) it
recommends � as strongly as possible, so that no other c∗

(or set C∗) recommends � to a higher degree, and (ii) c is
itself closer to rational (closer to T ) than any other c∗ that
recommends � as strongly as possible.

Even setting aside questions about how to understand recommendation,
there are various lingering questions about epistemic interpretivism. For
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example, one might wonder what makes comparative beliefs more or less
epistemically valuable at a world, or how to measure such value. See
Fitelson and McCarthy (2015) for an investigation of “additive” epistemic
utility measures for comparative belief. One might also wonder what
makes one set of estimates closer to rational than another. For a nuanced
discussion, see Staffel (2018). We will not address these questions here. But
we will evaluate epistemic interpretivism in a bit more depth in Section 7.

4 challenges to the relevance of representation theorems

We now have a number of accounts of credence on the table, however
briefly sketched. These accounts purport to tell us what it means to say
that an agent is x% confident in a proposition (if she has precise credences),
or between y% and z% confident (if she has imprecise credences).

Proponents of these accounts use them to answer some important ques-
tions. For example, when exactly is there a real-valued function c (or set
C) that plays the relevant theoretical role R well enough to count as “your
credal state”? Following Meacham and Weisberg (2011), we will call this
the characterisation question. And why should we expect rational agents
to have probabilistically coherent credences? We will call this the normative
question.

In answering these questions, proponents typically invoke coherence
constraints (on either preference or comparative belief) and representation
theorems. Hájek (2009), Meacham and Weisberg (2011), and Titelbaum
(2015) challenge any such approach. Whatever account of credence you
adopt, they argue, there is no plausible representation-theorem-centric
narrative that could answer these questions. Their objections are many. We
will focus on a few central ones.

Hájek, Meacham and Weisberg, and Titelbaum all imagine that the
“basic representation theorem argument” goes as follows.

1. Coherence Constraints. Any rational agent’s comparative belief rela-
tion � satisfies coherence constraints φ.

2. Representation Theorem. Relation � satisfies constraints φ if and only
if � fully agrees (or almost agrees, or partially agrees, or strongly
agrees) with some probability function c (or set of probability func-
tions C).

C. Probabilism. Any rational agent has probabilistic credences (either
precise credences given by c, or imprecise credences given by C).

If successful, this argument would at least partially answer both the char-
acterisation and normative question at once. When is there a credence
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function c, or a set of such functions C, that plays the relevant theoret-
ical role R well enough to count as your credal state? Whenever your
comparative beliefs satisfy coherence constraints φ! Satisfying φ is a suffi-
cient condition for having credences. And why should we expect rational
agents to have probabilistically coherent credences? Because the coherence
constraints φ are rationally mandatory. And any agent who satisfies φ not
only has credences, but probabilistically coherent credences.

But this argument is not successful as it stands. As Eriksson and Hájek
(2007), Hájek (2009), Meacham and Weisberg (2011), and Titelbaum (2015)
emphasise, it does not follow from the mere fact that some probabilistically
coherent credence function fully agrees with her comparative beliefs that
she in fact has probabilistic credences. So the argument is invalid. Hájek
puts the point as follows (cf. also Meacham and Weisberg, 2011, p. 14, and
Titelbaum, 2015, p. 274):

the mere possibility of representing you one way or another
might have less force than we want; your acting as if the repre-
sentation is true of you does not make it true of you. To make
this concern vivid, suppose that I represent your preferences
with Voodooism. My voodoo theory says that there are warring
voodoo spirits inside you. When you prefer A to B, then there
are more A-favouring spirits inside you than B-favouring spir-
its [. . . ] I then ‘prove’ Voodooism: if your preferences obey the
usual rationality axioms, then there exists a Voodoo represen-
tation of you. That is, you act as if there are warring voodoo
spirits inside you in conformity with Voodooism. Conclusion:
rationality requires you to have warring Voodoo spirits in you.
Not a happy result. (Hájek, 2009, p. 238)

The same thing, these objectors claim, can be said about the representation
theorem argument for probabilism. Just because your preferences can
be represented as the end product of a vigorous war between the voodoo
spirits inside you does not imply that you in fact have such spirits inside
you. Similarly, just because your comparative beliefs can be represented as
arising from precise credences c (or imprecise credences C) does not imply
that you in fact have such credences.

This line of criticism is not particularly concerning. The reason: no
Bayesians put forward this basic “representation theorem argument.”
Koopman, Savage, Joyce, etc.; they all presuppose some account of credence
or other. For example, Krantz et al. presuppose a measurement-theoretic
account of credence.

we inquire into conditions under which an ordering � of E

has an order-preserving function P that satisfies Definition
2. Obviously, the ordering is to be interpreted empirically as
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meaning “qualitatively at least as probable as.” Put another
way, we shall attempt to treat the assignment of probabilities
to events as a measurement problem of the same fundamental
character as the measurement of, e.g., mass or momentum.
(Krantz et al., 1971, pp. 199–202)

The upshot: any faithful reconstruction of the “representation theorem
argument” really ought to feature an account of credence explicitly as a
premise. The simple argument under attack here fails this basic test.

Of course, objectors do not focus exclusively on this simple version
of the representation theorem argument. Hájek, Meacham and Weisberg,
and Titelbaum all consider more sophisticated versions as well. A fairly
general, more charitable way of understanding what fans of representation
theorems are up to is this. Firstly, to shed some light on the characterisation
question, they establish a “Bridge Theorem” which shows that the function
c, or set of functions C, outputted by their favourite representation theorem
is fit to play the theoretical role R singled out by their favourite account
of credence.

Bridge Theorem. If � satisfies φ, then at least one of the prob-
ability functions c (or set of probability functions C) whose
existence is guaranteed by the Representation Theorem plays role
R well enough to count as “your credal state.”

Secondly, to answer the normative question, they put their favourite ac-
count of credence, their favourite representation theorem, and this bridge
theorem to work in order to provide a more sophisticated argument for
probabilism.

1. Coherence Constraints. Any rational agent’s comparative belief rela-
tion � satisfies coherence constraints φ.

2. Theory of Credence. A real-valued function c (or set C) counts as
“your credal state” to the extent that it plays theoretical role R. The
better c (or C) plays role R, the more eligible it is as a “credal state
candidate.”

3. Representation Theorem. Relation � satisfies constraints φ if and only
if � fully agrees (or almost agrees, or partially agrees, or strongly
agrees) with some probability function c (or set of probability func-
tions C).

4. Bridge Theorem. If � satisfies φ, then at least one of the probability
functions c (or set of probability functions C) whose existence is
guaranteed by the Representation Theorem plays role R well enough
to count as “your credal state.”
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C. Probabilism. Any rational agent has probabilistic credences (either
precise credences given by c, or imprecise credences given by C).

In Section 5–7, we will evaluate how this argument fares on each of our
competing accounts of credence. But it is worth addressing some general
concerns about this argumentative strategy here.11

Meacham and Weisberg worry that even if the axioms φ of your favourite
representation theorem encode genuine coherence constraints on rational
comparative belief, ordinary folks like you and me are not typically rational
(Meacham & Weisberg, 2011, pp. 7–8).12 Our comparative beliefs violate
these constraints φ. So even if the Bridge Theorem is correct—even if
the representation theorem in question would output a function c, or a
set of functions C that deserves to be called “your credal state” if your
comparative beliefs satisfied φ—it is silent about ordinary folks. The
upshot: it does not help to answer the characterisation question in any
interesting way. While it does specify sufficient conditions for having
credences, those conditions are so demanding that they are more or less
irrelevant for agents like us.

This concern, however, does not cut much ice. As we will see in Section 5–
7, there is plenty to say about when ordinary folks—folks who reliably
violate constraints of rationality—count as having credences on each of
our competing accounts (measurement-theoretic, decision-theoretic, and
epistemic interpretivist).

Meacham and Weisberg also worry that the “representation theorem ar-
gument” trivialises normative epistemology (Meacham & Weisberg, 2011,
pp. 14–16). There is a gap, recall, between representability and psycho-
logical reality. Just because your comparative beliefs can be represented
as arising from precise credences c (or imprecise credences C) does not
imply that you in fact have such credences. To avoid this problem, the
objection goes, representation theorem arguments must stipulatively define
an agent’s credences to be given by the function c (or set C) outputted by
one’s favourite representation theorem. But those theorems deliver proba-
bilistic representations by construction. So it is simply true by stipulative
definition that whenever an agent has credences, they are probabilistically
coherent. Whence the normative force of probabilism then? The claim that
rational credences are probabilistically coherent is trivial if all credences
are probabilistically coherent by definition.

11 The following objections are adapted from Hájek (2009), Meacham and Weisberg (2011),
and Titelbaum (2015).

12 Meacham and Weisberg are concerned primarily with representation theorems for preference
relations. Accordingly, they focus on empirical data that shows that ordinary agents reliably
violate putative coherence constraints on rational preference. For example, Kahneman and
Tversky (1979) show that subjects consistently violate Savage’s Independence Axiom, and
Lichtenstein and Slovic (1971, 1973) show that subjects often have intransitive preferences.
We adapt their concerns to the case of comparative belief mutatis mutandis.



304 jason konek

But again this concern need not give us much pause. We do not need
to bridge the gap between representability and psychological reality by
stipulative definition. Rather, we bridge that gap by (i) providing a theory
of credence, which specifies the theoretical role R that a function c (or set
C) must play to count as “your credal state,” and (ii) providing a bridge
theorem, which establishes that some function c (or set C) outputted by
one’s favourite representation theorem in fact plays roleR sufficiently well.
This strategy does not stipulatively define your credences as those given
by c (or C). Far from it. Establishing that c (or C) plays R well enough to
count as “your credal state” requires substantive argumentation.

It is safe, then, to put these general concerns to the side. Of course, their
spectre lingers until we see the details about the relevant bridge theorems
and so on (Section 5–7). We now turn our attention to evaluating how
well this strategy answers the characterisation and normative questions,
respectively, on each of our competing accounts of credence.

5 evaluating the measurement-theoretic view

5.1 Interpreting Credence Functions

On the measurement-theoretic view, a credence function c (or set C) is
a mere numerical measurement system. It allows you to represent an
agent’s comparative belief structure, 〈Ω,F ,�〉, numerically in the follow-
ing sense. Firstly, c maps the propositions X in F to real-valued proxies,
c(X). Secondly, it does so in a “structure-preserving fashion.” If c fully
agrees with �, then one proxy c(X) is larger than another c(Y) exactly
when our agent is more confident in X than Y (and c(X) = c(Y) exactly
when she is equally confident in X and Y):

X � Y ⇔ c(X) ≥ c(Y).

In this sense, the familiar “greater than or equal to” relation ≥ on the
real numbers “preserves the structure” of our agent’s comparative belief
relation � on F . Because of this, you can use the numerical measurement
system in helpful ways. You can elicit certain comparative beliefs, infer
properties of c, perform numerical calculations, and draw conclusions
about what other comparative beliefs she must have (or must not have).

Similarly, a set of real-valued functions C can provide a numerical
measurement system for �. If C fully agrees with �, then the c in C
uniformly assign larger proxies to X than Y exactly when our agent is
more confident in X than Y (and uniformly assign equal proxies exactly
when she is equally confident in X and Y):

X � Y ⇔ c(X) ≥ c(Y) for all c ∈ C.
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Once more, this allows you to use the (imprecise) numerical measurement
system C in helpful ways. You can elicit certain comparative beliefs, infer
properties of C, perform numerical calculations, and draw conclusions
about what other comparative beliefs she must have (or must not have).

Weaker types of agreement yield numerical measurement systems fit
for slightly different purposes. Suppose, for example, that c strongly agrees
with �:

X � Y ⇒ c(X) ≥ c(Y),

X � Y ⇒ c(X) > c(Y).

Such a measurement system licenses fewer inferences about � than fully
agreeing systems. To see this, imagine that c is a probability function, X
and Y are both incompatible with Z, and X � Y. Then since c strongly
agrees with �, we have c(X) > c(Y). And since c is a probability function,
c(X ∪ Z) > c(Y ∪ Z). Hence c(X ∪ Z) 6≤ c(Y ∪ Z). From this we can infer
that X ∪ Z 6� Y ∪ Z. But we cannot infer that X ∪ Z � Y ∪ Z. If, on the
other hand, c were to fully agree with �, then we could make this latter
inference.

To recap: the measurement-theoretic view takes a particular stand on
the nature of the theoretical role R that a function c (or set C) must play
in order to count as “your credal state.” More specifically, c (or C) must
fully agree (or almost agree, or partially agree, or strongly agree) with the
agent’s comparative beliefs, �, in the way required to count as a numerical
measurement system for �. The better c (or C) plays this role R, the more
eligible it is as a credal state candidate.

Importantly, though, any function c (or set C) that plays this role R has
equal claim to be called “your credence function,” on the measurement-
theoretic view. Any order-preserving mapping (homomorphism) from
F into R is just as eligible as a credal state candidate as any other. So
credence functions are not unique. Indeed, if c fully agrees (or almost
agrees, or partially agrees, or strongly agrees) with �, then any of the
infinitely many strictly increasing transformations of c do so as well. So
if you have one credence function, on this view, then you have infinitely
many.

In addition, interpreting credence functions requires care, on the
measurement-theoretic view. An agent’s credence function does not
wear its representationally significant features on its sleeve. Sorting out
which features of one’s credence function are representationally significant,
rather than “mere artefacts,” requires knowing what the “permissible
transformations” of that credence function are. That is, it requires knowing
not only that b counts as “your credence function,” but also what other
functions c preserve the structure of your comparative and qualitative
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beliefs, and so count as “your credence function” as well. For example, on
the standard Bayesian picture, an agent’s credence function c is such that

c(X ∩Y)
c(Y)

= c(X)

just in case she judges that Y is evidentially independent of X. But if
credence functions c are mere numerical measurement systems for an
agent’s comparative beliefs �, then properties like c(X ∩Y)/c(Y) = c(X)

are not representationally significant. They do not reflect anything real
about the agent’s doxastic state.

To see this, imagine that you take two blood tests. Let w+
+ be the world

in which both tests come back positive; w+
− be the world in which the first

comes back positive and the second negative; w−+ be the world in which
the first comes back negative and the second positive; and w−− be the world
in which both tests come back negative. You have comparative beliefs over
propositions in the following Boolean algebra:

F =
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Then the probability functions b and c in Table 1 both fully agree with �,
and hence both count as a numerical measurement systems for �. So both
play the credal state role, on the measurement-theoretic view. But b is such
that

b(
{

w+
+

}
)

b(
{

w+
+, w+

−

}
)
=

1
3
= b(

{
w+
+, w−+

}
).
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w+
+ w+

− w−+ w−−

b 11
36

22
36

1
36

2
36

c 20
64

33
64

4
64

7
64

Table 1: Probability functions b and c on F . Both fully agree with �.

Given that b is your credence function, the standard interpretation says:
you think that the result of the first test provides no evidence one way or
the other about the result of the second test. On the other hand, c is such
that

c(
{

w+
+

}
)

c(
{

w+
+, w+

−

}
)
=

20
53

>
24
64

= c(
{

w+
+, w−+

}
).

Given that c is your credence function, the standard interpretation says:
you judge that a positive outcome on the second test supports or confirms
a positive outcome on the first test. Finding out that the second test is
positive increases your credence that the first test is positive too.

What is going on here? Answer: the “standard interpretation” reads
more information into one’s credence function than is actually encoded
in that credence function. On the measurement-theoretic view, credence
functions are nothing more than numerical measurement systems that
encode the ordering determined by your comparative beliefs. (They are
mere “ordinal scale” measurement systems, not “ratio scale” measurement
systems.) But there is more to making judgments of evidential relevance
and irrelevance than having a particular constellation of comparative
beliefs. Agents who only have comparative beliefs simply are not opinion-
ated enough to count as having opinions about evidential relevance and
irrelevance. So credence functions do not reflect any such opinions.

Interpreting imprecise credal states requires care too. Suppose, for ex-
ample, that you have opinions about the propositions in the Boolean
algebra

F ∗ = {Ω, X,¬X,∅} .

Consider the precise and imprecise credal states on F ∗ given by the
probability function b in Table 2 and the set of probability functions C:

Ω X ¬X ∅

b 1 0.7 0.3 0

Table 2: Probability function b on F ∗

C =
{

c | c(Ω) > c(X) > c(¬X) > c(∅)
}

.



308 jason konek

On the standard interpretation, b and C represent different doxastic states.
An agent with credence function b is precisely 70% confident that X is true.
An agent with imprecise credal state C, in contrast, is at least 50% confident
that X is true, but nothing stronger. On the standard interpretation, these
are not idle differences. These differences in doxastic states are reflected in
one’s evaluative attitudes. For example, an agent with credence function b
will have precisely the same fair buying and selling price for a unit gamble
G on X, viz., 0.7. Paying any price up to £0.7 for G is a good deal in her
view. Selling G for any price over £0.7 is a good deal. But an agent with
imprecise credal state C will have different buying and selling prices for G.
Paying any price up to £0.5 for G is a good deal, in her view. But selling G
is only a determinately good deal if the buyer is willing to pay more than
£1.

On the measurement-theoretic view, however, b and C represent exactly
the same doxastic state. They both fully agree with the following comparative
belief relation �:

Ω � X � ¬X � ∅.

They are both order-preserving mappings from F ∗ into the reals that
preserve exactly the same structure. In this case, there is simply no substantive
difference between being 70% confident, or 89.637% confident, or at least
50% confident that X is true. Only the comparative beliefs that b and
C encode are psychologically real. Everything else is a “mere artefact”
of one’s preferred numerical measurement system. Both b and C, and
any other credal state that fully agrees with �, plays exactly the same
theoretical role: they represent the comparative beliefs captured by � in
an elegant, easy-to-use, numerical fashion—nothing more, nothing less.

5.2 Unary and Pluralist Variants

We have focussed thus far on a particular unary variant of the measurement-
theoretic view. On this view, credence functions are mere numerical mea-
sures of one’s comparative beliefs. Having credences is nothing over and
above having numerically representable comparative beliefs. You might be
attracted to this view if, for example, you think that we can explain and
rationalise everything important about choice and inference by appealing
exclusively to comparative belief—no additional modes or types of dox-
astic judgment necessary. In that case, you might say: to the extent that
we are willing to talk about prima facie distinct types of opinion—degrees
of belief, full or categorical belief, etc.—they ought to ultimately reduce
to comparative beliefs. Reducing those other types of opinion away will
allow us to provide the simplest and most unified possible explanations
of the relevant data regarding choice and inference.
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But there is also a pluralist variant of the measurement-theoretic view,
which you might find attractive if you are less optimistic about the explana-
tory power of comparative belief. On the pluralist version, agents have
a genuine plurality of doxastic attitudes, not simply comparative beliefs.
In addition to comparative beliefs, agents also have: (i) opinions about
the evidential dependence or independence of one hypothesis on another; (ii)
opinions about the causal dependence or independence of one variable on
another; (iii) full or categorical beliefs; they may even (iv) explicitly estimate
the values of all sorts of different variables, including the frequency of
truths in a set of propositions, and the truth-values of individual proposi-
tions. Estimating, in this sense, is a matter of making a sui generis doxastic
judgment—a type of judgment that may bear interesting relations to other
types of judgments (normative relations, causal relations, etc.), but is not
reducible to them. Estimating the truth-value of a proposition, in this
sense, is what Jeffrey (2002) calls having an exact judgmental probability for
the truth of that proposition.

On the pluralist measurement-theoretic view, your credence function
is a mere numerical measurement system, but not a measure specifically
of your comparative belief relation. Rather, on the pluralist view, you have a
genuine plurality of comparative and qualitative doxastic attitudes, and
your credence function is a measure of that entire system of attitudes.

Consider once again our blood test example. You have the following
comparative beliefs:{

w+
+, w+

−, w−+, w−−
}
�
{

w+
+, w+

−, w−−
}
�
{

w+
+, w−+, w+

−

}
�
{

w+
+, w+

−

}
�
{

w−+, w+
−, w−−

}
�
{

w+
−, w−−

}
�
{

w−+, w+
−

}
�
{

w+
−

}
�
{

w+
+, w−+, w−−

}
�
{

w+
+, w−−

}
�
{

w+
+, w−+

}
�
{

w+
+

}
�
{

w−+, w−−
}
�
{

w−−
}
�
{

w−+
}
� ∅.

But now imagine that you have a wide range of comparative and quali-
tative opinions, not just comparative beliefs. You think, for example, that
when you find out the result of the first test (positive or negative), this pro-
vides no evidence one way or the other about the result of the second test.
(Perhaps the tests probe two different, unrelated conditions.) That is, you
judge {w+

+, w+
−} and {w−+, w−−} to be evidentially independent of {w+

+, w−+}
and {w+

−, w−−}, and vice versa.
In addition, you have certain full beliefs or categorical beliefs. Let’s suppose

that you believe that the first test will come back positive. (It probes for a
condition that you quite clearly have.) That is, you fully believe {w+

+, w+
−}.

And you believe all of the logical consequences of this proposition. But
you have no further full or categorical beliefs.
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Finally, you judge 1/3 to be the best estimate of the truth-value of the
proposition that the second test will come back positive. (Recall, a proposi-
tion’s truth-value is 1 if it is true and 0 if it is false.) In Jeffrey’s parlance,
you have a judgmental probability of 1/3 for the proposition {w+

+, w−+}.
So you have a genuine plurality of doxastic attitudes: you have com-

parative beliefs; you make evidential independence judgments; you have
full or categorical beliefs; you also estimate the truth-values of certain
propositions (you have exact judgmental probabilities). On the pluralist
measurement-theoretic view, your credence function is a measure of this
entire system of attitudes.

To make this more precise, let’s model your doxastic attitudes using a
relational structure:

A =
〈
F ,�, I ,B, E1/3

〉
.

A comprises your Boolean algebra F of subsets of Ω = {w+
+, w+

−, w−+, w−−},
together with a comparative belief relation � on F , an independence relation
I , a (unary) belief relation B, and a (unary) estimation relation E1/3.
I models your evidential independence judgments. It will be convenient

to think of I as a 3-place relation on F :

I(X, Y, X ∩Y)
iff

you judge X to be evidentially independent of Y.

Since you judge {w+
+, w+

−} and {w−+, w−−} to be independent of {w+
+, w−+}

and {w+
−, w−−}, and vice versa, we have:

I(
{

w+
+, w+

−

}
,
{

w+
+, w−+

}
,
{

w+
+

}
),

I(
{

w−+, w−−
}

,
{

w+
+, w−+

}
,
{

w−+
}
),

I(
{

w+
+, w+

−

}
,
{

w+
−, w−−

}
,
{

w+
−

}
),

I(
{

w−+, w−−
}

,
{

w+
−, w−−

}
,
{

w−−
}
).

We also have I(Y, X, X∩Y) for each of these four independence judgments
I(X, Y, X ∩Y).

Likewise, B models your full or categorical beliefs:

B(X) iff you believe X.
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Since you believe {w+
+, w+

−} and all of its logical consequences, we have:

B(
{

w+
+, w+

−, w−+, w−−
}
),

B(
{

w+
+, w+

−, w−+
}
),

B(
{

w+
+, w+

−, w−−
}
),

B(
{

w+
+, w+

−

}
).

Finally, E1/3 models your explicit estimates of truth-values:

Ex(X)

iff
you judge x to be the best estimate of the truth-value of X.

Since you judge 1/3 to be the best estimate of the truth-value of {w+
+, w−+},

we have:

E1/3

({
w+
+, w−+

})
.

On the pluralist view, your credence function is a measure of your entire
system of attitudes:

A =
〈
F ,�, I ,B, E1/3

〉
.

It is a homomorphism—a structure-preserving mapping—that takes A
into some numerical structure A∗.

A∗ =
〈

R,�∗, I∗,B∗, E∗1/3

〉
.

That is, your credence function c maps F into R in a way that preserves
A’s structure, so that:13

X � Y ⇔ c(X) �∗ c(Y),

I(X, Y, X ∩Y) ⇔ I∗(c(X), c(Y), c(X ∩Y)),

B(X) ⇔ B∗(c(X)),

E1/3(X) ⇔ E∗1/3(c(X)).

Which numerical structure c takes A into, on the measurement-theoretic
view, is either a matter of convention or a matter to be decided on prac-
tical grounds. For illustrative purposes, let’s choose a familiar numerical
structure. Let �∗ by the “greater than or equal to” relation, ≥. Let I∗ be
the standard probabilistic independence relation:

I∗(c(X), c(Y), c(X ∩Y)) iff c(X)c(Y) = c(X ∩Y).

13 We could swap full agreement for almost, or partial, or strong agreement here. Weaker
notions of agreement would provide us with weaker notions of structure-preservation.
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Let B∗ be a Lockean belief relation, so that believed propositions X have
real-valued proxies c(X) that are greater than (or equal to) some threshold
τ (for concreteness let τ = 5/6):

B∗(c(X)) iff c(X) ≥ τ.

Finally, let E∗1/3 be:
E∗1/3(c(X) iff c(X) = 1/3.

This ensures that for any structure-preserving measurement system, c, you
explicitly judge 1/3 to be the best estimate of X’s truth-value just in case
c(X) = 1/3.

The important observation to make is this: the pluralist view carves out
a bigger job for credence functions to do than the reductive view. Credence
functions must do more than preserve the order induced on F by your
comparative belief relation. They must also preserve the structure induced
by your various other doxastic attitudes: your evidential independence
judgments, full or categorical beliefs, and so on. So a function c : F → R

may well do the work required to count as “your credence function” on
the unary view, but yet fall short of that mark on the pluralist view.

Consider, for example, the function b : F → R:

b(
{

w+
+, w+

−, w−+, w−−
}
) = 1, b(

{
w+
+, w−+, w−−

}
) = 31/64,

b(
{

w+
+, w+

−, w−−
}
) = 60/64, b(

{
w+
+, w−−

}
) = 27/64,

b(
{

w+
+, w−+, w+

−

}
) = 57/64, b(

{
w+
+, w−+

}
) = 24/64,

b(
{

w+
+, w+

−

}
) = 53/64, b(

{
w+
+

}
) = 20/64,

b(
{

w−+, w+
−, w−−

}
) = 44/64, b(

{
w−+, w−−

}
) = 11/64,

b(
{

w+
−, w−−

}
) = 40/64, b(

{
w−−
}
) = 7/64,

b(
{

w−+, w+
−

}
) = 37/64, b(

{
w−+
}
) = 4/64,

b(
{

w+
−

}
) = 33/64, b(∅) = 0.

It is easy to verify that b fully agrees with �, i.e.,

X � Y ⇔ b(X) ≥ b(Y).

So b is a real-valued measure of your comparative belief relation �. Hence,
it counts as a credence function on the unary measurement-theoretic view.
It preserves the structure on F induced by your comparative beliefs—the
only type of doxastic attitude that the unary view countenances. But it does
not play the theoretical role required to count as a credence function on
the pluralist measurement-theoretic view. To do that, it must also preserve
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the structure on F induced by your various other doxastic attitudes: your
independence judgments, full or categorical beliefs, and so on. But b falls
short of that mark.

For example, you think that the outcome of the first test provides no
evidence about the outcome of the second. But b does not treat {w+

+, w+
−}

and {w+
+, w−+}, for example, as independent, in the way specified by I∗:

b
({

w+
+, w+

−

})
b
({

w+
+, w−+

})
=

53
64
· 24

64
=

159
512

6= 160
512

=
20
64

= b
({

w+
+

})
.

Similarly, you believe that the first test will come back positive. That is,
you fully believe {w+

+, w+
−}. But b does not treat {w+

+, w+
−} as believed, in

the way specified by the Lockean belief relation B∗. It maps {w+
+, w+

−} to
a real-valued proxy b({w+

+, w+
−}) = 53/64 ≈ 0.828 below the threshold

τ = 5/6 ≈ 0.833 required for full or categorical belief.
Finally, you judge 1/3 to be the best estimate of the truth-value of

the proposition that the second test will come back positive. You have a
judgmental probability of 1/3 for the proposition {w+

+, w−+}. But b fails
to map {w+

+, w−+} to the real-valued proxy set aside by E∗1/3 for such
propositions, viz., 1/3. Instead, b({w+

+, w−+}) = 24/64 = 0.375.
The upshot: while b preserves the structure on F induced by your com-

parative beliefs, it fails to preserve the additional structure induced by your
various other doxastic attitudes: your evidential independence judgments,
full or categorical beliefs, and so on. So while b does count as one of your
(infinitely many) credence functions on the unary measurement-theoretic
view, it does not count as one on the pluralist measurement-theoretic view.

In contrast, the function c : F → R of Figure 6 counts as “your credence
function” on both the unary and pluralist views. (The interested reader
may verify this for herself.)

To recap: the measurement-theoretic view stakes out a particular posi-
tion on the theoretical role R that a function c (or set of functions C) must
play in order to count as “your credal state.” It says that c (or C) must
fully agree (or almost agree, or partially agree, or strongly agree) with
your comparative and qualitative opinions—comparative beliefs, eviden-
tial independence judgments, full or categorical beliefs, etc.—in the way
required to count as a numerical measure of that entire system of attitudes.
The better c (or C) plays this role R, the more eligible it is as a credal state
candidate. On the unary measurement-theoretic view, the fundamental
type of doxastic attitude is comparative belief. So credal states are numerical
measures of comparative beliefs. On the pluralist measurement-theoretic
view, you have a genuine plurality of doxastic attitudes. So credal states
are numerical measures of a more highly structured system of attitudes.
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c(
{
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) =
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36

, c(∅) = 0.

Figure 6: Credence function c

To streamline our discussion, we will focus on the the unary variant of
the measurement-theoretic view going forward.

5.3 The Characterisation and Normative Questions

How does the unary measurement-theoretic account answer the charac-
terisation question? When exactly is there a function c (or set C) that fully
agrees (or almost agrees, or partially agrees, or strongly agrees) with your
comparative belief relation � in the way required to count as a numerical
measure of �?

We explored a partial answer to this question earlier. Scott (1964) proves
that there is a probability function that fully agrees with your comparative
belief relation � just in case � satisfies Non-Triviality, Non-Negativity,
Totality, and Isovalence. Rios Insua (1992) and Alon and Lehrer (2014)
prove that there is a set of probability functions that fully agrees with �
just in case � satisfies Reflexivity, Non-negativity, Non-triviality, and the
Generalised Finite-Cancellation axiom. Kraft et al. (1959) proves that there
is a probability function that almost agrees with � just in case it satisfies
Almost-Cancellation. Adams (1965) and Fishburn (1969) prove that there
is a probability function that partially agrees with � just in case it satisfies
Partial-Cancellation. Finally, in proving the Generalised Scott Theorem, we
identified sufficient conditions for the existence of a probability function
that strongly agrees with �: Non-Triviality, Non-Negativity, and Isovalence.
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Pinning down necessary and sufficient conditions for strong representabil-
ity is an open problem.

These representation theorems tell us what it takes to count as having
probabilistically coherent credences, on the measurement-theoretic view. But
they do not answer the more general characterisation question: when is
your comparative belief relation sufficiently well-behaved for you to count
as having credences full stop, coherent or not?

Krantz et al. (1971) provide an answer. They show that a comparative
belief relation � fully agrees with a real-valued function c if and only if
� is a weak order, i.e., � satisfies Transitivity and Totality (Krantz et al.,
1971, p. 15, Theorem 1). So if a real-valued function c counts as a structure-
preserving numerical measure of � just in case c fully agrees with �,
and if precise credence functions just are structure-preserving numerical
measures of �, then we now know exactly when you count as having
precise credences full stop. You count as having precise credences just in
case � satisfies Transitivity and Totality.

Weaker notions of agreement set weaker standards for “structure preser-
vation.” They thereby make it easier for a real-valued function (or set
of functions) to count as a structure-preserving numerical measurement
system for �. In turn, your comparative beliefs need not satisfy such
strict constraints for you to count as having credences. For example, every
comparative belief relation � almost agrees with a real-valued function c.
So if all that is required for structure-preservation is almost-agreement,
then nothing whatsoever is required of � for you to count as having cre-
dences. Any comparative belief relation will do. More interestingly, �
strongly agrees with a real-valued function c if and only if � satisfies weak
transitivity (see the appendix for proof).14

Weak Transitivity. If X � Y1 � . . . � Yn � Z, then X 6≺ Z.

So if structure-preservation requires strong-agreement and nothing more,
then you count as having precise credences just in case � satisfies Weak
Transitivity.

What then of Meacham and Weisberg’s concern? They claim that the
axioms of typical representation theorems for comparative belief are so
demanding that only perfectly rational agents could possibly satisfy them.
So even if those axioms do encode sufficient conditions for having cre-
dences, they are more or less irrelevant for irrational agents like us. They
leave entirely open whether our comparative beliefs are ever well-behaved
enough for us to count as having credences.

But your comparative beliefs need not satisfy the axioms of Scott’s
Theorem (or the Almost-Cancellation axiom, or the Partial-Cancellation
axiom, etc.) for you to count as having credences. Such axioms encode

14 The proof strategy for this theorem is due to Catrin Campbell-Moore.
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necessary and sufficient conditions for having probabilistic credences. Prob-
abilistic credence functions, however, are not the only credence functions
in town. Your comparative beliefs only need to satisfy weaker constraints,
such as Weak Transitivity, to count as having credences tout court. Weak
Transitivity is not nearly as demanding as Scott’s axiom.

It is also worth nothing that even though Scott’s axiom and the like
seem complicated, it is not obvious that they are excessively difficult for
agents like us to satisfy. It may be computationally intensive to run a
diagnostic program which continually checks your comparative beliefs
for violations of Scott’s axiom. And if we had to run such a program
to reliably satisfy Scott’s axiom, then you might well expect that limited
agents like us typically violate it. But no such program is necessary. Nature
is replete with cheap solutions to seemingly computationally intensive
problems. This is one main lesson of the embodied cognition movement
in cognitive science.15 Agents like us might well use computationally
cheap strategies, rather than demanding diagnostic programs, in order to
minimise violations of Scott’s axiom and other coherence constraints.

Meacham and Weisberg also worry that the measurement-theoretic view
and its ilk count the wrong functions as eligible credal state candidates
(Meacham & Weisberg, 2011, p. 5). On the (unary) measurement-theoretic
view, any of the infinitely many numerical measurement systems for �
count as equally eligible credal state candidates. But some clearly are more
eligible than others. For example, suppose that Holmes has opinions about
finitely many propositions, e.g., about whether Moriarty is in London, etc.
Then Holmes is struck on the head. The blow does not change Holmes’
comparative beliefs. He is still more confident that Moriarty is in London
than Paris, and so on. But it does raise his confidence that Moriarty is in
London. Then clearly something has changed about which functions are
the most eligible candidates for counting as Holmes’ credence function.
But on the measurement-theoretic view, nothing at all has changed.

One of two things is going on here. Option 1: the objection tacitly
presupposes that the measurement-theoretic view simply misidentifies the
theoretical role R that a function c (or set C) must play in order to count
as “your credal state.” That is a meaty, substantive debate, and we will
not explore it any further. Option 2: the objection tacitly presupposes that
Holmes makes explicit judgments about the best estimates of truth-values,
or something of the sort. But that assumes pluralism. And the pluralist

15 Consider, for example, the “outfielder’s problem” (Clark, 2015, p. 12). It might seem
miraculous that baseball players manage to catch fly balls if doing so involves: (i) estimating
the position of a ball at various time points; (ii) using this information to estimate the
ball’s trajectory; (iii) calculating where the ball will land on the basis of its trajectory. This
is computationally intensive! Luckily, there is a computationally cheap solution. You can
just move your body in a way that keeps the ball centred in your visual field. This strategy
uses the agent’s body to reduce computational demand.
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measurement-theoretic view simply does not say that any of the infinitely
many numerical measurement systems of Holmes’ comparative beliefs are
equally eligible candidates for counting as Holmes’ credence function.

So much for the characterisation question. How does the unary
measurement-theoretic account answer the normative question? Why
should we expect rational agents to have probabilistically coherent credences?

How we answer the normative question depends on what we say about
structure preservation. If we say, for example, that c must fully agree with
� to count as a structure-preserving numerical measure of �, and in turn
count as “your credal state,” then the following argument answers the
normative question.

1. Coherence Constraints. Any rational agent’s comparative belief rela-
tion � satisfies Non-Triviality, Non-negativity, Totality, and Isova-
lence.

2. Theory of Credence. A real-valued function c (or set C) counts as
“your credal state” just in case it is a structure-preserving numerical
measure of �, i.e., just in case it plays the “structure-preservation
role” R. And c preserves the structure of � just in case c fully agrees
with �.

3. Scott’s Theorem. Relation � satisfies Non-Triviality, Non-negativity,
Totality, and Isovalence if and only if � fully agrees with some
probability function c.

4. Bridge Theorem. If � satisfies Non-Triviality, Non-negativity, Totality,
and Isovalence, then there is some probability function c that plays
role R well enough to count as “your credal state.” (From 2 and 3)

C. Probabilism. Any rational agent has probabilistic credences. (From 1
and 4)

Now, you might quibble with premise 1. You might doubt whether Totality,
for example, encodes a genuine constraint of rationality. In that case,
we might weaken our putative coherence constraints by adopting less
demanding standards for structure preservation. For example, if we say
that structure preservation requires only strong agreement with �, rather
than full agreement, then we can offer the following argument.

1∗. Coherence Constraints. Any rational agent’s comparative belief rela-
tion � satisfies Non-Triviality, Non-negativity, and Isovalence.

2∗. Theory of Credence. A real-valued function c (or set C) counts as
“your credal state” just in case it is a structure-preserving numerical
measure of �, i.e., just in case it plays the “structure-preservation
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role” R. And c preserves the structure of � just in case c strongly
agrees with �.

3∗. Corollary of GST. If � satisfies Non-Triviality, Non-negativity, and
Isovalence, then � strongly agrees with some probability function c.

4∗. Bridge Theorem. If � satisfies Non-Triviality, Non-negativity, and
Isovalence, then there is some probability function c that plays role
R well enough to count as “your credal state.” (From 2∗ and 3∗)

C∗. Probabilism. Any rational agent has probabilistic credences. (From 1∗

and 4∗)

Each type of agreement (full, strong, almost, partial) yields a different
variant of this argument. Whether you find any of them compelling will
depend on (i) which putative coherence constraints you find plausible
or implausible (premise 1), and (ii) what type of agreement is required
for credence functions to play any auxiliary theoretical roles you deem
important (premise 2).

At this point, you might be a bit suspicious. Doesn’t this argument trivi-
alise probabilism? True enough, you might say, the probability functions
outputted by Scott’s theorem are fit to play the “credal state role” R on
measurement-theoretic view. But that is because we reverse engineered
R so that Scott’s theorem outputs exactly the right sorts of functions to
play R! We stipulatively defined R to be the role of preserving the structure
of �. Then we stipulatively defined structure-preservation to be a matter
of fully agreeing with �. But given these stipulative definitions, it follows
trivially that the probability functions outputted by Scott’s theorem play
R well enough to count as “your credal state.” Probabilism seems less like
a substantive normative thesis, then, and more like a trivial consequence
of stipulative definitions.

This suspicion is doubly off the mark. Firstly, the measurement-theoretic
account of credence puts forward a substantive claim about the principal
theoretical role of credence functions c (and imprecise credal states C). It is
motivated by the thought that our opinions are qualitative. At bottom, we
have opinions like: comparative beliefs, full beliefs, etc. And the best way
to understand the numbers that we use to describe these qualitative atti-
tudes is in exactly the same way that we understand the numbers that we
use to describe length, mass, volume, etc., viz., as numerical measurement
systems. Whether this is right or wrong, it is surely no stipulative definition.
Secondly, as we have already emphasised, representability by a probability
function is strictly stronger than representability by a real-valued function.
Establishing that the stronger axioms (e.g., Scott’s axioms) encode genuine
constraints of rationality, rather than merely the weaker axioms (e.g., Tran-
sitivity and Totality) is non-trivial. As a result, establishing probabilism is
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non-trivial, even if we simply grant the measurement theorist her account
of credence.

You might also be concerned that the strategy above only establishes
half of probabilism. If successful, it establishes that all rational agents
have probabilistic credences. But it does not establish that rational agents
have only probabilistic credences. On the measurement-theoretic view, any
agent that counts as having a credence function at all in fact has a plurality
of credence functions. If she is rational, then at least one of these will
be probabilistically coherent. But many will not be. If c is a probability
function that fully agrees with � (or almost agrees, or partially agrees,
or strongly agrees), then any of the infinitely many strictly increasing
transformations of c do so as well. These transformations will not in
general be probability functions.

But this auxiliary thesis—that no rational agent has a probabilisti-
cally incoherent credence function—is not particularly interesting, on
the measurement-theoretic view. The reason: nothing interesting hinges
on whether some incoherent function (or set of functions) is fit to play the
“credal state role” for you. On the measurement-theoretic view, credence
functions are mere numerical measurement systems for comparative belief;
systems which allow you to measure certain parts of an agent’s compara-
tive belief relation � and draw inferences about other parts of �. Probabilis-
tic measurement systems are particularly useful for this end. Probability
functions have nice properties; properties that simplify the calculations
necessary to draw inferences about �. Whether or not some unhelpful,
incoherent measurement system exists is neither here nor there.16 If some
such system exists, who cares! It’s not hurting anyone. The interesting
question is whether the useful things exist.

But if an agent has incoherent credences, doesn’t this come at some cost
to her? Doesn’t it hurt her? De Finetti (1964) shows that any agent with
incoherent credences is Dutch bookable, i.e., susceptible to sure loss at
the hands of a clever bettor. And Joyce (1998, 2009) shows that any agent
with incoherent credences is accuracy-dominated, i.e., there are distinct

16 Of course, not all incoherent measurement systems are unhelpful. For example, suppose
that b is a probability function and fully agrees with �. Let c(X) = eb(X). Then c fully
agrees with �. But while b satisfies Finite Additivity:

b(X ∪Y) + b(X ∩Y) = b(X) + b(Y),

c satisfies Finite Multiplicativity:

c(X ∪Y) · c(X ∩Y) = c(X) · c(Y).

Note, though, that c is no less “helpful” than b. All of the theorems of probability theory
can be rewritten in terms of a multiplicative scale rather than an additive scale. So c could
be used to facilitate inference about � just as well as b. For analogous remarks regarding
additive and mutliplicative measures in physics, see (Krantz et al., 1971, p. 100).
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(coherent) credences that are guaranteed to be closer to the truth than
hers. Aren’t these costs—pragmatic and epistemic—that any agent with
incoherent credences must pay?

No. Not on the measurement-theoretic view. De Finetti assumes that
if c counts as your credence function, then c(X) is both your fair buying
and selling price for a unit gamble on X. But this is simply not so on the
measurement-theoretic view. Credence functions represent your compara-
tive beliefs � in an elegant, easy-to-use, numerical fashion—nothing more,
nothing less. It is simply not the job of a credence function to capture your
fair buying (or selling) prices. We cannot read your fair buying and selling
prices off of c in any straightforward fashion. Indeed, to infer anything
about your betting behaviour from c, we need decision-theoretic norms
that specify how rational comparative beliefs and preferences hang together.
For example, following (Savage, 1954, Section 3.2), we might suggest the
following.

Coherence. If X � Y, then you ought to prefer to stake good
outcomes on X than Y. More carefully, if you strictly prefer
outcome o to o∗, and X � Y, then you ought to strictly prefer
A to B:

A = [o if X, o∗ if ¬X] ,

B = [o if Y, o∗ if ¬Y] .

Moreover, you ought to be willing to sacrifice some small
amount ε to exchange A for B.

If you satisfy Coherence, and c fully agrees with �, then we can use c to
infer something about your betting behaviour. For example, if c(X) = 0.7
and c(Y) = 0.6, then we can infer that you prefer to let £1 ride on X than
on Y, and would even be willing to pay some small amount to exchange
the first gamble for the second. But we cannot infer that your fair buying
(selling) price for X is £0.7, or that your fair buying (selling) price for Y is
£0.6.

Without this crucial assumption—that credences encode fair buy-
ing/selling prices—we cannot provide a de Finetti-style Dutch book
argument to show that no rational agent has incoherent credences. Having
an incoherent credence function does not mean that you have inco-
herent fair buying/selling prices, and hence does not mean that your
buying/selling prices render you Dutch-bookable.

In a similar fashion, Joyce assumes that if c counts as your credence
function, then c(X) is your best estimate of X’s truth-value. Moreover, the
accuracy of these estimates is what makes your doxastic state better or
worse from the epistemic perspective. (Accuracy is the principal source of
epistemic value, anyway.) But again, this is not so on the measurement-
theoretic view. Credence functions are mere numerical measures of com-
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parative belief relations. It is simply not the job of a credence function to
capture your best estimates of truth values, on the measurement-theoretic
view. The upshot: having an incoherent credence function does not mean
that you in any sense have incoherent truth-value estimates; so it does not
mean having accuracy-dominated truth-value estimates; so it does not mean
having a doxastic state that is epistemic-value-dominated.

Finally, one might level a criticism similar to Meacham and Weisberg’s
(2011, pp. 19–20) criticism of Lyle Zynda. Zynda is a proponent of the
unary measurement-theoretic account (Zynda, 2000, pp. 66–68).17 On
Zynda’s view, there are comparative beliefs—agents are more confident
in some propositions than others—but there are no additional modes or
types of doxastic judgment. To the extent that we countenance talk of fully
believing a proposition, or believing something much more strongly than
something else, this better ultimately reduce to talk about comparative
beliefs.

Meacham and Weisberg object that comparative beliefs lack the structure
required to explain everything about choice and inference that we would
like to explain. So even if the measurement theorist provides some reason
to expect rational agents to have probabilistic credences, the background
picture of the basic stock of doxastic attitudes available to such agents is
too impoverished for their arguments to cut much ice.

For example, if we buy the unary measurement-theoretic account, then
the well-known problem of interpersonal utility comparisons rears its
head as a problem of interpersonal credal comparisons. Just as it makes
no sense to say that Ashan desires chocolate ice cream more strongly
than Bilal does, on the measurement-theoretic account (since there is
no common scale one which their preferences are measured), similarly
it makes no sense to say that Ashan is more confident that it will rain
than Bilal is. But, at least in certain cases, it seems that we need such
facts to explain choice behaviour. Why did Ashan grab his umbrella but
Bilal did not? One possible explanation: both are more confident than
not that it will rain, but Ashan is more confident than Bilal. On the the
unary measurement-theoretic account, such explanations are unavailable,
Meacham and Weisberg argue. More generally:

the extra-ordinal structure contained in the standard Bayesian
picture of degrees of belief is not idle. Magnitudes encode im-
portant features of our degrees of belief, and if we abandon this
structure, degrees of belief lose much of their utility. (Meacham
& Weisberg, 2011, p. 20)

17 Like Maher, Zynda subscribes to the thesis of the primacy of practical reason (cf., Zynda
2000, p. 55). Credence functions are numerical measures of comparative beliefs. But
preferences are the real thing. Comparative beliefs reduce to preferences.
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You might not think that there is much to this line of criticism. For
example, Ashan might think that rain is just as likely as picking a black
ball at random from an urn containing 99 black balls and 1 white ball. Bilal,
in contrast, might think that rain is just as likely as picking a black ball at
random from an urn containing 51 black balls and 49 white balls.18 These
individual comparative belief facts help to explain why Ashan grabbed his
umbrella but Bilal did not at least as well as the purported interpersonal
fact that Ashan is more confident than Bilal. It is not obvious, then, that
there is any genuine problem of interpersonal credal comparisons to
resolve.

Even if you do think there is something to this line of criticism, note
that it is not an objection to the measurement-theoretic account of cre-
dence per se. It is only an objection to the unary measurement-theoretic
account. A pluralist faces no such problems. Of course, in answering the
normative question, a pluralist cannot simply appeal to Scott’s theorem.
Scott’s theorem only shows that comparative belief relations with certain
properties are probabilistically representable. The pluralist must appeal
to a representation theorem that shows that a more comprehensive system of
doxastic attitudes with certain properties is probabilistically representable.
But there is no principled reason for thinking that such representation
theorems are not forthcoming.

6 evaluating the decision-theoretic view

On the decision-theoretic view, the principal theoretical role of an agent’s
credal state is to encode her fair buying and selling prices. Recall, an
agent’s fair buying price for a gamble G is the largest amount B(G) that
she could pay for G without making herself worse off. She pays B(G),
receives G, and is no worse than the status quo, in her own view. Her fair
selling price for G is the smallest amount S(G) that someone else would
have to pay her in exchange for G to avoid being worse off. She receives
S(G), commits to shelling out G’s payoff, and is no worse than the status
quo, in her own view.

Gambles are measurable quantities G : Ω→ R. For simplicity, we will
assume that |Ω| = n, and treat gambles as vectors in Rn. When we model
a gamble as a vector

G = 〈g1, . . . , gn〉 ,

18 Both de Finetti (1931) and Koopman (1940a) use “partition axioms” to extract quantitative
information from belief relations in roughly this way. For a recent approach along these
lines, see Elliott (2018). You might also model agents as having comparative estimation
relations, as explored in §2.3. Comparative estimation relations allow for a much richer
and explanatorily powerful set of doxastic attitudes than comparative belief relations.
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we do so by specifying the net effect gi that the gamble has on our agent’s
level of total wealth in world wi. For example, suppose you let £100 ride
on red at the roulette table. Let w1, . . . , wi be the worlds in which the ball
lands on red (you net £100), and wi+1, . . . , wn be the worlds in which it
does not (you net −£100). Then we model your gamble as follows:

G =

〈
100, . . . , 100︸ ︷︷ ︸

i times

,−100, . . . ,−100︸ ︷︷ ︸
(n-i) times

〉
.

For any proposition X ∈ F , we model a unit gamble on X by the
characteristic vector x = 〈x1, . . . , xn〉 of X, i.e., the vector with xi = 1
if wi ∈ X and xi = 0 if wi 6∈ X. And for any a ∈ R, we model the
“constant gamble” that pays out £a in every world by the constant vector
a = 〈a, . . . , a〉.

Following Walley (1991), we can specify an agent’s fair buying and
selling prices using sets of almost-desirable gambles. Say that a gamble G
is almost desirable for an agent iff she weakly prefers G to 〈0, . . . , 0〉, i.e.,
the status quo. Let D ⊆ Rn be the set of gambles that she finds almost
desirable.

Now we can specify her fair buying and selling price for G (B(G) and
S(G), respectively) in terms of D. Let

B(G) = sup
{

a | G − a ∈ D
}

.

Taking the gamble G − a is equivalent to paying £a for G. So B(G) is the
largest amount that she could pay for G while leaving herself in a position
that she weakly prefers to the status quo, i.e., her fair buying price for G.
Likewise, let

S(G) = inf
{

a | a− G ∈ D
}

.

Taking the gamble a− G is equivalent to receiving £a and shelling out
G’s payoff. So S(G) is the smallest amount that someone else would have
to pay her in exchange for G while leaving herself in a position that she
weakly prefers to the status quo, i.e., her fair selling price for G.

Talk of both fair buying and fair selling prices is actually a bit redundant.
Note that

−B(−G) = − sup
{
a | −G − a ∈ D

}
= inf

{
−a | −G − a ∈ D

}
= inf

{
a | −G + a ∈ D

}
= S(G).

Taking −G from someone (they shell out −G’s payoff to you) is nothing
more than you offering G to them (you shell out G’s payoff to them). And
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paying a negative amount to someone for some good is really nothing more
than them paying you a positive amount (and vice versa: taking a negative
amount is nothing more than you paying a positive amount). The smaller
the positive amount that they pay you, the bigger the negative amount
you pay them. So the negative of the biggest amount that you would pay
to take −G, i.e., −B(−G), is just another way of describing the smallest
amount that you would need to be paid to offer G.

We will just talk of your fair buying prices henceforth. But these really
capture both your fair buying and selling prices.

Say that a set E of real-valued functions e : Rn → R encodes your fair
buying prices iff its lower envelope for G,

E [G] = inf
{

e(G) | e ∈ E
}

,

is equal to B(G) when B(G) is defined, and is undefined when it is not. Say
that a set of probability functions C encodes your fair buying prices just in
case its corresponding set of expectation operators EC =

{
Ec | c ∈ C

}
does

so:
EC [G] = inf

{
Ec[G] | c ∈ C

}
.

Finally, say that your fair buying prices are probabilistic iff some set of
probability functions encodes them.

How does the decision-theoretic account answer the characterisation
question? When exactly is there a real-valued function c (or a set of such
functions C) that encodes your fair buying and selling prices? Answer:
always.

Say that a real-valued function e : Rn → R dominates your fair buying
prices iff e(G) ≥ B(G) whenever B(G) is defined. Let E∗ be the set of
real-valued functions that dominate your fair buying prices, i.e.,

E∗ =
{

e | e(G) ≥ B(G) if B(G) is defined
}

.

Then E∗ encodes your fair buying prices, whatever they are. Hence E∗
counts as “your credal state” according to the decision-theoretic view.

So there are no demanding constraints that an agent must satisfy in
order to have credences, on this view. Having credences is dead easy. And
clearly it is perfectly possible to have non-probabilistic credences.

So much for the characterisation question. How does the decision-
theoretic account answer the normative question? Why should we expect
rational agents to have probabilistic credences?

The story here is considerably more tricky. One might expect standard
Dutch book arguments to provide an answer. De Finetti (1964) shows that
for a specific sort of agent—one whose fair buying prices are equal to
her fair selling prices, i.e., B(G) = S(G)—having non-probabilistic fair
buying prices renders you Dutch bookable (susceptible to sure loss at
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the hands of a clever bettor). One can see essentially the same result by
considering (Walley, 1991, 3.3.3a). Walley shows that an agent’s fair buying
prices are not Dutch bookable (avoid sure loss) iff they are dominated by
the expectation operator of some probability function. And in the special
case under consideration—fair buying prices equal fair selling prices—
one’s fair buying prices are dominated in this way just in case they are
probabilistic, i.e., encoded by some set of probabilities C. The upshot: in
this special case—fair buying prices equal fair selling prices—an agent is
not Dutch bookable (avoids sure loss) iff there is some set of probabilities C
that encodes her fair buying prices, and hence counts as “her credal state.”
So if rationality requires avoiding sure loss, then we have good reason to
expect this very special kind of agent to have probabilistic credences.

You might hope, then, that such a Dutch book argument could show
quite generally that rational agents have probabilistic credences. But your
hopes would be in vain. An agent avoids sure loss iff there is some set
of probabilities C whose expectations for gambles uniformly dominate
her fair buying prices for those gambles, i.e., Ec[G] ≥ B(G) for all c ∈ C
and all gambles G. When an agent’s fair buying and selling prices come
apart, this can happen even when there is no set of probabilities C∗ that
actually encodes her fair buying prices.19 Bottom line: non-Dutch-book-
ability (avoiding sure loss) does not require having probabilistic credences.

Having probabilistic credences, in the decision-theoretic sense (i.e., some
set of probabilities that encodes your fair buying prices), is equivalent to
something stronger than non-Dutch-book-ability—what Walley calls “co-
herence.” Your fair buying prices are coherent iff they satisfy the following
axioms.

1. Accept Sure Gains. B(G) ≥ infG.

2. Homogeneity. B(λG) = λB(G) for λ ≥ 0.

3. Superlinearity. B(G + G∗) ≥ B(G) + B(G∗).

Axiom 1 forbids you from paying at most £1 for G when G is guaranteed
to payoff either £2, £3, or £4, for example. It says that your maximum
buying price for G must be at least £2. Axiom 2 says that your fair buying
price for a gamble G that is guaranteed to pay 2 (or 10, or 58.97) times
another gamble G∗ should be 2 (or 10, or 58.97) times your fair buying
price for G∗. Axiom 3 says that your fair buying price for a package of bets

19 Consider, for example, an agent whose fair buying price for any gamble G is infG − ε. For
any non-constant G, B(G) = infG − ε < supG − ε = − inf−G − ε < − inf−G + ε = S(G).
But clearly B[G] < EC [G] for any set of probability functions C. So the lower envelope of
EC dominates her fair buying prices. Hence she avoids sure loss. But no such C encodes her
fair buying prices.
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should be at least as great as the sum of your fair buying prices for each
of the bets in the package.

To reiterate: coherence is strictly stronger than avoiding sure loss. Walley
(1991, Section 2.4) provides examples of fair buying prices that avoid sure
loss (are not Dutch bookable), but nevertheless are not coherent. (Every
coherent set of fair buying prices, in contrast, avoids sure loss.) So Dutch
book or sure loss considerations do not give us good reason to think that,
quite generally, rational agents have probabilistic credences.

All is not lost, though. Even if Dutch books arguments don’t do the
trick, another argument might. For example, in the spirit of Icard (2016)
and Fishburn (1986, p. 338), we might propose constraints of rationality
governing how one’s comparative beliefs and preferences, or judgments of
almost-desirability, ought to hang together. In particular, we might suggest
that the set D of gambles that an agent finds almost desirable (i.e., that she
weakly prefers to the status quo) ought to be exactly the set D of gambles
that are almost desirable relative to her comparative belief relation �.

Belief-Preference Coherence. D = D.

Recall, a gamble G is almost desirable relative to � iff it is a non-negative
linear combination of components

(X1 −Y1), . . . , (Xn −Yn)

which are such that Xi � Yi. G is a non-negative linear combination of
(X1 −Y1), . . . , (Xn −Yn) just in case

G = ∑
i

λi(Xi −Yi)

for some λ1, . . . , λn ≥ 0.
The basic thought here is this. Xi − Yi is the gamble that pays out £1

if Xi is true and −£1 if Yi is true. You ought to weakly prefer this to the
status quo iff you are at least as confident that Xi is true as Yi. Moreover,
you ought to think that any package of such bets, even if their stakes are
scaled up or down by a positive constant, is almost-desirable; you ought
to weakly prefer it to the status quo. And nothing more. Your comparative
beliefs give you no reason to determinately prefer any other gamble to the
status quo.

Now suppose that rationality not only demands comparative beliefs and
preferences hang together as per Belief-Preference Coherence, but that it
also demands that comparative beliefs on their own satisfy the Generalised
Finite-Cancellation axiom.

Generalised Finite-Cancellation. If

X1 + . . . + Xn + A + . . . + A︸ ︷︷ ︸
k times

= Y1 + . . . + Yn + B + . . . + B︸ ︷︷ ︸
k times
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and Xi � Yi for all i ≤ n, then A � B.

Perhaps pragmatic considerations other than Dutch book or sure loss
considerations establish that rational comparative beliefs satisfy GFC.20

Or perhaps epistemic considerations establish this. Perhaps, for example,
comparative beliefs that satisfy GFC epistemic-utility-dominate ones that
do not, or something of the sort. For now, let’s just leave an IOU for the
justification of GFC.

Supposing that rational comparative beliefs satisfy GFC, we can now
provide some reason to think that quite generally rational agents have
probabilistic credences.

1. Coherence Constraints. Any rational agent’s comparative beliefs sat-
isfy GFC. Moreover, her comparative beliefs and preferences, or
judgments of almost-desirability, jointly satisfy Belief-Preference Co-
herence.

2. Theory of Credence. A set of real-valued functions C count as “your
credal state” just in case they encode your fair buying prices.

3. IP-Representability Theorem. Relation � satisfies GFC iff � is IP-
representable, i.e., � fully agrees with some set of probability func-
tions C.

4. Bridge Theorem. If � is IP-representable and satisfies Belief-Preference
Coherence, then the maximal set of probability functions C∗ that
fully agrees with � also encodes your fair buying prices, and hence
counts as “your credal state.” (Premise 2, Appendix)

C. Probabilism. Any rational agent has probabilistic credences. (From 1,
3, and 4)

Does this argument trivialise probabilism? Of course not. It relies on the
decision-theoretic account of credence—a substantive, highly non-trivial
thesis. Moreover, even if we simply grant the decision-theoretic account of
credence, it is no trivial consequence that rational agents have probabilistic
credences. Having credences is easy. You have credences whatever your
fair-buying prices are. But having probabilistic credences requires satisfying
some demanding axioms (Belief-Preference Coherence, GFC). Establishing
that these axioms encode genuine constraints of rationality is non-trivial.
As a result, establishing probabilism is non-trivial.

20 Icard (2016) shows that an agent who satisfies Belief-Preference Coherence avoids sure loss
iff her comparative beliefs are strongly representable. Strong representability is weaker
than GFC. So we need something other than sure loss considerations to show that rational
comparative beliefs satisfy GFC.
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You might be concerned that our little argument only establishes half
of probabilism. It shows that rational agents have probabilistic credences.
But it does not show that rational agents have only probabilistic credences.
Indeed, it cannot do so. We gave a recipe earlier for constructing a credal
state for any agent. Just take the set of real-valued functions that dominate
her fair buying prices. This set will encode those prices, and so count
as “her credal state,” on the decision-theoretic view. But it is not a set of
probability functions.

But this converse thesis—viz., that for any rational agent, no set of real-
valued functions with non-probabilistic members counts as “her credal
state”—is not theoretically interesting, on the decision-theoretic view. The
benefits of having probabilistic credences (avoiding sure loss, coherence)
accrue to any agent whose fair buying prices are encoded by some set of
probabilities. Whether or not some non-probabilistic set encodes them as
well is neither here nor there. Nothing of theoretical import hangs on it.

Finally, you might once again complain that the decision-theoretic ac-
count presupposes that rational agents only have comparative beliefs; no
additional modes or types of doxastic judgment. But this stock of basic
doxastic attitudes is too sparse. It is insufficient to explain everything
about choice and inference that we would like to explain. So arguments
that presuppose it are weak.

A similar response to the one in Section 5 will suffice. There is good
reason to think this criticism lacks punch. And even if you buy the criticism,
it is not an objection to the decision-theoretic account of credence per se.
It is only an objection to the unary variant of this account. A pluralist
faces no such problems. Of course, a pluralist must say more about how
other types of doxastic attitudes—not just comparative beliefs—ought
to hang together with judgments of almost-desirability. In addition, she
must provide a more sophisticated IP-representability theorem and bridge
theorem. But these are not in-principle problems. They are requests to
cash in an IOU.

What does the scorecard look like? Whether the decision-theoretic ac-
count provides a compelling answer to the normative question depends
in part on whether those IOUs can be replaced by theorems. But there is
no special reason to think this task cannot be done. In addition, epistemic
utility theorists, e.g., Joyce (1998, 2009) and Pettigrew (2016), worry that
this story provides an incomplete picture of our reasons to have proba-
bilistic credences. A complete picture would provide a purely epistemic
rationale for having imprecise credences.21 Nevertheless, some form of the
argument presented here might help illuminate some of our reasons for
having probabilistic credences.

21 Epistemic utility theorists get off the boat early by rejecting the decision-theoretic account
of credence.
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7 evaluating the epistemic interpretivist view

On the epistemic interpretivist view, a function (or set of functions) counts
as “your credal state” just in case it encodes truth-value estimates that
best rationalise or make sense of your comparative beliefs, understood as
irreducibly-doxastic attitudes.

More formally, a function c : F → R (or a set of such functions C)
counts as “your credal state” iff its truth-value estimates best rationalise
your comparative beliefs � (or on the pluralist version: your comparative
and qualitative opinions more generally). For c (or C) to best rationalise
�, it must satisfy two conditions: (i) c must recommend � as strongly
as possible, so that no other c∗ (or set C∗) recommends � to a higher
degree; (ii) c must be closer to rational (closer to the set T of rational
assignments of truth-value estimates) than any other c∗ that recommends
� as strongly as possible—this ensures that c provides the highest quality
recommendation possible.

To illustrate this view, consider two concrete cases. In case 1, you have
comparative beliefs over propositions in the following Boolean algebra:

F =
{
∅, {w1} , {w2} , {w1, w2}

}
.

In particular, your comparative beliefs are given by:

∅ ≺ {w1} ≺ {w2} ≺ {w1, w2} .

Question: which function c (or set C) encodes truth-value estimates (or con-
straints on estimates) that best rationalise your comparative beliefs �, and
hence counts as “your credal state,” according to epistemic interpretivism?
To provide a concrete answer, we will need to make a few substantive
assumptions about recommendation, rationality, and the like.

In Section 3.3, we outlined three accounts of recommendation—the
metaphysical, normative, and epistemic utility accounts—which aim to
explain when and how an assignment of truth-value estimates c (or set of
assignments C) recommends comparative beliefs � more or less strongly.
For simplicity, we will assume the metaphysical account in what follows.
Recall, on the metaphysical account, c (or C) recommends � as strongly
as possible just in case explicitly judging c (or C) to encode the best
(constraints on) estimates of truth-values metaphysically entails having pre-
cisely the comparative beliefs given by �. Moreover, we will assume that
judging c to be best entails having a specific set of comparative beliefs,
viz., the comparative beliefs �c that fully agree with c. Likewise, we will
assume that judging a set of assignments C (constraints on truth-value
estimates) to be best entails having the comparative beliefs �C that fully
agree with C. Finally, we will assume that the set T of rational assignments
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of truth-value estimates is fairly inclusive. In particular, we will adopt the
radical subjective Bayesian assumption that T is the set of probability func-
tions. Likewise, the rational constraints on truth-value estimates (imprecise
truth-value estimates) are just the sets of probability functions.

Back to our question then. Which function c (or set C) encodes (con-
straints on) truth-value estimates that best rationalise your comparative
beliefs �, and hence counts as “your credal state,” according to epistemic
interpretivism?

Firstly, note that any probability function c with 0.5 < c({w2}) < 1 is
such that

c(∅) < c({w1}) < c({w2}) < c({w1, w2}),

and hence fully agrees with �. So any such c recommends � as strongly
as possible, on the metaphysical account. Secondly, note that each such
a c is probabilistically coherent. So it is maximally rational, according
to our radical subjective Bayesian assumption. Hence any of these prob-
ability functions counts as “your credal state,” according to epistemic
interpretivism.

Similarly, note that any set of probability functions C with 0.5 <

c({w2}) < 1 for all c ∈ C fully agrees with �. So any such C recommends
� as strongly as possible, on the metaphysical account. And each such
C is maximally rational, according to our radical subjective Bayesian
assumption. So any of these sets of probability functions C counts as “your
credal state,” according to epistemic interpretivism.

On a pluralist version of epistemic interpretivism, according to which
your credal state does not simply best rationalise your comparative beliefs,
but rather best rationalises a broader set of comparative and qualitative opin-
ions, we might be able to winnow down the set of candidate credal states
more than this. Likewise, on a more sophisticated version of epistemic
interpretivism according to which your credal state does not simply best
rationalise your current opinions, but rather is part of a package that best
rationalises your opinions over time, we might be able to winnow down
this set even further. But as it stands, epistemic interpretivism allows for a
lot of slack in what counts as your credences. It allows for a great many
ties between maximally eligible credal states. This, however, is as it should
be. Given what epistemic interpretivists take the principle theoretical role
of credal states to be—their job is to best rationalise your comparative
and qualitative opinions—and given how few comparative beliefs you
actually have, various sets of truth-value estimates (and constraints on
such estimates) play that role equally well.

Consider one more concrete case. In case 2, your comparative beliefs are
given by:

∅ ≈ {w1} ≈ {w2} ≺ {w1, w2} .
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Which function c (or set C) encodes (constraints on) truth-value estimates
that best rationalise your comparative beliefs �, and hence counts as “your
credal state,” according to epistemic interpretivism?

To answer this question, first note that your comparative belief relation
is clearly not probabilistically representable. No probability function fully
agrees with �. Nor is it imprecisely representable. So no probability
function c, or set of probability functions C, recommends � as strongly
as possible. But there are non-probabilistic assignments of truth-value
estimates that fully agree with �, and hence recommend it as strongly
as possible. In particular, any c with c(∅) = c({w1}) = c({w2}) = x,
c({w1, w2}) = y and x < y is such that

c(∅) = c({w1}) = c({w2}) < c({w1, w2}),

and hence fully agrees with �. So any such c recommends � as strongly
as possible, on the metaphysical account.

But which one of these provides the highest quality recommendation of
�? That is, which one is closest to rational? Since the rational assignments
of truth-value estimates are exactly the probability functions (by assump-
tion), the question really is: which of these assignments of truth-value
estimates is closest to probabilistically coherent (i.e., closest to the set of
all probability functions)?

To answer this question, we need to plump for some measure of “close-
ness” or “proximity.” One natural choice: squared Euclidean distance.
Squared Euclidean distance is the “Bregman divergence” generated by a
very popular measure of accuracy, viz., the Brier Score. It captures one at-
tractive way of thinking about how close two sets of truth-value estimates
are in terms of how similar their degree of accuracy is expected to be. If
we plump for squared Euclidean distance as our measure of “closeness”
or “proximity,” then the assignment of truth-value estimates that best
rationalises your comparative beliefs is given by:

c(∅) = c({w1}) = c({w2}) = 1/3,

c({w1, w2}) = 1.

So this function c counts as “your credal state,” according to epistemic
interpretivism. What’s more, assuming that supersets {c, c∗, . . .} of {c}
with the c∗ all strictly less rational than c are themselves less rational than
{c}, we have that c is the unique function that counts as “your credal state.”

So much for the nuts and bolts of epistemic interpretivism. What about
the characterisation question? When exactly is there a real-valued function
c (or a set of such functions C) that encodes truth-value estimates which
best rationalise your comparative beliefs, and hence counts as “your credal
state”?
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It depends. It depends which account of recommendation you plump
for. It depends which assignments of truth-value estimates you count as
rational. It depends how you measure proximity to the set of rational as-
signments of truth-value estimates. Different commitments on these fronts
will yield different answers to the question of which truth-value estimates
rationalise which comparative beliefs. But for concreteness, suppose we
stick with the metaphysical account and radical subjective Bayesian as-
sumption we made earlier. In that case, whenever your comparative beliefs
� fully agree with a real-valued function c, that function will recommend
� as strongly as possible. So some such function will best rationalise � (or
near enough).22 And a comparative belief relation � fully agrees with a
real-valued function c if and only if � satisfies Transitivity and Totality
(Krantz et al., 1971, Theorem 1). So some real-valued function c best ratio-
nalises �, and hence counts as “your credal state,” whenever � satisfies
Transitivity and Totality.

Conversely, if� violates either Transitivity or Totality, then no single real-
valued function fully agrees with �. Hence no single function recommends
� as strongly as possible. If there is some set of real-valued functions that
fully agrees with �, then that set recommends � more strongly than any
single function, on the metaphysical view. So while no single function will
count as “your credal state,” some set (the most rational one that fully
agrees with �) will do so (or near enough). It is an interesting question
when exactly there is such a set of functions (not necessarily probability
functions) that fully agrees with �.

The overarching lesson here is a familiar one. Your comparative beliefs
need not satisfy Scott’s axioms—axioms which might seem rather demand-
ing on their face—in order to count as having credences, according to
epistemic interpretivism. Given our working assumptions (the metaphysi-
cal account, etc.), such axioms encode necessary and sufficient conditions
for having precise probabilistic credences. But it is perfectly possible to
have non-probabilistic credences. As we saw in case 2, if your comparative
beliefs are given by

∅ ≈ {w1} ≈ {w2} ≺ {w1, w2} ,

then the following non-probabilistic real-valued function c counts as “your
credal state,” according to the epistemic interpretivist:

c(∅) = c({w1}) = c({w2}) = 1/3,

c({w1, w2}) = 1.

Your comparative beliefs only need to satisfy relatively weak constraints
to count as having credences tout court.

22 For any ε > 0, we can pick some c that recommends � such that any other c∗ that does so
as well is no more than ε-closer to coherent.
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On to the normative question then. Why should we expect rational
agents to have probabilistic credences?

The epistemic interpretivist’s answer to the normative question is much
more complicated than our previous accounts’ answers. For the epistemic
interpretivist, the normative question breaks into (at least) three subques-
tions.

1. Why should we expect that for any rational agent, there is some
probability function that fully agrees with her comparative beliefs?

2. Why should we expect it to be the case that the rational assignments
of truth-value estimates are exactly the probability functions?

3. Why should we expect any probability function that fully agrees
with comparative beliefs � to recommend � as strongly as possible?

Scott’s theorem tells us that comparative beliefs � fully agree with
some probability function c iff � satisfies Non-Triviality, Non-negativity,
Totality, and Isovalence. So answering question 1 amounts to defending
the claim that rational comparative beliefs satisfy Non-Triviality, Non-
negativity, Totality, and Isovalence. Of course, you might doubt whether
“structural axioms” like Totality encode genuine constraints of rationality.
In that case, the epistemic interpretivist might defend the Generalised
Finite-Cancellation axiom and argue that rational agents have imprecise
probabilistic credences.

To answer question 2, the epistemic interpretivist might rely on results
from epistemic utility theory. For example, she might endorse an austere
conception of rationality, according to which rationality requires you to
prefer one assignment of truth-value estimates b to another c just in case b
is guaranteed to be more accurate than c. Then she might appeal to Joyce
(1998, 2009), Predd et al. (2009), Schervish, Seidenfeld, and Kadane (2009),
and Pettigrew (2016), who show that any non-probabilistic b is accuracy-
dominated by some probabilistic c, i.e., the truth-value estimates encoded
by c are guaranteed to be more accurate than those encoded by b. No
probabilistic c, in contrast, is even weakly accuracy-dominated. So the
probability functions are exactly the rational assignments of truth-value
estimates (not rationally dispreferred to any other assignment), on the
austere conception of rationality.

Finally, to answer question 3, the epistemic interpretivist must defend
an account of recommendation and various auxiliary claims. For example,
a proponent of the epistemic utility account must defend various substan-
tive claims about the nature of epistemic value. In particular, she must
defend the claim that on any reasonable measure of epistemic utility for
comparative beliefs, all probability functions expect the comparative belief
relations that fully agree with them to have maximal epistemic utility.
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We will not provide answers to questions 1–3 here. But if the epis-
temic interpretivist can answer them satisfactorily, then she can offer up
something like the following argument for probabilism.

1. Coherence Constraints. Any rational agent’s comparative belief rela-
tion � satisfies Non-Triviality, Non-negativity, Totality, and Isova-
lence.

2. Theory of Credence. An assignment of truth-value estimates c counts
as “your credal state” iff it best rationalises your comparative beliefs
�. Moreover, c best rationalises � iff (i) it recommends � as strongly
as possible, and (ii) c is itself closer to rational than any other c∗ that
recommends � as strongly as possible.

3. Accuracy Argument. An assignment of truth-value estimates c is ratio-
nal iff c is a probability function. (Accuracy-dominance theorem, austere
conception of rationality)

4. Scott’s Theorem. Relation � satisfies Non-Triviality, Non-negativity,
Totality, and Isovalence if and only if � fully agrees with some
probability function c.

5. Theory of Recommendation. An assignment of truth-value estimates c
recommends � to degree k iff the maximally rational extension of c
to Q, estc, is such that estc(U (�)) = k.

6. Bridge Theorem I. If � fully agrees with a probability function c, then
c recommends � as strongly as possible. (Premise 5, austere conception
of rationality, auxiliary assumptions about epistemic utility)

7. Bridge Theorem II. If � fully agrees with a probability function c, then
c not only recommends � as strongly as possible, but is also rational.
Hence c counts as “your credal state.” (From 2, 3 and 6)

C. Probabilism. Any rational agent has probabilistic credences. (From 1,
4 and 7)

Does this argument trivialise probabilism? Obviously not! It is positively
baroque! And unlike the measurement-theoretic and decision-theoretic
accounts, the epistemic interpretivist can plausibly argue that rational
agents have only probabilistic credences. To see this, suppose that your
comparative beliefs are given by the rational comparative belief relation
�. By premise 1, � satisfies Non-Triviality, Non-negativity, Totality, and
Isovalence. So by premises 4 and 7, there is some probability function c
that fully agrees with �, and hence best rationalises �. Now, while many
non-probabilistic assignments of truth-value estimates b will also fully
agree with �, and hence recommend � as strongly as possible, none will
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provide as high a quality recommendation for �. Hence none will best
rationalise �. The reason: any non-probabilistic b is accuracy-dominated
by some probabilistic c, and hence less rational than c (premise 3). So b
provides a weaker rationale for � than c. Hence b fails to count as “your
credal state,” according to the epistemic interpretivist.

Finally, you might return to the complaint that this account presupposes
that rational agents only have comparative beliefs—an overly austere,
explanatorily deficient stock of doxastic attitudes. But again, this is only
an objection to a unary version of epistemic interpretivism (to the extent
that it has bite at all). It has no force against pluralist variants. Of course,
pluralist variants face a range of unanswered questions. When exactly
does a set of truth-value estimates rationalise a more comprehensive
system of doxastic attitudes (comparative beliefs, full beliefs, opinions
about evidential and causal dependence and independence, etc.)? Why
should we expect reasonable measures of epistemic utility for these more
comprehensive systems to satisfy a suitably generalised version of strict
propriety? And when exactly are these more comprehensive systems
of doxastic attitudes probabilistically representable? But these are new
research questions bubbling up on the boundary of an active research
programme. There is no principled reason for thinking that they do not
have adequate answers.

Before wrapping up, it is worth highlighting one additional virtue of
epistemic intepretivism. At the outset, we mentioned a Bayesian platitude
about credences. Joyce puts the platitude as follows: “in the probabilistic
tradition, the defining fact about credences is that they are used to estimate
quantities that depend on truth-values” (Joyce, 2009, pp. 268–9). A rational
agent’s credences determine expectations of measurable quantities (quanti-
ties like the size of the deficit 10 years hence, or the utility of an outcome),
which capture her best estimates of those quantities. Those best estimates,
in turn, typically rationalise or make sense of her evaluative attitudes and
choice behaviour.

Shorter: credences capture estimates that provide rationalising explana-
tions.

Epistemic interpretivism is much better positioned than the measure-
ment-theoretic or decision-theoretic views to vindicate this platitude. On
the measurement-theoretic view, credence functions are just mappings
from propositions to real numbers that preserve the structure of your
comparative beliefs. They do not encode estimates, or any other quantity
that might plausibly play a role in rationalising your doxastic attitudes,
evaluative attitudes, or choice behaviour. On the decision-theoretic view,
credence functions are just numerical systems that encode your fair buying
and selling prices. But having fair buying and selling prices is nothing over
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and above having certain kinds of preferences. So they are hardly fit to
rationalise preferences.23

In contrast, epistemic interpretivism directly identifies your credence
function c with the assignment of truth-value estimates that best ratio-
nalises your comparative beliefs �. And however we spell out what it is for
truth-value estimates to best rationalise comparative beliefs, we can apply
a similar story to preferences and choice behaviour. Consider, for example,
the epistemic utility account of recommendation from Section 3.3. On this
view, we start with c, and we add estimates of other measurable quantities
Q to the stock of truth-value estimates encoded by c in the most rational
way possible. In particular, we add estimates of the epistemic utility of
comparative belief relations. The larger the estimate of �’s epistemic utility,
the more strongly c recommends �.

We can tell exactly the same story about how your credences rationalise
preferences and choice behaviour. We start with the truth-value estimates
c that best rationalise your comparative beliefs, and we add estimates of
the value of actions, for example, in the most rational way possible. The
larger the estimate of an action’s value, the more strongly c recommends
it. In turn, the more strongly it rationalises choosing that action.

The moral: epistemic interpretivism appears to have the resources to
vindicate core tenets of Bayesianism that other accounts have trouble with.

8 concluding remarks

Many Bayesians take comparative belief to be crucial for spelling out what it
is to have a degree of confidence, or degree of belief, or credence. And they
typically appeal to representation theorems when answering foundational
questions about credence. We have explored three different accounts—
measurement-theoretic, decision-theoretic, and epistemic interpretivist—
that utilise comparative beliefs and representation theorems in order to
answer two such questions: the characterisation question, i.e., when exactly
an agent counts as having credences, and the normative question, i.e., why
we should expect rational agents to have probabilistic credences. Hájek
(2009), Meacham and Weisberg (2011), and Titelbaum (2015) pose some
pressing challenges to accounts of this sort: they make the bar for having
credences so high that very few real agents clear it, they trivialise probabil-
ism, and so on. But we found that suitably sophisticated versions of each of
our three accounts handle these challenges fairly well. There is more work
to be done in filling these accounts out. But wholesale scepticism about
the role of comparative belief and representation theorems in providing
an account of credence seems premature.

23 For a similar criticism of behaviourism, see Joyce (1999, Section 1.3).
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9 appendix

Choose any comparative belief structure 〈Ω,F ,�〉 with finite F . Assume
without loss of generality that |Ω| = n.

Theorem 1 (Generalised Scott’s Theorem) Suppose � satisfies the follow-
ing two conditions.

1. Non-triviality. Ω � ∅.

2. Non-negativity. X � ∅.

Then the following two conditions are equivalent.

3. Isovalence. If X1 + . . . + Xn = Y1 + . . . +Yn and Xi � Yi for all i ≤ n,
then Xi � Yi for all i ≤ n as well.

4. Strong representability. There exists a probability function p : F →
R that strongly agrees with � in the sense that:

(i) X � Y ⇒ p(X) ≥ p(Y),

(ii) X � Y ⇒ p(X) > p(Y).

Proof. Let

A =

{
∑

i
λi(Xi −Yi) | λi ≥ 0 and Xi � Yi

}
and

U =

{
∑

i
λi(Yi − Xi) | λi ≥ 0, ∑

i
λi = 1, and Xi � Yi

}
.

First we will show that A ∩U = ∅ iff � satisfies Isovalence. Then we
will show that if � satisfies Non-Triviality and Non-Negativity, then
A∩U = ∅ iff � is strongly representable.

Suppose that � satisfies Isovalence. So if

X1 + . . . + Xt = Y1 + . . . + Yt

and Xi � Yi for all i ≤ t, then Xi � Yi for all i ≤ t as well.
Suppose for reductio that A ∩U 6= ∅. So there is some G ∈ A ∩U.

Hence
G = ∑

i≤m
λi(Xi −Yi) = ∑

i≤k
δi(Bi − Ai),

where λi ≥ 0 and Xi � Yi for all i ≤ m; likewise δi ≥ 0, ∑i δi = 1, and
Ai � Bi for all i ≤ k. So

λ1(X1 −Y1) + . . . + λm(Xm −Ym) + δ1(A1 − B1) + . . . + δk(Ak − Bk) = 0.
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Let
Xi =

〈
xi

1, . . . , xi
n

〉
.

Likewise for Yi, Ai, and Bi. Then the equality above gives us a system of n
homogenous linear equations with rational coefficients:

(x1
1 − y1

1)λ1 + . . . + (xm
1 − ym

1 )λm + (a1
1 − b1

1)δ1 + . . . + (ak
1 − bk

1)δk = 0,
...

(x1
n − y1

n)λ1 + . . . + (xm
n − ym

n )λm + (a1
n − b1

n)δ1 + . . . + (ak
n − bk

n)δk = 0.

Since this system of equations has rational coefficients, it has a rational
solution if it has any solution, by Gauss’ method. So we can rewrite

λ1(X1 −Y1) + . . . + λm(Xm −Ym) + δ1(A1 − B1) + . . . + δk(Ak − Bk) = 0

as
α1

β1
(X1−Y1)+ . . .+

αm

βm
(Xm−Ym)+

φ1

ψ1
(A1− B1)+ . . .+

φk

ψk
(Ak− Bk) = 0.

Multiplying through and rearranging gives us

(α1β2 . . . βmψ1 . . . ψk)(X1 −Y1)

+ . . . + (αmβ1 . . . βm−1ψ1 . . . ψk)(Xm −Ym)

+ (φ1ψ2 . . . ψkβ1 . . . βm)(A1 − B1)

+ . . . + (φkψ1 . . . ψk−1β1 . . . βm)(Ak − Bk) = 0.

This in turn gives us

(α1β2 . . . βmψ1 . . . ψk)X1 + . . . + (αmβ1 . . . βm−1ψ1 . . . ψk)Xm

+ (φ1ψ2 . . . ψkβ1 . . . βm)A1 + . . . + (φkψ1 . . . ψk−1β1 . . . βm)Ak

= (α1β2 . . . βmψ1 . . . ψk)Y1 + . . . + (αmβ1 . . . βm−1ψ1 . . . ψk)Ym

+ (φ1ψ2 . . . ψkβ1 . . . βm)B1 + . . . + (φkψ1 . . . ψk−1β1 . . . βm)Bk.

But recall, Xi � Yi for all i ≤ m, and Ai � Bi for all i ≤ k. So by Isovalence
we must have Xi � Yi for all i ≤ m and Ai � Bi for all i ≤ k. But since
Ai � Bi for all i ≤ k, we have A 6� Bi for all i ≤ k. Contradiction.

Therefore A∩U = ∅.
Conversely, suppose that A ∩U = ∅. Suppose for reductio that �

violates Isovalence. So there are X1, . . . , Xt, Y1, . . . , Yt ∈ F such that

X1 + . . . + Xt = Y1 + . . . + Yt.

Xi � Yi for all i ≤ t, and Xj � Yj for some j ≤ t. Assume without loss of
generality that Xi ≈ Yi for all i 6= j. Then

∑
i 6=j

Xi −Yi = Yj − Xj.
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Let
G = ∑

i 6=j
Xi −Yi = Yj − Xj.

Then G ∈ A∩U. Contradiction.
Therefore � must satisfy Isovalence.
This establishes that A ∩U = ∅ iff � satisfies Isovalence. Now we

will show that if � satisfies Non-Triviality and Non-Negativity, then
A∩U = ∅ iff � is strongly representable.

Suppose that � satisfies Non-Triviality and Non-Negativity. So Ω � ∅
and X � ∅ for all X ∈ F .

Now suppose that A ∩U = ∅. Note that A is the closed, convex
polyhedral cone generated by the set {X − Y | X � Y}. Likewise, U

is the convex hull of {Y − X | X � Y}—a closed and convex set. So
the hyperplane separation theorem of Kuhn and Tucker (1956, p. 50)
guarantees that there is a linear functional E that strictly separates A and
U in the sense that

E[G] ≥ 0 for all G ∈ A,

E[G∗] < 0 for all G∗ ∈ U.

Since Ω � ∅, ∅−Ω = −Ω ∈ U. Hence E[−Ω] < 0, which is the case iff
E[Ω] > 0.

Since X � ∅ for all X ∈ F , X−∅ = X ∈ A. Hence E[X] ≥ 0.
Now let

p(X) =
E[X]

E[Ω]

for all X ∈ F . Obviously p satisfies Normalization and Non-negativity,
since

p(Ω) =
E[Ω]

E[Ω]
= 1

and

p(X) ≥ p(∅) iff
E[X]

E[Ω]
≥ E[∅]

E[Ω]
iff E[X] ≥ 0.

Moreover, if X ∩Y = ∅, then X ∪Y = X + Y. So

p(X ∪Y) =
E[X + Y]

E[Ω]
=

E[X]

E[Ω]
+

E[Y]
E[Ω]

= p(X) + p(Y).

So p satisfies Finite Additivity. Hence p is a probability function. And it
follows straightforwardly that p strongly agrees with �:

X � Y ⇒ E[X−Y] ≥ 0

⇔ E[X] ≥ E[Y]

⇔ p(X) ≥ p(Y),
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and

X � Y ⇒ E[Y− X] < 0

⇔ E[X] > E[Y]

⇔ p(X) > p(Y).

Conversely, suppose that � is strongly representable. So there is some
probability function p such that strongly agrees with � in the sense that

(i) X � Y ⇒ p(X) ≥ p(Y),

(ii) X � Y ⇒ p(X) > p(Y).

Suppose for reductio that A∩U 6= ∅. So there is some G ∈ A∩U. Hence

G = ∑
i≤m

λi(Xi −Yi) = ∑
i≤k

δi(Bi − Ai),

where λi ≥ 0 and Xi � Yi for all i ≤ m; likewise, δi ≥ 0, ∑i δi = 1, and
Ai � Bi for all i ≤ k. Let

Ep[V ] = ∑
wi∈Ω

p(wi)vi,

where Ω = {w1, . . . , wn} and V =< v1, . . . , vn >. Once more let

Xi =
〈

xi
1, . . . , xi

n

〉
.

Likewise for Yi, Ai, and Bi. Then

Ep[G] = ∑
wi∈Ω

p(wi)

∑
j≤m

λj(xj
i − yj

i)


= ∑

j≤m
λj

 ∑
wi∈Ω

p(wi)(xj
i − yj

i)


= ∑

j≤m
λj(p(Xj)− p(Yj)).

Since Xj � Yj for all j ≤ m, p(Xj) ≥ p(Yj). Hence

Ep[G] ≥ 0.

But we also have

Ep[G] = ∑
wi∈Ω

p(wi)

∑
j≤k

λj(b
j
i − aj

i)


= ∑

j≤k
λj

 ∑
wi∈Ω

p(wi)(b
j
i − aj

i)


= ∑

j≤k
λj(p(Bj)− p(Aj)).
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Since Aj � Bj for all j ≤ k, p(Aj) > p(Bj). Hence

Ep[G] < 0.

Contradiction. Therefore A∩U = ∅.
So far we have established that A ∩U = ∅ iff � satisfies Isovalence.

Moreover, we have established that if � satisfies Non-Triviality and Non-
Negativity, then A∩U = ∅ iff � is strongly representable. This suffices
to prove GST. �

Theorem 2 Suppose that � is IP-representable and satisfies Belief-Preference
Coherence. Let C be the maximal set of probability functions C that fully agrees
with �. Let EC = {Ec | c ∈ C}. This C encodes your fair buying prices in the
sense that

EC [G] = inf
{

Ec[G] | c ∈ C
}

is equal to your fair buying price for G, B(G), when B(G) is defined, and is
undefined when it is not.

Proof. Suppose that � is IP-representable. So there is a set of probability
functions that fully agrees with it. Let C be the maximal set of probability
functions C that fully agrees with �. So

X � Y ⇔ c(X) ≥ c(Y) for all c ∈ C.

And if C∗ fully agrees with �, then C∗ ⊆ C.
First, note that C must be the set B of all probability functions b that

almost agree with �:

B =
{

b | X � Y ⇒ b(X) ≥ b(Y)
}

.

Obviously C ⊆ B. To see that B ⊆ C, choose b ∈ B. Suppose for reductio
that b 6∈ C.

Case 1. For all X, Y ∈ F , if c(X) ≥ c(Y) for all c ∈ C, then b(X) ≥
b(Y). In that case, C∗ = C ∪ {b} fully agrees with �. But then C is
not maximal. Contradiction.

Case 2. For some X, Y ∈ F , c(X) ≥ c(Y) for all c ∈ C, but b(X) <

b(Y). In that case, since C fully agrees with �, X � Y. But since b
almost agrees with �, this implies b(X) ≥ b(Y). Contradiction.

Hence B = C.
Second, note that since � is IP-representable, � satisfies Non-Triviality

and Non-Negativity. That is, Ω � ∅ and X � ∅ for all X ∈ F .
Now suppose that � also satisfies Belief-Preference Coherence. So the

set A of gambles that our agent finds almost desirable (i.e., that she weakly
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prefers to the status quo) is exactly the set A of gambles that are almost
desirable relative to �:

A = A =

{
∑

i
λi(Xi −Yi) | λi ≥ 0 and Xi � Yi

}
.

Our agent’s fair buying price for a gamble G is

B(G) = sup
{
a | G − a ∈ A

}
.

Our aim is to show that EC [G] = B(G) if B(G) is defined, and undefined
if not. We will start by first showing that A = A∗ where

A∗ =
{
G | Ec[G] ≥ 0 for all c ∈ C

}
.

Suppose that G ∈ A. So

G = ∑
i≤m

λi(Xi −Yi),

where λi ≥ 0 and Xi � Yi for all i ≤ m. Again let

Xi =
〈

xi
1, . . . , xi

n

〉
.

Likewise for Yi. Choose c ∈ C. Then

Ec[G] = ∑
wi∈Ω

c(wi)

∑
j≤m

λj(xj
i − yj

i)


= ∑

j≤m
λj

 ∑
wi∈Ω

c(wi)(xj
i − yj

i)


= ∑

j≤m
λj(c(Xj)− c(Yj)).

Since Xj � Yj for all j ≤ m, c(Xj) ≥ c(Yj). So

Ec[G] ≥ 0.

Therefore Ec[G] ≥ 0 for all c ∈ C. So G ∈ A∗.
Now suppose that G ∈ A∗. Suppose for reductio that G 6∈ A.
Note that A (= A) is the closed, convex polyhedral cone generated by

the set {X−Y | X � Y}. So the hyperplane separation theorem of Kuhn
and Tucker (1956, p. 50) guarantees that there is a linear functional E that
strictly separates this point G 6∈ A from A in the sense that

E[V ] ≥ 0 for all V ∈ A,
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but
E[G] < 0.

The proof of Theorem 1 shows how to use E to construct a probability
function b that almost (indeed, strongly) agrees with �. And b is such that

Eb[V ] = ∑
wi∈Ω

b(wi)vi = ∑
wi∈Ω

E(wi)

E(Ω)
vi =

E[V ]
E(Ω)

for any gamble V . So Ec[V ] ≥ 0 iff E[V ] ≥ 0. In particular, then, since
E[G] < 0, Eb[G] < 0 as well.

But since b almost agrees with �, b ∈ B = C. Since Eb[G] < 0, G 6∈ A∗.
Contradiction.

This establishes that A = A∗. Now we will show that EC [G] = B(G) if
B(G) is defined, and undefined if not.

EC [G] = inf
{

Ec[G] | c ∈ C
}

= sup
{
a | Ec[G] ≥ a for all c ∈ C

}
= sup

{
a | Ec[G − a] ≥ 0 for all c ∈ C

}
= sup

{
a | G − a ∈ A∗

}
= sup

{
a | G − a ∈ A

}
= B(G).

�

Theorem 3 A relation � strongly agrees with a real-valued function c if and
only if � satisfies weak transitivity:

Weak Transitivity. If X � Y1 � . . . � Yn � Z, then X 6≺ Z.

Proof. The left-to-right direction is trivial. So suppose that � satisfies weak
transitivity. For any X ∈ F , let

ΦX = {X} ∪
{

Z | X � Y1 � . . . � Yn � Z for some Y1 � . . . � Yn ∈ F
}

.

Let c : F → R be defined by

c(X) = |ΦX|.

We must show:

(i) A � B⇒ c(A) ≥ c(B),

(ii) A � B⇒ c(A) > c(B).
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Assume that A � B. Choose Z ∈ ΦB. Either Z = B or

B � Y1 � . . . � Yn � Z

for some Y1 � . . . � Yn ∈ F . So either

A � Z

or
A � B � Y1 � . . . � Yn � Z.

Either way, Z ∈ ΦA. Hence ΦB ⊆ ΦA. As a result

c(A) = |ΦA| ≥ |ΦB| = c(B).

Now suppose that A � B. As before, ΦB ⊆ ΦA. But now note that while
A ∈ ΦA, A 6∈ ΦB.

To see this, suppose for reductio that A ∈ ΦB. Then either A = B or

B � Y1 � . . . � Yn � A

for some Y1 � . . . � Yn ∈ F . If A = B, then A � A, i.e., A � A but A 6� A.
Contradiction. If B � Y1 � . . . � Yn � A, then by weak transitivity, B 6≺ A.
Contradiction.

So A ∈ ΦA but A 6∈ ΦB. Hence ΦB ⊂ ΦA. As a result

c(A) = |ΦA| > |ΦB| = c(B).

�
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7
B E L I E F R E V I S I O N T H E O RY Hanti Lin

We often revise beliefs in response to new information. But which ways of
revising beliefs are “OK” and which are not? A belief revision theory is
meant to provide a general answer, with a sense of “OK” that it specifies.
This article is an introduction to belief revision theory and its foundations,
with a focus on some issues that have not received sufficient attention.
First we will see what belief revision theories are, and examine their
possible normative or evaluative interpretations. Second we will compare
the standard belief theory called AGM with its alternatives, especially the
alternatives that are motivated by nonmonotonic logic and formal learning
theory. Third we will discuss counterexamples to some belief revision
theories, and categorize how we might explain those counterexamples
away. Fourth and finally we will examine a variety of motivated formal
techniques for constructing belief revision theories, and discuss how those
motivations might be transformed into explicit arguments.

1 introduction

We often revise beliefs in response to new information. But which ways of
revising beliefs are “OK” and which are not? A belief revision theory is
meant to provide a general answer, with a sense of “OK” that it specifies.

This article is an introduction to some belief revision theories and their
foundations. We will see what belief revision theories are, or could possibly
be, as normative or evaluative theories, and discuss why most belief revision
theories in the literature tend to claim to be only about idealized, perfect
rationality (Section 2). We will survey a variety of motivated, formal
techniques for constructing belief revision theories, and see how to use
these techniques to construct the standard theory called AGM and its
dissenters (Section 3–Section 4). We will discuss how we might argue
against a belief revision theory (Section 5), and how we might argue for it
(Section 6).

Articles surveying belief revision theories have been available, such
as the excellent ones by Hansson (2017), Rodrigues, Gabbay, and Russo
(2011), and Huber (2013a, 2013b). To help the reader make the most of the
survey articles available, including the present one, let me explain what
my emphases will be.

349
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◦ Earlier surveys tend to focus on a particular normative or evalua-
tive interpretation of formal theories of belief revision, taking those
theories to say something about idealized, perfect rationality. This
is the dominant interpretation in the literature. Other possible inter-
pretations will be explored here as well. In fact, the choice among
possible interpretations ultimately concerns the choice among very
different research programs in belief revision theory—or so I will
argue in Section 2.3.

◦ Earlier surveys tend to focus on the standard, AGM theory of belief
revision, together with its add-ons and improvements. But I wish to
spend more time on dissenters from the AGM theory. In Section 4.4, I
will present belief revision theories that disagree with the content of
the AGM theory in permitting something that the AGM theory prohibits.
(These theories usually come from so-called nonmonotonic logic.) In
Section 4.6, I will present belief revision theories that disagree with
the spirit of the AGM theory in taking the ultimate concern to be finding
the truth rather than conforming to what intuition says about ratio-
nality. (These theories usually come from so-called formal learning
theory.)

◦ The use of intuitive counterexamples is important when we argue
against a belief revision theory, and earlier surveys do cover that. But
I will make a first step toward categorizing how counterexamples
might be explained away. The reason is that the dialectic exchange
between alleging-counterexamples and explaining-them-away turns
out to raise very interesting issues about the goal and nature of belief
revision theory. This will be the highlight of Section 5.

◦ Earlier surveys tend to focus on various motivated techniques for
constructing theories of belief revision. But I will explore how those
motivations could be reconstructed into explicit arguments for the
intended normative claims. This will help us identify and formulate
issues of utmost importance to the very foundations of belief revision
theory—or so I will argue in Section 6.

Achieving these goals means that I will have to set aside, or just mention
in passing, many other interesting topics in belief revision theory. But
this is exactly why we need multiple survey articles to complement one
another.

One last point of clarification before we get started, regarding the kind of
belief that will concern us in this article. Compare the following examples.

(i) Ann is 95% confident that it will rain tomorrow.

(ii) Ann believes that it will rain tomorrow.
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Sentence (i) attributes to Ann a quantitative doxastic attitude toward a
certain proposition, called a credence. There are infinitely many such quan-
titative attitudes that she could have had toward that proposition. She
could have had, say, credence 50%, 50.1%, or 50.17% in that proposition.
By contrast, sentence (ii) attributes to Ann a qualitative doxastic attitude
toward a certain proposition, call a belief. There are two qualitative dox-
astic attitudes she could have had toward that proposition: believing it,
or not believing it.1 The subject matter of this article is concerned with
revision of beliefs (qualitative doxastic attitudes). For revision of credences
(quantitative doxastic attitudes), please see the chapter “Precise Credences”
(Titelbaum, this volume).2

2 belief revision theories as normative theories

I mentioned earlier that a belief revision theory is, roughly, a theory saying
which ways of belief revision are OK and which are not, which I am going
to explain in greater detail in this section.

2.1 What a Belief Revision Theory Is Like

Consider the following constraint on an agent at a time.

Preservation. If the information that agent A receives at time t is
compatible with the set of the beliefs that A has right before t, then,
right after t, agent A retains all of her beliefs in response to that
information.

(By “the” information one receives at t, I mean the conjunction of all pieces
of information that one receives at t.)3 This constraint on belief revision
is formal in the sense that it concerns the logical properties of beliefs
rather than their particular contents. Due to its formal nature, Preservation
usually receives the following reformulation:

Preservation. If φ is compatible with B, then B is a subset of B ∗ φ,
where:

1 If you wish, you can count one more attitude: disbelieving a proposition. It is debatable
whether disbelieving P can be reduced to believing ¬P.

2 This raises an issue: how should the revision of beliefs and the revision of credences be
related? For the first few works that address this issue, see Arló-Costa and Pedersen (2012),
Lin and Kelly (2012), and Leitgeb (2014). Also see the chapter “Full and Partial Belief”
(Genin, this volume).

3 What if one receives no piece of information at t? What is the conjunction of the empty
set of propositions? Answer: it is a tautology. Think of the conjunction of a set S of
propositions to be the weakest proposition that entails every proposition in S—or, in terms
of algebraic logic, define the conjunction of S as the the greatest lower bound of S in the
lattice of propositions under discussion.
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� B is the set of one’s beliefs right before the receipt of new
information,

� φ is the new information one receives,

� B ∗ φ is the set of one’s new beliefs in response to new informa-
tion φ.

Preservation offers just one possible constraint on belief revision, and we
will discuss more constraints below.

Preservation as just formulated is a mere constraint, a condition that one
may turn out to satisfy or violate at a time; there is nothing normative or
evaluative in itself. But when a belief revision theory contains Preservation,
it is typically understood to make the following normative claim:4

Preservation Thesis (the “Perfect Rationality” Version). One
is perfectly rational only if one has never violated, and would never
violate, Preservation.

Once a normative thesis is put on the table, a philosopher’s first reaction
would be to explore potential counterexamples (whether or not she wants
to confirm or refute the thesis). Here is one.

Example (Three Composers).5 The agent initially believes the fol-
lowing about the three composers Verdi, Bizet, and Satie.

4 We may want to clearly distinguish what is normative (such as ‘ought’) from what is
evaluative (such as ‘good’, ‘rational’, and ‘justified’). But this distinction is irrelevant to the
purposes of this article. Understand my use of ‘normative’ to be a shorthand for ‘normative
or evaluative’.

5 This scenario is adapted from an example due to Stalnaker (1994). Stalnaker uses it to
argue against a different constraint on rational belief revision.

Rational Monotonicity. If ψ is compatible with B ∗ φ, then B ∗ φ ⊆ B ∗ (φ ∧ ψ).

Stalnaker considers two alternative possibilities: the agent could receive E or E ∧ E′ as the
information at a certain time. And then Stalnaker asks how the agent should set up a belief
revision strategy as a contingency plan to deal with these two possibilities. Substituting E
and E′ for the φ and ψ in Rationality Monotonicity, Stalnaker obtains his counterexample
to it. That is what Stalnaker does, which appears to be different from what we are doing
here about Preservation, for two reasons. First, Preservation is a proper consequence of
Rational Monotonicity under the weak assumption that B ∗ > = B, where > is a tautology.
Second, Stalnaker’s own example lacks an essential feature of our scenario here: the agent
receives two pieces of information, E and E′, successively. Indeed, it is the second revision,
prompted by the later information E′, that is alleged to violate Preservation. That is, in
terms of the (∗)-notation, it is the revision of the second belief set B ∗ E into the third belief
set (B ∗ E) ∗ E′ that is alleged to violate Preservation. That said, it should not be surprising
that Stalnaker’s case against Rational Monotonicity can be easily modified into a case
against Preservation, thanks to the formal resemblance between these two constraints on
belief revision. In case you are interested, here is a bit more history about the Composers
case: Stalnaker’s own example is a variation on an example due to Ginsberg (1986), which
is in turn a variation on an example due to Quine (1982). Both Ginsberg and Quine use
their examples to talk about counterfactuals rather than belief revision.
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(A) Verdi is Italian;

(B) Bizet is French;

(C) Satie is French.

Then the agent receives this information.

(E) Verdi and Bizet are compatriots.

So the agent drops her beliefs in A and in B, and retains the belief
in C that Satie is French (after all, information E has nothing to do
with Satie). Of course, she comes to believe the new information E
that Verdi and Bizet are compatriots, while suspecting that Verdi and
Bizet might both be Italian, and that they might both be French. So,
at this stage, the agent does not rule out the possibility that Verdi is
French (and, hence, a compatriot of Satie). So what she believes at
this stage is compatible with the following proposition.

(E′) Verdi and Satie are compatriots.

But then she receives a second piece of information, which turns out
to be E′. Considering that she started with initial beliefs A, B, and C
and received information E and E′, which jointly say that the three
composers are compatriots, now she drops her belief in C.

Let us focus on this agent’s second revision of beliefs, prompted by in-
formation E′. Information E′ is compatible with what she believes right
before receiving this information, and she drops her belief in C nonethe-
less. So this agent’s second revision of beliefs violates Preservation. But
there seems nothing in the specification of the scenario that prevents the
agent from being perfectly rational. So this seems to be a counterexample
to the Preservation Thesis.

This cannot be the end of the dialectic, of course. We want to think
about whether one may save the Preservation Thesis by explaining away
the alleged counterexample—an issue that we will revisit in Section 5. This
is just to give a taste of what it is like to work in belief revision theory.

2.2 What Normative Interpretations Could Be Intended?

The Preservation Thesis is only one of the many normative theses that we
can formulate in terms of Preservation. Here is a sample:

(T1) An agent is rational at a time only if she does not violate
Preservation at that time.

(T2) An idealized agent is perfectly rational only if she has never
violated and would never violate Preservation.
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(T3) A strategy for belief revision is rational only if every possible
revision licensed by it does not violate Preservation.

(T4) An agent is rational at a time only if, other things being equal,
she does not violate Preservation at that time.

(T5) Other things being equal, an agent should not violate Preserva-
tion.

A belief revision theory is meant to affirm or deny some theses like these.
This list is by no means exhaustive. There are at least two dimensions

along which we can generate more theses for a belief revision theory to
affirm or deny (or be silent about).

As to dimension one: note that Preservation is only one of the many
possible constraints on belief revision. So, in theses T1–T5, we can easily
replace Preservation by a distinct constraint on belief revision.

As to dimension two: note that theses T1–T5 are formulated in terms
of ‘ought’ or ‘rational’. So, if there are multiple senses of ‘ought’, then
the above ought-thesis will have to be multiplied. Similarly, if epistemic
rationality is not identical to, or is only a special kind of, instrumental
rationality, then the above rationality-theses will have to be duplicated.
One more example: we might be interested in not only whether one’s
revision is rational, but also whether it is justified. So, for example, we can
consider the thesis that an agent is justified in revising her beliefs the way
she does only if her revision does not violate Preservation.

So, given a constraint on belief revision (such as Preservation), we can
formulate various normative theses in terms of that constraint. A belief
revision theory is meant to affirm or deny some such theses.

2.3 Which Normative Interpretation Is to Be Intended?

Most belief revision theories in the literature are usually understood to
make claims only about idealized rationality, e.g. affirming or denying
theses of the form T2. But why?

Here is a potential reason. Many belief revision theories assume that
the agent’s belief set B is closed under deduction, so those theories can
be interpreted as talking about a logically omniscient agent, who believes
every logical consequence of what she believes. So those theories can be in-
terpreted as talking about a kind of perfect rationality that only a logically
omniscient agent can have. But this is not a good reason for restricting the
interpretation to idealized perfect rationality. For, following Levi (1983),
a deductively closed set B of sentences can also be used to express the
commitments of an ordinary, non-idealized agent’s beliefs. Under this
alternative interpretation, revision of B is revision of the commitments of
one’s beliefs.



belief revision theory 355

As it turns out, the decision to focus on certain kinds of normative
interpretations rather than some others actually involves a difficult choice
among research programs in belief revision theory—or so I shall argue in
the following.

As a preliminary step, let me argue that T1 should not be an intended
normative content of a belief revision theory, because T1 has a quite
obvious counterexample.

Example (One’s Embarrassing Past). Suppose that propositions
A, B, C are logically independent, in the sense that all the 8 (= 23)

combinations of their truth values are logically possible. An agent
started by believing A without commitment to the truth or falsity
of B or C. Then she received information B and, in response, she
somehow dropped her old belief in A and came to believe ¬A ∧ B,
without commitment to the truth or falsity of C. So she violated
Preservation at that time. Since then she has retained those beliefs
and has not received any new information. Remembering all these
in her embarrassing past, now she receives new information C. She
is wondering what to believe.

What is she supposed to do in order to be a rational agent now? Since
the new information C is compatible with what she believed just now, to
satisfy Preservation now the agent has to continue to believe ¬A ∧ B. But,
if Preservation really represents such a good standard to abide by, the
rational thing for her to do now is to retract her belief in ¬A ∧ B and come
to believe A, B, and C instead—as if she had never violated Preservation.
So T1 should be rejected even by those who are sympathetic to Preservation
as a requirement of rationality.

It is not just that T1 is false. When we replace the Preservation constraint
in T1 by any other formal constraint ever studied in the belief revision
literature, the resulting thesis—a formal variant of T1—is also false. The
reason is that the constraints studied in belief revision theory are formal,
having nothing to do with the contents of one’s beliefs and hence making
no reference to one’s beliefs about one’s revision history. So the case of
One’s Embarrassing Past can be suitably adapted to refute every formal
variant of T1. Lesson: every belief revision theory in the literature, when
interpreted to make claims of the form T1, is false.

If we are sympathetic to Preservation as a good standard to abide by,
there are two possible ways out.

Strategy 1 (Get Hands Dirty Today). Fix thesis T1 by weakening
Preservation in such a way that avoids the above counterexample
while retaining the spirit of Preservation.

Strategy 2 (Pay off the Debt in the Future). Deny T1 but affirm
T2, T3, T4, T5, or their variants. Namely, redirect our attention, at
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least for the moment, to idealized rationality, or the rationality of
strategies instead of agents, or ceteris paribus norms. But keep in
mind that this incurs a debt: we will, at some point, need to say how
the truth of theses like T2–T5 can be employed to shed light on the
rationality of a non-idealized agent’s belief revision without a ceteris
paribus clause.

These two possible ways out correspond to very different projects one may
pursue in belief revision theory. Let me illustrate.

Here is what it is like to pursue Strategy 1 (Get Hands Dirty Today).
Consider the following weakening of Preservation.

Preservation
∗. If (i) the new information one receives at t is com-

patible with the set of beliefs that one has just before t and (ii) one
does not believe at t that one has violated Preservation before, then,
right after t, one retains all of one’s beliefs in response to the new
information.

This constraint is non-formal (i.e. referring to contents of one’s beliefs), and
it weakens Preservation by adding (ii) to the antecedent. Now formulate
the following non-formal variant of T1.

(T∗1 ) An agent is rational at a time only if she does not violate
Preservation∗ at that time.

This thesis is logically weaker than T1, weak enough to escape the case
of One’s Embarrassing Past. For the agent violates antecedent (ii) and,
hence, satisfies Preservation∗ vacuously. The problem with this weakened
Preservation∗ is that it is too weak for those who want to save the spirit of
Preservation as a constraint on rational belief revision. Do you think that
you violated Preservation at least once in the past? I think I did, although
I cannot tell when exactly. Most people, if asked, would say that they
violated Preservation at least once in the past, too. So most people satisfy
Preservation∗ vacuously by violating antecedent (ii). Lesson: if we think
that the spirit of Preservation is on the right track toward a nontrivial
constraint on rational belief revision, we need to weaken Preservation
by adding an appropriate antecedent that hits the “sweet spot,” making
the reformulated Preservation weak enough to avoid potential counterex-
amples and substantial enough to guide our belief revision. Hitting such
a sweet spot might require careful addition of complicated clauses into
Preservation, making our hands dirty now.

It is possible to keep our hands clean at least for the moment. If Preser-
vation really represents such a good standard to abide by, then it seems
pretty safe to affirm thesis T2. For, in response to One’s Embarrassing Past,
we can simply judge that the agent in question simply fails to be perfectly
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rational due to her embarrassing past, no matter how she is going revise
her beliefs at the present time. So, to keep our hands clean, we can develop
a belief revision theory that only makes claims about idealized, perfect
rationality, such as T2. But this only makes our hands clean for the time
being, for it actually incurs a debt that we will have to pay off later. There
is nothing wrong in developing a theory of perfect rationality for idealized
agents. But we want such a theory to shed light on a theory of rational
belief revision for ordinary agents like us. What’s the light to be shed? To
answer this question is to pay off the debt.

Similarly, if Preservation really represents such a good standard to
abide by, it seem pretty safe to affirm thesis T3. For, in response to One’s
Embarrassing Past, we can say that the revision strategy that the agent
has been following through time is simply irrational. But then one day
we will have to pay off the debt: we will have to explain how a theory of
strategic rationality sheds light on a theory of agential rationality. Similarly,
adoption of T4 or T5 incurs its own debt: we will have to say how ceteris
paribus norms would apply to concrete cases, which would require us to
develop, for example, a logic for defeasible deontic reasoning.6 So what
confronts us is this problem:

Choosing Among Research Programs. Should we get our hands
dirty today, or should we incur a debt today and promise to pay
it off in the future, by directing our attention to perfect rationality,
strategic rationality, or ceteris paribus rationality?

The literature, as developed today, seems more inclined to opt for the route
of perfect rationality.

In the rest of this article, we will follow the literature, talking about
theses of the form T2 most of the time. Just keep in mind that a research
program has been chosen (at least tentatively) and it comes with a debt.

3 formal theories of belief revision

A typical belief revision theory has two parts: the formal part is meant to
formulate certain formal constraints on belief revision, and the normative
part is meant to make some normative claims in terms of those constraints.
It is time to turn to the formal part.

Consider a language L, identified with a set of sentences closed under
at least the standard Boolean operations (i.e., ‘and’, ‘or’, and ‘not’). A finite
sequence (φ1, φ2, . . . , φn) of sentences in L can be understood as a history of
inquiry in which one receives information φ1, then receives information φ2,
. . . , and then receives information φn. A belief revision strategy is meant

6 See Nute (2012) for a number of approaches to defeasible deontic logic.
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to tell one how to change beliefs given any relevant history of inquiry.
Accordingly, we make the following definition.

Definition (Belief Revision Strategy). A belief revision strategy
over language L is a function S : I → ℘(L), where:

� I is a nonempty set of finite sequences of sentences in L that
is closed under subsequences—that is, whenever I contains a
nonempty sequence (. . . , φn), it also contains the truncated
sequence (. . .) that results from deleting the last entry. So the
empty sequence, denoted by ( ), is guaranteed by definition to
be in I . Call I an information space, meant to contain all the
“relevant” histories of inquiry in question.

� ℘(L) is the collection of all subsets of L, i.e. all sets of sentences
in L.

� S(φ1, φ2, . . . , φn) is understood as the set of beliefs that strategy
S would recommend for an agent at the end of inquiry history
(φ1, φ2, . . . , φn). In the limiting case, the value of function S at
the empty sequence ( ), written S( ), denotes the set of beliefs
recommended at the beginning of the inquiry.

I have to confess that the S-notation used here is not quite standard in
the literature. But in this article we will encounter three different kinds of
belief revision theories, and the S-notation is the simplest one for unifying
all the three.

A formal theory of belief revision, no matter how it is presented, works
by imposing a constraint on belief revision strategies, allowing for some
strategies and ruling out the others. Accordingly, we make the following
definition.

Definition (Formal Theory of Belief Revision). A formal theory
of belief revision over language L is (or can be identified with) a set of
belief revision strategies over L.

A formal belief revision theory T can be turned into a normative theory
once it is given a normative interpretation, such as: “an agent is perfectly
rational only if there exists a belief revision strategy in T that she has been
following and would continue to follow.” (Just a reminder: alternative
interpretations have been discussed in Section 2.2.)

3.1 Simple Belief Revision Theories

Let I≤1 be the set of all sequences of sentences in L with lengths ≤ 1. So it
does not consider successive revisions of belief. A belief revision strategy
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is simple iff it is defined on I≤1. A set of such strategies is called a simple
formal theory of belief revision.

Suppose that we only care about simple belief revision for the moment.
Then the S-notation just introduced is an overkill, and it would be more
convenient to work with the notation of B and ∗ introduced earlier. Here
is the translation between these two notations:

S( ) = B, the initial set of beliefs;

S(φ) = B ∗ φ, the set of new beliefs in light of new information φ.

So Preservation can be reformulated as follows.

Preservation. For any φ compatible with S( ), S( ) ⊆ S(φ). In other
words, for any φ compatible with B, B ⊆ B ∗ φ.

The set of simple belief revision strategies that satisfy Preservation is
a formal theory of belief revision. It corresponds to a strictly weaker
constraint than the standard, AGM belief revision theory, as we will see in
Section 4.1.

3.2 Iterated Belief Revision Theories

The information space I≤1 just considered is very small. What about
working with a larger information space? Let Ifinite be the set of all finite
sequences of sentences in L. A belief revision strategy S defined on Ifinite
says a lot. It says how to revise beliefs when one receives information φn+1

that follows inquiry history (φ1, . . . , φn): just change the set of beliefs from
S(φ1, . . . , φn) to S(φ1, . . . , φn, φn+1). It even says how to revise beliefs when
one receives information φ but then, unfortunately, receives information
¬φ: change the set of beliefs from S(. . . , φ) to S(. . . , φ,¬φ). A set of belief
revision strategies defined on Ifinite is called an iterated belief revision
theory.

For example, consider the set of all belief revision strategies S : Ifinite →
℘(L) that satisfy the following.

Iterated Preservation. For any finite sequence (φ1, . . . , φn) of
sentences and any sentence φn+1 in L, if φn+1 is compatible with
S(φ1, . . . , φn), then S(φ1, . . . , φn) ⊆ S(φ1, . . . , φn, φn+1).

This constraint is strictly weaker than many iterated belief revision theories
in the literature, as we will see in Section 4.5.

3.3 Belief Revision Theories for Inductive Inferences

Sometimes we may want to have an information space I that is just right,
not too big and not too small. Consider an empirical problem: “Are all
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ravens black?” Call this the Raven Problem. Let language L contain the
following sentences:

h = the hypothesis “all ravens are black”;

bi = “the i-th observed raven is black”;

ni = “the i-th observed raven is non-black.”

An inquiry history relevant to the Raven Problem describes the color of
every raven observed in that history. For example, (b1, b2, b3, b4) says that
we have observed four ravens and all of them are black; (b1, b2, b3, b4, n5)

says that we have observed five ravens with the first four being black and
the last one being non-black. Let Iraven be the set of all finite sequences
whose i-th entry is either bi or ni. Iraven is meant to exclude any sequence
that contains h, because, let us suppose, scientists never receive h as
information. In the present case, the point of working with Iraven (rather
than the much larger information space Ifinite) is that we want to be clear
about which pieces of information can be available to a scientist for solving
the Raven Problem. Furthermore, reference to Iraven is essential when we
define how well a belief revision strategy performs as a solution to the
Raven Problem, as we will see in Section 4.6.

We might come to believe h when they have observed a certain number
of black ravens without a single non-black one. But how many black ravens
suffice for a rational or justified belief in h? A belief revision strategy
defined on Iraven is meant to give an answer. For example, a strategy Sskep
that follows inductive skepticism would say that no finite amount of black
ravens suffices; that is, h 6∈ Sskep(b1, . . . , bn) for every positive integer n.

4 how to construct formal theories

In this section we will review a number of techniques for constructing
formal theories of belief revision. Those techniques can be taken as mere
formal tools for constructing formal theories of belief revision. But those
formal techniques are usually associated with some motivations or in-
terpretations, which might do some interesting philosophical work. To
anticipate, in Section 6 we will examine how interpreted techniques of
theory construction could be turned into explicit arguments for normative
claims about belief revision.

4.1 Axiomatization

Consider the following axiom system, stated in terms of B and ∗, where
B + φ denotes the set of logical consequences of B ∪ {φ}:

Axiom System AGM.
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(Closure) B ∗ φ is closed under logical consequences.

(Extensionality) If φ and ψ are logically equivalent, then B ∗ φ =

B ∗ ψ.

(Success) B ∗ φ contains φ.

(Consistency) If φ is consistent, then B ∗ φ is consistent.

(Accretion) If φ is compatible with B, then B ∗ φ = B + φ.

(Super-Accretion) If ψ is compatible with B ∗ φ, then B ∗ (φ ∧ ψ) =

(B ∗ φ) + ψ.

Note that Accretion implies Preservation. These constraints on B and ∗ can
be easily translated to constraints on belief revision strategies S—just recall
the translation provided earlier: B = S( ) and B ∗ φ = S(φ). So the AGM
axiom system defines a formal theory of simple belief revision, i.e. the set
of simple belief revision strategies that satisfy those axioms. The ideas of
this belief revision theory can be found in Harper (1975), Harper (1976),
and Levi (1978). But this theory is usually called AGM because Alchourrón,
Gärdenfors, and Makinson (1985) prove a representation theorem for it, to
be presented in the next subsection. The axiomatization provided here is
equivalent to the standard—but more complicated—axiomatization found
in their 1985 paper.

If you think that the AGM axiom system is too strong and would like to
work with a weaker one, the following is an option, where the first four
axioms are borrowed from AGM:

Axiom System P+

(Closure)

(Extensionality)

(Success)

(Consistency)

(Cautious Monotonicity) If ψ ∈ B ∗ φ, then B ∗ φ ⊆ B ∗ (φ ∧ ψ).

(Or) If ψ ∈ B ∗ φ1 and ψ ∈ B ∗ φ2, then ψ ∈ B ∗ (φ1 ∨ φ2).

I call it P+ because this axiom system minus Consistency is, in a sense,
equivalent to the well-known system P of nonmonotonic logic.7 Every
axiom in P+ can be derived from the AGM axiom system, but the converse

7 This assumes the standard translation between belief revision theory and nonmonotonic
logic (Makinson & Gärdenfors, 1991), which I present in the appendix (Section 8.1).
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does not hold. In particular, axiom system P+ does not imply Accretion
because it does not even imply a logically weaker constraint: Preservation
(and we will be in a position to prove this claim in Section 4.4).

4.2 Partial Meet Contraction

Let us turn to a second technique for constructing a simple belief revision
theory. This technique works pretty much by telling a story of a rational
agent who is deciding which beliefs to retain or to abandon.

Suppose that an agent’s new information φ is incompatible with her
belief set B. Then, before she adds φ into her set of beliefs, it seems a
good idea for her to drop some old beliefs, i.e. to remove some sentences
from B in order to obtain a (smaller) set that does not entail ¬φ, so that
the addition of φ would not cause any inconsistency. Denote this set by
B÷ ¬φ, called the contracted set of beliefs free from commitment to ¬φ.
Once the agent obtains the contracted belief set B÷ ¬φ, she can safely
add φ to it and close it under logical consequences, and thereby obtain
(B÷¬φ) + φ as the new belief set. Namely:

Levi Identity. B ∗ φ = (B÷¬φ) + φ.

At its core, this amounts to constructing a revision procedure as the
concatenation of two other procedures: one for removing beliefs (÷) and
the other for adding beliefs (+). The process from B to B ÷ ¬φ is call
contraction, and the problem is how to find the contracted belief set B÷¬φ.
In typical cases there are multiple candidates for B ÷ ¬φ (i.e. multiple
subsets of B that do not entail ¬φ). Which one would/could serve as the
B÷¬φ that the agent needs for the sake of rational belief revision?

That problem has a standard, formal solution, called partial meet con-
traction, which is the focus of this subsection. Let B⊥¬φ denote the set of
all inclusion-maximal subsets of B that do not entail ¬φ. In other words,
B⊥¬φ contains X iff X is a set obtained by removing no more sentences
from B than necessary—retracting no more old beliefs than necessary—in
order to achieve compatibility with new information φ. Then, to proceed
further, a prima facie plausible idea is to (i) select “the best” candidate in
B⊥¬φ and let it be the contracted belief set. What if there is no uniquely
best candidate? Then perhaps the agent may try to (ii) arbitrarily select
one of the best candidates in B⊥¬φ, and let it be the contracted belief
set. But what if the agent feels unable to make such an arbitrary selection
given multiple best candidates? The standard proposal is to (iii) intersect
all of those best candidates and obtain an even smaller set of sentences, to
be identified with the contracted belief set B÷¬φ.

This last idea, (iii), is what underlies so-called partial meet contraction,
and can be formally presented as follows.
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Definition (Selection Function for a Belief Set). A selection
function for B is a function γ such that, for every collection M of
subsets of B:

(a) γ(M) ⊆ M if M 6= ∅,

(b) γ(M) 6= ∅ if M 6= ∅,

(c) γ(∅) = {B}.

The idea is that, for any nonempty collection M of candidates, γ is meant
to return γ(M) as the set of best candidates in M. Then, for each sentence
φ, let γ generate B÷¬φ as follows:

Partial Meet Contraction. B÷¬φ =
⋂

γ(B⊥¬φ).

(In case you are interested: while the above formalizes idea (iii), it turns
out that idea (i) can be modeled by the special case in which γ returns a
singleton.)

In general, given a selection function γ for a belief set B, it defines a
contraction operator ÷ by partial meet contraction, which then defines
a revision operator ∗ by Levi identity. Initial belief set B and revision
operator ∗ then jointly define a simple belief revision strategy. So a set of
selection functions generates a set of simple belief revision strategies, i.e. a
simple belief revision theory.

We want to sort out selection functions that are “OK” in order to use
them to produce belief revision strategies that are “OK.” But which se-
lection functions are “OK”? Imagine that there is a binary relation ≥ on
subsets of B. Understand X ≥ Y as saying that X is at least as “good” as
Y with respect to ≥ (so presumably we want ≥ to be at least transitive
and reflexive). Then we can require γ to select the “best” items as fol-
lows. For any sentence φ (which serves as the new information) such that
B⊥¬φ 6= ∅:

γ(B⊥¬φ) = {X ∈ B⊥¬φ : X ≥ Y for all Y ∈ B⊥¬φ}.

Whereas if B⊥¬φ = ∅, then γ(B⊥¬φ) = {B}. Say that a selection function
γ for B is transitively (and reflexively) relational iff there exists a transitive
(and reflexive) relation ≥ that generates γ in the way just presented.8 It
seems tempting to think that a selection function is “OK” only if it is
transitively and reflexively relational.

It turns out that the transitively relational selection functions generate
all and only the simple belief revision strategies that satisfy the AGM
axioms—a classic result due to Alchourrón et al. (1985). So we have two

8 Note that not every transitive and reflexive relation ≥ generates a selection function for B.
This is because a careless design of ≥ could easily result in a γ that violates condition (b),
which is required by the definition of selection functions.
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equivalent presentations of the same set of revision strategies: one is to use
the AGM axioms to define a set of revision strategies, and the other is to
construct a set of revision strategies from (1) Levi identity, (2) partial meet
contraction, and (3) the set of transitively relational selection functions.
This is a representation result, a result saying that two apparently different
constructions or definitions lead to one and the same thing.

If any “at-least-as-good” relation ≥ employed to define a selection
function should be both transitive and reflexive, then the classic AGM rep-
resentation result seems to miss something: we see transitivity mentioned,
but where is reflexivity? Don’t worry. Rott (1993) proves that we can add
reflexivity while retaining the representation result; that is, the selection
functions that are transitively and reflexively relational generate all and
only the simple belief revision strategies that satisfy the AGM axioms.

4.3 Digression: Why Prove Representation Results?

We have seen a representation result, and will see more. Although repre-
sentation results are very interesting from a mathematical point of view, it
is less clear what their philosophical significance is. So let us step back and
think about how a representation result might be put into philosophical
service.

Here is the first possible philosophical service. Suppose that we are
searching for counterexamples to the belief revision theory based on, say,
partial meet contraction. Then, thanks to the above representation theorem,
we are exactly searching for counterexamples to the belief revision theory
based on the AGM axiomatization—with a bonus: it is usually easier
to work out putative counterexamples by contemplating on axioms. So
a representation result can be instrumental to the search for potential
counterexamples.

But we should not overemphasize the importance of this instrumental
role in philosophy. A representation result is sometimes overkill for this
instrumental role. Without a representation result, it is still possible to find
a potential counterexample to the belief revision theory based on partial
meet contraction. It is not hard to see that any belief revision strategy,
if constructed from partial meet contraction, must satisfy the Preserva-
tion constraint.9 So Preservation provides a sound (albeit incomplete)
axiomatization of partial meet contraction. If we can find a counterex-
ample to Preservation interpreted as a normative thesis, then we already
have a counterexample to the belief revision theory based on partial meet
contraction—all done without applying a representation result.

9 For, when the new information φ is compatible with the initial belief set B, we have that
B⊥¬φ = {B}, and hence the contracted set of beliefs

⋂
γ(B⊥¬φ) must be B itself, to

which the agent is going to add φ in order to form the new belief set B ∗ φ = B + φ.
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The lesson seems to be the following. A partial, sound axiomatization
already starts to facilitate the search for potential counterexamples. It
would be great if we also had a representation result. For then we are sure
that, if there is any genuine counterexample, it must violate at least one of
the axioms mentioned in the representation result—look no further. But
it is difficult to decide how much time to invest in proving a represen-
tation conjecture, especially if the only payoff is an aid to the search for
counterexamples.

A representation result might provide another philosophical service.
Consider the belief revision theory T whose formal part is axiomatized by
the AGM axioms. Assume the following.

(E) We have tried very hard to work out potential counterexamples to T
but in vain.

Then this is good evidence for theory T. Now consider the belief revision
theory T′ whose formal part is constructed from partial meet contraction
with transitively and reflexively relational selection functions. And assume
the following.

(E′) The construction procedure of T′ seems to describe what a rational
agent could follow in order to revise beliefs, and this “somehow”
lends plausibility to T′.

So now we have evidence for T and distinct, independent evidence for
T′. But, given the representation result, T and T′ are one and the same
belief revision theory. So we have two independent pieces of evidence for a
single belief revision theory—this is a case of convergence of evidence. So
a representation theorem can play an argumentative role in the convergence
of evidence for a belief revision theory. But notice that the existence of this
argumentative role is contingent on the truth of E and E′. Also notice that
what E′ means is unclear, depending on what is meant by ‘somehow’—this
is an issue we will discuss more in Section 6.2.

Enough digressions. Let us return to constructions of formal theories of
belief revision.

4.4 Orderings over Possible Worlds

If we think that the construction techniques presented above are too
restrictive due to their commitment to Preservation, we have to look for
more flexible construction techniques, such as the one presented below.

Imagine that we are trying to determine the revised belief set B ∗ φ in
light of new information φ. Assume, for the sake of simplicity, that to
believe something is to rule out some possibilities (except the limiting
case in which one rules out no possibility at all). Which possibilities to
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rule out? We do not treat all possibilities equally; we treat some as more
plausible than some others. We want to rule out the possibilities that are
implausible. This inspires the following procedure.

Step (I). Rule out the possibilities in which new information φ is
false.

Step (II). Among the possibilities that remain on the table, figure
out the worlds that are most plausible, and rule out all the others.

Step (III). Believe that the actual world is one of those that remain
on the table—that is, let B ∗ φ be the set of sentences that are true in
every possibility that remains on the table.

So a “more-plausible-than” relation between possibilities can be used to
generate a simple belief revision strategy in steps (I)–(III). This idea can
be traced at least back to Shoham’s (1987) work on so-called “preferential”
semantics of nonmonotonic logic,10 given Makinson and Gärdenfors’ (1991)
idea that nonmonotonic logic and (simple) belief revision theory are two
sides of the same coin.11

The informal presentation in the above can be made rigorous as follows.
Suppose that we have a set W of possible worlds for interpreting the
language L in use. That is, suppose that every sentence φ in L expresses a
proposition |φ|, which is a subset of W and understood to contain all and
only the worlds at which φ is true. There are metaphysical views about
what possible worlds are, and there are many different mathematical
models that might or might not reflect what they really are (such as
identifying possible worlds with purely set-theoretic entities, or sets of
linguistic entities, etc.). For present purposes, we only need to care about
how we are going to make use of them, rather than what they really
are. Assume that L is a language for propositional logic. Say that W is
a universe of possible worlds with assignment function | · | for language
L iff: (1) |¬φ| = W \ |φ|, (2) |φ ∧ ψ| = |φ| ∩ |ψ|, and (3) W is fine-grained
enough so that sentences in L are assigned the same subset of W iff they
are logically equivalent.12 Here is an example: let > denote a tautology,
so |>| = W. Note that this model of possible worlds is quite flexible:
a universe W in use is allowed to be so fine-grained that there are two
distinct possible worlds w, w′ in W that make exactly the same sentences in
L true. Namely, a W in use is allowed to make distinctions that language

10 Shoham (1987) talks literally about “more-preferred-to” instead of “more-plausible-than.”
But his point is to use an ordering over possible worlds, no matter how it is to be
interpreted.

11 See the appendix (Section 8.1) for a presentation of this idea.
12 This ensures that a set Γ of sentences entails a sentence φ iff

⋂{|ψ| : ψ ∈ Γ} ⊆ |φ|, which
captures the idea that entailment is truth preservation.



belief revision theory 367

L does not make (but a richer language possibly does). This flexibility will
be crucial later.

Let ≥ be a binary relation on a universe W of possible worlds for
language L. For any worlds w, w′ ∈W, understand w ≥ w′ as saying that
w is at least as plausible as w′ with respect to ≥. World w is (strictly) more
plausible than w′ with respect to > iff w ≥ w′ 6≥ w. Let max(U,≥) denote
the set of most plausible worlds in U with respect to ≥. To be more precise,
max(U,≥) is defined to be the set of worlds w ∈ U such that w < w′

for no w′ ∈ U.13 Then use ≥ to generate a belief revision strategy S≥ as
follows: given new information φ, let the revised belief set S≥(φ) contain
a sentence ψ iff ψ is true at every possible world in max(|φ|,≥).

Definition (Order-Generated Revision Strategy).

S≥(φ) =def {ψ ∈ L : |ψ| ⊇ max(|φ|,≥)},

which is the revised belief set B ∗ φ;

S≥( ) =def S≥(>) = {ψ ∈ L : |ψ| ⊇ max(W,≥)},

which is the initial belief set B.

So, given an arbitrary binary relation ≥ over W, we can use it to generate
a simple belief revision strategy S≥. Hence a set R of binary relations
can be used to generate a formal theory of simple belief revision, i.e.
{S≥ : ≥ ∈ R}.

But which binary relations≥ are “OK” for generating revision strategies?
We may consider requiring, for example, that any relation ≥ in use be a
preorder, i.e. satisfy the following.

Reflexivity. w ≥ w, for all w ∈W.

Transitivity. If w ≥ w′ and w′ ≥ w′′, then w ≥ w′′, for all
w, w′, w′′ ∈W.

And we may consider the stronger requirement that any ≥ in use be a
complete order, i.e. a preorder that also satisfies the following.

Completeness. Either w ≥ w′ or w ≤ w′, for all w, w′ ∈W.

Completeness is a substantial constraint.

Observation (I). Whenever we use complete preorders to generate
belief revision strategies, Preservation is guaranteed to be satisfied.

Observation (II). Violation of Preservation becomes possible when
we no longer require completeness.

13 Note that this is not the condition that w ≥ w′ for all w′ ∈ U.
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The second observation can be proved in a quite instructive way. The proof
strategy is to construct an incomplete preorder of relative plausibility
that captures the Three Composers case (which served as an alleged
counterexample to Preservation in Section 2.1). Let Ix mean that x is
Italian, Fx mean that x is French. Let Verdi, Bizet, and Satie be denoted
by v, b, and s, respectively. Let IvFbFs denote the possible world in which
Verdi is Italian, Bizet is French, and Satie is French. In general, a possible
world assigns the two nationalities (I and F) to the three composers (v, b,
and s). So there are eight possible worlds, shown in Figure 1. The arrows

IvFbFs

FvFbFs

::

Iv IbFs

OO

IvFb Is

dd

Fv IbFs

::OO

FvFb Is

dd ::

Iv Ib Is

dd OO

Fv Ib Is

dd OO ::

Figure 1: Hasse diagram of the Three Composers problem

represent the ordering we are going to define: w ≥ w′ iff either w = w′

or there is a chain of arrows linking w′ upward to w. (This is called a
Hasse diagram.) The rationale behind this ordering ≥ can be seen from the
following, equivalent definition of ≥:

◦ let IvFbFs be the most plausible world, which the agent believes to
be the actual world at the initial stage;

◦ let diff(w) be the set of composers x such that w differs from the
most plausible world IvFbFs in the nationality of composer x.

◦ w ≥ w′ iff diff(w) ⊆ diff(w′); roughly speaking, the less a world
differs from the most plausible world, the more plausible it is.

It is not hard to see that this is an incomplete order. Now we are ready to
show that the above plausibility order is a countermodel that witnesses
Observation (II). At the initial stage, the agent believes that the actual
world is the most plausible world: IvFbFs. Then the agent receives the first
information E, that v and b are compatriots. So the worlds incompatible
with that information are ruled out, as shown on the left side of Figure 2.
At this stage, the agent believes that the actual world is one of the two most
plausible worlds: FvFbFs and Iv IbFs. Then the agent receives the second
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FvFbFs Iv IbFs FvFbFs

FvFb Is

dd

Iv Ib Is

dd

Iv Ib Is

revision in light of E′
19

Figure 2: Revising in light of E, and then E′

information E′, that v and s are compatriots. So the worlds incompatible
with that information are ruled out, as shown on the right side of Figure 2.
At this final stage, the agent believes that the actual world is one of the
two most plausible worlds: FvFbFs and Iv Ib Is. It is routine to verify that the
transition from the left to the right represents the agent’s second revision
of beliefs in the Three Composers case, which violates Preservation. This
establishes Observation (II).

There is one more constraint on orders that we need to consider. The
Consistency axiom, which occurs in both axiom systems AGM and P+,
seems very plausible. But it might be violated when we use a preorder. To
see why, consider a preorder ≥ and a consistent piece of new information
φ such that every world in |φ| is less plausible than some other world in
|φ|. In that case, max(|φ|,≥) = ∅ and hence:

B ∗ φ = S≥(φ)

= the set of sentences in L true at every world in max(|φ|,≥)
= the set of sentences in L true at every world in ∅
= the set of all sentences in L, which is inconsistent.

And this violates axiom Consistency. To satisfy axiom Consistency, the
minimal constraint we need to impose on plausibility orders ≥ is this:

L-Smoothness.14 For every sentence φ in L, if |φ| is nonempty, then
there is no infinite sequence (w0, w1, w2, . . . ) on |φ| such that w0 <

w1 < w2 < . . . .

Now we are in a position to state Grove’s (1988) representation result:
for any simple belief revision strategy S such that S() = S(>), S satisfies
the AGM axiom system iff S is generated by some L-smooth complete
preorder.

14 This is also called the limit assumption in the literature on semantics of conditionals.
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Those who would like to relax the Preservation axiom would be more
interested in the representation result for axiom system P+: for any simple
belief revision strategy S such that S() = S(>), S satisfies axiom system
P+ iff S is generated by some L-smooth preorder over some universe W
of possible worlds. To ensure that the “only if” side holds, it is crucial
to allow W to be sufficiently fine-grained. This result can be obtained by
translating a result in nonmonotonic logic into belief revision theory. To
be more precise, this result is translated from an immediate corollary of
Kraus, Lehmann, and Magidor’s (1990) representation theorem for the
so-called system P of nonmonotonic logic,15 where the translation in use
is due to Makinson and Gärdenfors (1991).16

A technical remark on the use of mathematical tools: Grove (1988) uses
the so-called sphere systems, which do the same job as complete preorders
in the present context. Kraus et al. (1990) use strict partial orders, which
also do the same job as preorders in the present context. It just turns out
that, in order to unify these two works in the same setting, it seems most
convenient to use preorders.

4.5 Generalization to Iterated Belief Revision

The technique we’ve just discussed—constructing plausibility orderings—
can be easily carried over from simple belief revision to iterated belief
revision.

Let ≥ be an order that represents relative plausibility between worlds.
Recall how ≥ determines a belief revision procedure—in three steps. First,
discard the worlds in which φ is false; second, among the worlds that
are still on the table, figure out the worlds that are most plausible with
respect to ≥, and discard all the others; last, let the agent believe that the
actual world is one of those that remain on the table. This is a procedure
for “one-time” belief revision. Next time we receive new information, how
are we to find a plausibility order for our use? It is too bad that the above
procedure discards some worlds and thereby destroys the structure of ≥.
What we need to do, for the sake of iterated belief revisions, is to use the
new information to revise the plausibility order ≥ we currently have and
obtain a new order ≥∗φ—a new plausibility order that we can use when
we receive the next piece of information.

15 Kraus et al. (1990) use a setting slightly different from our current setting: (i) instead of
preorders they use strict partial orders, (ii) instead of primitive possible worlds they use
indexed valuation functions for atomic sentences, and (iii) instead of using > to mean “is
more plausible than,” they use ≺ (but not the other way round!) to mean “is preferred to”
or “is more normal than.” But these differences between the two mathematical settings do
not matter insofar as the underlying idea is concerned.

16 Their translation is presented in the appendix (Section 8.1).
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So let an agent start by having a plausibility order ≥ and believing that
the actual world is among the most plausible worlds, plausible with respect
to ≥. When she receives new information φ1, she uses the new information
to revise the current order ≥ into a new one ≥∗(φ1), and believes that the
actual world is among the most plausible worlds, plausible with respect to
the new order ≥∗(φ1). Then, when she receives another piece of information
φ2, let her repeat the above procedure: use the latest information φ2 to
revise ≥∗(φ1) into a new order ≥∗(φ1,φ2), and believe that the actual world
is among the most plausible worlds, plausible with respect to the latest
order ≥∗(φ1,φ2). In general, after receiving a finite stream of information
φ1, φ2, . . . , φn and revising her plausibility order successively, she will
come to believe that the actual world is among the most plausible worlds,
plausible with respect to the latest order ≥∗(φ1,φ2,...,φn). To recap: the idea is
to construct iterated revisions of plausibility orders:

≥ // ≥∗(φ1)
// ≥∗(φ1,φ2)

// ≥∗(φ1,φ2,φ3)
// · · ·

and let it generate iterated revisions of beliefs (as byproducts or epiphe-
nomena):

≥ //

��

≥∗(φ1)
//

��

≥∗(φ1,φ2)
//

��

≥∗(φ1,φ2,φ3)
//

��

· · ·

S() S(φ1) S(φ1, φ2) S(φ1, φ2, φ3) · · ·

This idea can be formalized as follows. A strategy for iterated revision
of plausibility orders is a function ≥∗ that maps every finite sequence
(φ1, . . . , φn) of sentences in language L to a preorder ≥∗(φ1,...,φn) over W.
Every order revision strategy ≥∗ generates a belief revision strategy as
follows.

Definition (Order-Generated Revision Strategy).

S≥∗(φ1, . . . , φn) =def {ψ ∈ L : |ψ| ⊇ max(W,≥∗(φ1,...,φn))},

i.e. the set of sentences that are true at every possible world that is
most plausible with respect to ≥∗(φ1,...,φn).

This is how iterations of belief revision can be generated from iterations
of plausibility order revision. While it might be difficult to construct the
former directly, the latter turns out to be not that difficult to construct.
Consider the following construction technique called “cut-and-paste”:

Definition (Cut-and-Paste Revision). Say that ≥′ is obtained from
≥ by cut-and-paste revision on a subset X of W iff:

(1) for all w, u ∈ X, w ≥′ u iff w ≥ u;
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(2) for all w, u 6∈ X, w ≥′ u iff w ≥ u;

(3) for all w ∈ X and u 6∈ X, w > u.

Namely, we “grab” the order ≥ over the whole W, “cut” the part of ≥
over X, and “paste” it on “top” of the other part W \ X, making any world
inside X more plausible than any world outside X (condition 3), without
changing the ordering of the worlds inside X (condition 1), nor changing
the ordering of the worlds outside X (condition 2). Here are two examples
of cut-and-paste revision.

Definition (Conservative and Radical Revisions).

Radical revision of ≥ on φ is cut-and-paste revision of ≥ on |φ|. This
is sometimes called lexicographic revision.

Conservative revision of ≥ on φ is cut-and-paste revision of ≥ on
max(|φ|,≥).

Radical revision changes a lot, while conservative revision just does a little.
What if we want to revise not that much nor that little, but something in
between? Consider the following, very general kind of order revision:

Definition (Canonical Revision). The revision from ≥ to ≥′ in
light of information φ is said to be canonical iff:

(1) φ is true at all worlds that are most plausible with respect to
≥′;

(2) for all w, u ∈ |φ|, w ≥′ u iff w ≥ u;

(3) for all w, u 6∈ |φ|, w ≥′ u iff w ≥ u;

(4) for all w ∈ |φ| and u 6∈ |φ|:

* if w > u, then w >′ u,

* if w ≥ u, then w ≥′ u,

* if w 6≤ u, then w 6≤′ u.

Condition (1) ensures that the new information is to be believed. Condition
(2) ensures that there is no change to the plausibility relation among the
worlds that make φ true. Condition (3) does something similar, ensuring
that there is no change to the plausibility relation among the worlds that
make φ false. Condition (4) appears quite complicated, but it is meant to
capture this intuitive idea: given any worlds w and u that make the new
information true and false, respectively, the plausibility relation of w to u
should not be “downgraded.” Radical revisions and conservative revisions
are both special cases of canonical revisions.

So, to construct a formal theory of iterated belief revision, we can pro-
ceed by specifying a set S of strategies for iterated revision of plausibility
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orders, and then letting it generate a set of iterated belief revision strategies
{S≥∗ : ≥∗∈ S}.

But which ones to put into S? There are at least two dimensions to
consider. First, do we want to allow some strategies in S to output in-
complete orders, or do we want to require every strategy in S to output
only complete preorders? Prefer the former option if you like Preservation;
otherwise prefer the latter option. Second, do we want to require that every
strategy ≥∗ in S always follow canonical revision, i.e. the revision from
≥∗(...) to ≥∗(...,φ) must be a canonical revision on φ? If we do, do we want
to require something more, such as that every strategy in S always follow
radical revision, or that every strategy in S always follow conservative
revision, or some other constraint?

Darwiche and Pearl (1997), for example, opt for complete preorders
together with canonical revision. Some think that the requirement of
canonical revision is too weak: Boutilier (1996) adds the requirement of
conservative revision; Jin and Thielscher (2007) add the requirement that,
for all worlds w, u such that w ∈ |φ| and u 6∈ |φ|, if w ≥∗(...) u, then
w >∗(...,φ) u.

This subsection has presented a reductionist approach that tries to
reduce iterated belief revision to revision of orders, but there has been
the worry that a reductionist approach is too restrictive. See Stalnaker
(2009) for an example meant to support this worry (this example will be
discussed in Section 5.3). Also see Booth and Chandler (2017) for more
examples, meant to argue against any reductionist approach that reduces
iterated belief revisions to functions that send a plausibility order and a
piece of information to a plausibility order.

4.6 Learning-Theoretic Analysis

Perhaps a belief revision strategy is better insofar as it better serves the
goal of one’s inquiry, e.g. the goal of learning whether all ravens are black.
In this subsection, we will construct a belief revision theory by addressing
the issue of how to choose belief revision strategies that serve the goal of
learning well—this is an issue typically addressed in formal learning theory.
We will be guided by two questions. First, how are we to define when a
belief revision strategy performs well with respect to the goal of learning?
No matter how we are to define learning performance, the performance of
a strategy is typically contingent upon what the world is like, something
that we have no control over and lack knowledge about. There might be a
strategy that performs well in one case but poorly in another case, and an
alternative strategy that performs in the opposite way. This brings out the
second question: which strategy is better and which is to be ruled out by
our belief revision theory? The following illustrates a learning-theoretic
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answer with a case study on the Raven Problem Section 3.3: “Are all ravens
black?”

To choose among belief revision strategies for tackling the Raven Prob-
lem, let us draw a payoff table. Table 1, like any typical decision table, has

h ¬h, n1 ¬h, b1, n2 . . . ¬h, b1, . . . , b100, n101 . . .

Sind

Scount

Sskep

Table 1: An incomplete payoff table for the Raven Problem

three kinds of elements: (i) columns, (ii) rows, and (iii) cells. The columns
correspond to the relevant, mutually exclusive possibilities. Recall that
h is the hypothesis that all ravens are black, bi means that the i-th raven
observed is black, and ni means that it is nonblack. So, for example, the
first column “h” corresponds to the possibility in which h is true and,
hence, all ravens are black. The column “¬h, b1, . . . , bi, ni+1” corresponds
to the possibility in which not all ravens are black and the first nonblack
raven to be observed is the (i + 1)-th one. The rows correspond to the
options to choose from. In the above table there are only three options—
three belief revision strategies—which I will define soon. Each row and
each column intersects at a cell, in which we will specify the outcome of
the corresponding option in the corresponding possibility. Each of those
outcomes will concern how well a belief revision strategy serves the goal
of learning the true answer to the question posed: “Are all ravens black?”
When all those outcomes are specified, we will try to figure out which
options that are “OK”, or at least which are not “OK.”

The three strategies listed in the decision table are defined as follows.
The skeptical strategy Sskep always asks one to believe the logical conse-
quences of one’s accumulated information, no more and no less. That
is:

Sskep(φ1, . . . , φi) =def Cn{φ1, . . . , φi},

where Cn X denotes the set of logical consequences of X. So, for ex-
ample, Sskep(b1, b2, . . . , bi−1, ni) contains ¬h because ni entails ¬h. But
Sskep(b1, b2, . . . , bi) excludes h no matter how large i is—so this strategy is
what the inductive skeptic would recommend.

An inductive strategy is a strategy that starts from asking one to believe
just the logical consequences of the accumulated information, but after
observing a certain amount of black ravens in a row without any coun-
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terexample, it asks one to believe h, the inductive hypothesis that all ravens
are black. Here is an example:

Sind(φ1, . . . , φi) =def


Cn{φ1, . . . , φi, h} if i ≥ 100 and φj = bj for

all j ≤ i,

Cn{φ1, . . . , φi} otherwise.

This strategy decides to make the inductive leap at the 100th black raven.
We could replace 100 with another positive integer, which would generate
another inductive strategy.

A counter-inductive strategy works as follows: when seeing more and
more black ravens in a row without any nonblack raven, this strategy
will start to ask one to believe ¬h at some point—violating Ockham’s
Razor—and it will ask one to believe h only at a later point. Here is an
example:

Scount(φ1, . . . , φi) =def



Cn{φ1, . . . , φi,¬h} if 50 ≤ i < 100 and
φj = bj for all j ≤ i,

Cn{φ1, . . . , φi, h} if i ≥ 100 and φj = bj
for all j ≤ i,

Cn{φ1, . . . , φi} otherwise.

What makes it counter-inductive is the first clause. Replacement of 50
and 100 with other numbers m and n (with m < n) would generate other
counter-inductive strategies.

For the sake of simplicity, let us compare just the three strategies explic-
itly defined above, although infinitely many more can be considered if we
wish. So we have only three rows in the payoff table to think about.

Next: fill the cells with outcomes. The kind of outcome to be specified
should say how well a strategy performs to help one achieve the goal,
where the present goal is set to learn whether all ravens are black. The
following introduces two performance criteria.

Say that a strategy will learn whether h is true given a column C iff,
whenever C holds and one obtains more and more information, there will
be a “learning moment” at which the strategy asks one to believe, and
always continue to believe, the unique answer in {h,¬h} that is true given
C. The following definition makes this more precise.

Definition (Learning with Respect to the Raven Problem). A
strategy S will learn whether h is true given column C iff:

for any infinite sequence (φ1, φ2, . . .) such that:
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* every finite segment of (φ1, φ2, . . .) is in the information
space Iraven in use (that is, every entry φi is either bi or ni),

* the conjunction
∧

i≥1 φi is compatible with possibility C,

there exists a natural number n, called a “learning moment,”
such that:

* for each i ≥ n, S(φ1, φ2, . . . , φi) is consistent and entails the
unique sentence in {h,¬h} that is true given C.

Here I only define the concept of learning for solving the Raven Problem,
but generalization is straightforward—please see appendix (Section 8.2).
An essential feature of this definition is that it refers to the information
space Iraven in use, which is meant to include all and only the pieces of
information that can be available to the inquirer. In principle we can try to
solve the Raven Problem by adopting a strategy for iterated belief revision,
which is defined on the much larger information space Ifinite that contains
all finite sequences of sentences. But, in that case, we still need to use the
smaller information space Iraven to correctly define (or characterize) when
a strategy will learn the true answer given a column.

We are now in a position to fill some cells with (partial) outcomes: see
Table 2. An occurrence of “Y” in a cell means: “yes, the strategy will learn

h ¬h, n1 ¬h, b1, n2 . . . ¬h, b1, . . . , b100, n101 . . .

Sind

Scount

Sskep N Y Y . . . Y . . .

Table 2: Payoff table for the Raven Problem continued

whether h is true given this column.” Similarly, “N” means: “no, it won’t
learn.” Just to check that we get this part right: given the first column “h”
(“all ravens are black”), when more and more black ravens are observed,
the skeptic strategy will never ask one to believe the true answer h, and
hence, it will not learn whether h is true given column “h.” That said,
the skeptic strategy will learn whether h is true given any other column
“¬h, b1, . . . , ni”: the right answer is obtained, and held on to, beginning
from the i-th observation, because ni entails ¬h. It is not hard to verify
that the cells left blank in the above should all be filled with “Yes.”

We want to think about, not just whether a strategy will learn, but
also how well it learns. It would be great to have a strategy that might
occasionally points to a falsehood but, once it points to the truth, it will
never let it go. If a strategy has that property given a column, say that it
is stable given that column (which is arguably a virtue that Plato praises
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towards the end of Meno). For example, the counter-inductive strategy is
not stable given the column “¬h, b1, . . . , b100, n101”: it asks one to believe
the truth ¬h on the 50th observation, but fails to continue to do so on the
100th, violating stability. Now, for each cell, let us specify (i) whether the
strategy will learn and (ii) whether it is stable: see Table 3. The answers to
(i) and (ii) for each cell are specified in the first and second components of
the ordered pair, respectively.

h ¬h, n1 ¬h, b1, n2 . . . ¬h, b1, . . . , b100, n101 . . .

Sind (Y, Y) (Y, Y) (Y, Y) . . . (Y, Y) . . .

Scount (Y, Y) (Y, Y) (Y, Y) . . . (Y, N) . . .

Sskep (N, Y) (Y, Y) (Y, Y) . . . (Y, Y) . . .

Table 3: Payoff table for the Raven Problem completed. The first component
concerns whether it will learn; the second, whether it is stable.

With the payoff table completed, it is time to think about which strategies
are “OK” and which are not. Presumably, learning is better than failing
to learn; stability is better than instability. With that in mind, a learning
theorist would be interested in arguing that both the skeptical strategy
Sskep and the counter-inductive strategy Scount are not “OK”. Three styles
of arguments are available for consideration.

Style 1. We can argue that both the skeptical strategy Sskep and the
counter-inductive strategy Scount are not “OK” if we are happy to apply
the Dominance Principle, which says that an option is not “OK” if it is
dominated in the sense that some alternative option performs at least as
well in all columns and does strictly better in some column.

Style 2. To argue for the same conclusion, we do not have to apply
the dominance principle. An alternative is to apply the so-called Maximin
rule. According to Maximin, we are to, first, figure out the worst possible
outcome of each option, and then judge that an option is not “OK” if17

its worst outcome is worse than the worst outcome of some alternative
option. Namely, Maximin asks one to maximize the minimal payoff. The
worst outcomes are identified in Table 4. So, according to Maximin, both
the skeptical strategy Sskep and the counter-inductive strategy Scount are
not “OK”.

Style 3. Perhaps the minimal argument that suffices to obtain the same
conclusion is to rely on a premise of this form:

Template for Achievabilist Theses. If the empirical problem in
question is easy enough so that it is possible to achieve epistemic

17 Note that the Maximin rule is formulated here in terms of ‘if’ rather than ‘if and only
if’; this is to ensure that the Maximin rule is in general compatible with the Dominance
principle.



378 hanti lin

worst outcome

Sind (Y, Y)

Scount (Y, N)

Sskep (N, Y)

Table 4: Worst possible outcomes for the Raven Problem

standard X, then a revision strategy for that empirical problem has
to achieve (at least) X in order to be “OK”.

Now, let X be “learning the truth with stability in all the columns (all
the possibilities under consideration)”. The Raven Problem is indeed that
easy, as witnessed by the first row of the payoff table. So, if we are happy
to accept that premise, we can argue that an “OK” revision strategy for
the Raven Problem must (at least) achieve learning and stability in all the
columns, ruling out the skeptical and the counter-inductive strategies.

The learning-theoretic analysis presented above is just a “baby version”
for the sake of illustration. It is adapted from Genin and Kelly (2018)
and Kelly, Genin, and Lin (2016), which build on Schulte (1999) and
Kelly (2007). More generally, a belief revision theory can be constructed
by considering the learning performances of belief revision strategies in
possible scenarios. This idea admits of many possible implementations.

◦ We may consider enriching the specifications of outcomes.

We have only talked about whether a revision strategy will learn
and whether it is stable. But do we also want to consider other kinds
of learning performance? Think about these: How many retractions
of beliefs will be incurred? How many times will a false answer be
believed? How fast will the true answer be learned?

◦ We need to find a way to evaluate revision strategies in terms of the payoff
table.

We may consider using a decision rule such as Dominance and
Maximin. But how about other decision rules like Minimax Regret,
Maximax, or even Maximization of Expected Utility (if the use of
prior probabilities does not beg the inductive skeptic’s question)?
We may also consider relying on one achievabilist thesis or another,
or even a set of such theses. But what achievabilist theses are cor-
rect? That is, what epistemic standards have to be achieved when
achievable?

All those considerations and their possible variants, in combination, pro-
vide what we may call the learning-theoretic toolkit for constructing
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various formal theories of belief revision. But which specific tools should
we use in order to construct a belief revision theory that has a plausible
normative interpretation? This issue will be revisited in Section 6.3.

Also see Kelly (1999) for an application of learning-theoretic analysis
to iterated belief revision, which considers the possibility of receiving
mutually contradictory pieces of information.

The learning-theoretic analysis need not be a rival to the aforementioned
approaches to belief revision theory. Indeed, as we have seen, the learning-
theoretic analysis is able to rule out some notable revision strategies, such
as the skeptical and counter-inductive strategies. This ability seems to
complement the more standard, AGM belief revision theory: the skeptical
strategy is not ruled out by the AGM theory because it can be modeled by
a complete order of relative plausibility that takes every possible world
to be equally plausible; the counter-inductive strategy is not ruled out by
the AGM theory, either, because it can also be modeled by an appropriate
complete order of relative plausibility. Perhaps the right theory of belief
revision should be constrained jointly by the learning-theoretic considera-
tions and the considerations that follow, generalize, or weaken the AGM
theory. See Baltag, Gierasimczuk, and Smets (2016) and Genin and Kelly
(2018) for more on the possibility of such a joint project.

4.7 Other Construction Techniques

There are many other techniques for constructing belief revision theories.
Let me mention some of the most influential ones.

◦ Instead of using plausibility orderings over possible worlds, we may
use orderings over sentences, the so-called epistemic entrenchment
orderings (Gärdenfors & Makinson, 1988). This idea has been applied
to both simple belief revision and iterated belief revision (Nayak,
1994).

◦ On the approach of partial meet contraction, it is standardly assumed
that a belief set B be closed under logical consequence, but we may
relax that assumption, letting B be a mere set of sentences, called
a belief base, on which the agent bases other beliefs (Hansson, 1994,
1999).

◦ If we think that almost all formal theories of simple belief revision
in the literature are too strong, we can resort to the standard trans-
lation between simple belief revision and nonmonotonic inference
(Makinson & Gärdenfors, 1991), which I present in the appendix
(Section 8.1), and then translate a sufficiently weak nonmonotonic
logic into an equally weak theory of belief revision. The literature
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of nonmonotonic logic does provide very weak systems, such as
Reiter’s (1980) default logic.18 When we translate Reiter’s default
logic into belief revision theory, the result is even weaker than system
P+, let alone AGM.19

◦ Spohn (1988) proposes an approach to iterated belief revision theory,
which considers belief revisions in situations of the following kind: an
agent receives new information, but she is not fully certain whether
it is true, and somehow has a clear idea of how uncertain she is
supposed to be, where the uncertainty in question is measured by
ordinal numbers. See the chapter on ranking theory (Huber, this
volume).

For an extensive, detailed survey of construction techniques, see Rodrigues
et al. (2011).

5 how to argue against

To argue against a normative theory of belief revision, the paradigmatic
way is to provide intuitive counterexamples. But an alleged counterexam-
ple usually raises a question: “Is that a genuine counterexample?” Let us
think about this issue by discussing concrete examples.

5.1 Three Composers Revisited

Recall the case of Three Composers, which we considered in Section 2.1.
To facilitate cross reference, let me reproduce it below:

Example (Three Composers). Consider three composers: Verdi,
Bizet, and Satie. The agent initially believes the following.

(A) Verdi is Italian;

(B) Bizet is French;

(C) Satie is French.

Then the agent receives this information.

(E) Verdi and Bizet are compatriots.

So she retains the belief in C that Satie is French (after all, information
E has nothing to do with Satie), but drops her beliefs in A and in B.
Then the agent receives another piece of information.

(E′) Verdi and Satie are compatriots,

18 Reiter’s default logic is only one of the many approaches to nonmonotonic logic; see
Brewka, Niemelä, and Truszczyński (2008) for a review.

19 This observation is due to Makinson (1988).
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which is compatible with what she believes right before this new
information arrives. Considering that she started with initial beliefs
A, B, and C and has received two pieces of information E and E′,
which jointly say that the three composers are compatriots, now she
drops her belief in C.

Let us recall that the second revision is an alleged counterexample to
Preservation as a necessary condition of perfect rationality.

Anyone who wants to defend Preservation as a necessary condition
of perfect rationality may try responding in either of the following two
ways. First, the defender may try explaining why the agent in the Three
Composers case is actually irrational.

The second possible response proceeds as follows. E′ seems not the kind
of thing that we can actually receive as new information. We would come
to believe E′ by inferring it from the new information that we can actually
receive, such as “my music teacher just told me that Verdi and Satie are
compatriots,” or “I just saw a chart coloring composers in terms of their
nationalities; it assigns the same color, red, to Verdi and Satie but I do not
know which nationality corresponds to red.” So the scenario misspecifies
the new information that the agent actually receives. A realistic scenario
should be more complicated than the one told above. So the above scenario
also underspecifies how exactly the agent comes to gain the new belief in
E′ and drop the old belief in C. The goal of this response is to show that,
no matter how we retell the original Three Composers scenario in a way
free from misspecification and underspecification, the retold story will not
be a counterexample to Preservation.20

To see how one may explain an alleged counterexample away by point-
ing to underspecification or misspecification, let me provide other exam-
ples in the following two subsections.

5.2 Underspecification

Katsuno and Mendelzon (2003) argue that the AGM theory is not univer-
sally applicable. They propose the following counterexample.

Example (Book and Magazine). Suppose that the agent believes
that there is either a book on the table (B) or a magazine on the table
(M), but not both. Consider two alternative developments of this
scenario:

Case 1: The agent is told that there is a book on the table. She then
concludes B and ¬M.

20 I thank Horacio Arló-Costa for bringing this possible response to my attention.
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Case 2: The agent is told that a book has been put on the table. She
then concludes B but continues to suspend judgment about M.

So the agent starts by believing B∨M and ¬(B∧M). Katsuno and Mendel-
zon agree that the AGM theory can easily explain Case 1 as follows: the
agent receives information B and, hence, by the Accretion axiom in the
AGM theory, she comes to believe ¬M. But Katsuno and Mendelzon think
that Case 2 is a counterexample to the Accretion axiom in the AGM theory
because (i) the new information is compatible with the old beliefs and (ii)
the new information plus the old beliefs entails ¬M, which the agent does
not believe after the revision.

The lesson they want to draw is that we need a theory of belief revision
like AGM to deal with Case 1, but we need a distinct theory, what they
call a theory of belief update, to deal with Case 2.

But the AGM theorist could respond by saying that Katsuno and Mendel-
zon underspecify Case 2. Here is one possible way to specify Case 2 with
sufficient detail.

Case 2’: The agent starts by believing not only that B ∨M and ¬(B ∧
M) are both true at t0, but also that if a book is put on the table at
t1(> t0), then, first, B is true at t1 and, second, M is true at t0 iff M
is true at t1. Then the agent is told, at t1, that a book is indeed put on
the table at t1. In this case she should continue to suspend judgment
about M.

Given this more detailed specification of Case 2, the AGM theorist can use
the Accretion axiom to explain why the agent should suspend judgment
about M at t1. Note that the new information is consistent with the set of
her old beliefs. Furthermore, the new information plus the set of her old
beliefs is silent about the truth value of M at t1 (and this is made clear by
explicit references to times t0 and t1). Therefore, by Accretion one should
suspend judgment about the truth value of M at t1.

So Katsuno and Mendelzon’s alleged counterexample does not really
refute the AGM theory. The lesson is that an alleged counterexample may
fail to work due to underspecification.

I want to make a second point. Belief revision theory is very inter-
disciplinary, studied by philosophers, logicians, and computer scientists.
There are people belonging to all the three groups, but there are also
people belonging to only one or two. So different belief revision theorists
might have very different goals in mind when using counterexamples.
A sympathetic reading of Katsuno and Mendelzon’s paper—a paper in
artificial intelligence—suggests that they are interested in situations where
the object language is so austere that it contains no tense operators or
referential expressions about time. So the conclusion they want to draw
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can be charitably understood as saying that, given that the object language
is so austere (and hence computationally easier to deal with), the AGM
theory when restricted to that language cannot accommodate Case 2. This
conclusion should be very interesting to computer scientists: it would
be interesting to see if Case 2 can be accommodated by an algorithm
that manipulates a very simple language and implements a non-AGM
belief revision theory. It is just that this conclusion, although interesting in
computer science, is not equally interesting in epistemology.

5.3 Misspecification

Stalnaker (2009) argues against the following constraint on iterated belief
revision.

Axiom C2 (Darwiche and Pearl, 1997). S(φ1, . . . , φn, α, β) =

S(φ1, . . . , φn, β), whenever the latest information β is incompatible
with the preceding information α.

This says, roughly, that when one receives information α and then the next
piece of information β contradicts α, one ought to revise beliefs as if one
had only received β without receiving α. Darwiche & Pearl’s Axiom C2 is
among the weakest studied in the belief revision literature. Indeed, it is
satisfied by every revision strategy that always follows canonical revision
(which is the weakest requirement of iterated belief revision discussed in
Section 4.5). But Stalnaker (2009) proposes a counterexample to Axiom C2.

Example (Coin Flipping). A fair coin is flipped in each of the two
rooms, 1 and 2. Alice and Bert (who I initially take to be reliable)
report to me, independently, about the results: Alice tells me that the
coin in room 1 came up heads, while Bert tells me the same about the
coin in room 2. So I believe what they tell me at stage one. But then
Carla and Dora, also two independent witnesses whose reliability,
in my view, trumps that of Alice and Bert, give me information that
conflicts with what I heard from Alice and Bert. Carla tells me that
the coin in room 1 came up tails, and Dora tells me the same about
the coin in room 2. These two reports are given independently, and
simultaneously.21 This is stage two. Finally, stage three: Elmer, whose
reliability trumps everyone else, tells me that that the coin in room
1 in fact landed heads. (So Alice was right after all.) What should I
now believe about the coin in room 2?

21 This simultaneity assumption is crucial for Stalnaker’s purposes. Although this kind of
simultaneity (relative to the agent’s frame of reference) is extremely rare, it is still possible.
So this example is a genuine possibility.
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It seems that the agent, at the final stage, should believe that the coin in
room 2 came up tails, for Elmer says nothing that contradicts what Dora
says. But this result, Stalnaker claims, violates Darwiche & Pearl’s Axiom
C2. To see why, let:

α = the conjunction of what Carla says and what Dora says;

β = what Elmer says.

The latest information β contradicts the information α obtained at the
preceding stage, and it does so only because it contradicts the first conjunct
of α (i.e. what Carla says). But Axiom C2 asks the agent to act as if
information α were not received at all and, hence, as if Dora’s testimony
were not received. By contrast, we seem to have the intuition that the agent
should retain her belief in what Dora says—after all, the latest information
β does not undermine what Dora says. The problem with Axiom C2 seems
to be this: it requires that Dora’s testimony be discredited only because it
arrived at the same time as someone else’s discredited testimony.

Those who want to defend Darwiche & Pearl’s Axiom C2 might respond
that Stalnaker actually misspecifies the information in question. The agent
does not really receive any information whose content is that the coin in
room Y came up Z. The information received should be of this form: “agent
X says that the coin in room Y came up Z.” That is, the real information
should not be the content of what people say, but should report the fact
that those people say such and such things. Then there is no contradiction
between the earlier information and the later information in the Coin
Flipping case, and hence there is no violation of Axiom C2—or so the
response concludes.

So, if the above response is right, Stalnaker’s alleged counterexample
fails to work due to misspecification.

This hypothetical exchange between Stalnaker and the defender of
Axiom C2 raises a deep question. The clash between Stalnaker’s counterex-
ample and the defender’s response can be taken as a debate over what
counts as information, assuming that both parties employ the same concep-
tion of information. But what if Stalnaker and the defender presuppose
distinct conceptions of information? That is, what if they are talking past
each other? This question points to a debate concerning the nature or goal
of belief revision theory. According to the conception of information used
in Stalnaker’s specification of the scenario, the information that the agent
receives takes the form of E2 rather than E1.

(E1) Agent X says that the coin in room Y came up Z.
(E2) The coin in room Y came up Z.

But according to another conception of information—the one used in the
response—the agent only receives information of the form E1, while E2
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comes to be believed as a result of revising the agent’s old beliefs in light of
information E1. Now, if the two parties do presuppose distinct conceptions
of information, the real debate is this:

Choice among Conceptions of Information. Which conception
of information should be the one used in belief revision theory?
Or, without presupposing that there is a unique conception of in-
formation to be used in belief revision theory, how should those
conceptions of information play their respective roles in belief revi-
sion theory?

These are difficult questions to answer. If we are going to have two concep-
tions of information in belief revision theory, then we will have to rewrite
the formal theories presented above, for they simply do not distinguish
different conceptions of information. If we are to stick with the more
permissive conception of information that Stalnaker has in mind, then it
seems that we are developing a belief revision theory that does not address
an important kind of belief revision, i.e. the cases in which E2 is believed
as a result of belief revision in light of information E1. But if, instead, we
are to stick with the more restrictive conception of information, then we
will create a slippery slope. Which of the following is the information that
the agent receives?

(E0) Agent X utters ‘the coin in room Y came up Z’.
(E1) Agent X says that the coin in room Y came up Z.
(E2) The coin in room Y came up Z.

If we want a restrictive conception that excludes E2 as information, why not
go for the most restrictive conception that allows only E0 as information,
and take the other two to be something that the agent might come to
believe by revising old beliefs in light of the sole information E0? And,
if we really adopt such a restrictive conception of information, then it
seems pointless to develop a theory of iterated belief revision that aspires
to take care of so many cases, including the cases in which one receives
information α and later receives information β that contradicts α. These
cases would be made impossible or extremely rare by the most restrictive
conception of information.

So which conception(s) of information should we use in belief revision
theory? That is a tough issue, not usually discussed by belief revision theo-
rists. But Gärdenfors (1988), for example, does elaborate on the conception
of information that he intends to work with.

We arrived at a foundational issue from an alleged counterexample to a
belief revision theory. Discussions about counterexamples are important
because we may use them to refute theories, but also because they some-
times raise deep questions concerning what exactly we want to theorize
about.
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6 how to argue for

Arguments for particular belief revision theories do not usually receive
explicit formulations in the literature. But two argumentative approaches
are discernible in the literature. On the first approach, one argues for a
belief revision theory in terms of how well it survives alleged counterex-
amples. On the second approach, a formal but motivated construction of a
belief revision theory is somehow “transformed” into an argument for the
theory. Let me explain these two approaches in turn.

6.1 Argument from Surviving Alleged Counterexamples

We use intuitive examples to refute general theories. So a possible argu-
ment schema we may use is the following.

(i) We have worked very diligently in search of intuitive counterexam-
ples to this normative theory of belief revision but have not been
able to find a genuine counterexample.

(ii) Therefore, this theory is plausible.

This argument is certainly not valid, but perhaps it is harmless to make it
valid by adding a premise: if (i) then (ii).

That is the first approach we may adopt in order to argue for a belief
revision theory, but hopefully not the only approach. We may have con-
flicting intuitions about concrete examples. When we do, we will debate
over premise (i). So it would be great to explore whether there are more
theoretical, general considerations that can help us resolve or mitigate our
disagreement. That brings us to the second approach.

6.2 Argument from Construction: Partial Meet Contraction

On the second approach, a construction of a formal belief revision theory
is to be interpreted and then turned into an argument for a normative
theory of belief revision. I will illustrate with two construction techniques:
first with partial meet contraction (in this subsection), and then with the
learning-theoretic analysis (in the next subsection).
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Belief revision theorists working on partial meet contraction seem to
have the following line of thought in mind. Recall that this construction
technique generates belief revision strategies S as follows:

S(φ) =(0) B ∗ φ

=(1) (B÷¬φ) + φ

=(2)
⋂

γ(B⊥¬φ) + φ

=(3)
⋂
{X ∈ B⊥¬φ : X ≥ Y for all Y ∈ B⊥¬φ} + φ.

These equations jointly describe a formal procedure by which we can use
a binary relation ≥ over sets of sentences to generate a belief revision
strategy S. Under a suitable interpretation, this procedure may tell a story
about a rational agent who is trying to revise beliefs, about the sensible
considerations that she has, and about the rational decisions that she
makes. In fact, this story was already sketched in Section 4.2, in which all
formal apparatuses—ranging from ÷, ⊥, γ, to ≥—were introduced with
motivations. (Of course, there are details to be filled into the story sketched
in that section, and some parts of the story may require fine-tuning to
make the whole story plausible.) Some belief revision theorists such as
Gärdenfors (1984) do take the story—the interpreted formal procedure—
very seriously, and they think that the story somehow lends plausibility to
the belief revision theory they construct.

The question I want to discuss here is how the above line of thought
can possibly be turned into an explicit argument with a clearly specified
normative conclusion. Let us explore some possibilities. Suppose that the
procedure (0)–(3) of partial meet contraction has been given an interpreta-
tion in line with the motivations provided in Section 4.2. Suppose, further,
that the normative thesis to be argued for is the following.

Putative Conclusion. An agent is perfectly rational only if she
has been following, and would continue to follow, a belief revision
strategy S that is constructible through procedure (0)–(3).

Note that this putative conclusion does not make the implausibly strong
claim that an agent is perfectly rational only if she actually follows proce-
dure (0)–(3); there may be distinct procedures leading to the same final
product. Now add the following premise.

Premise (I). Procedure (0)–(3), under such and such an interpretation,
describes a possible process for perfectly rational belief revision.

But the above premise alone does not suffice, for it only describes procedure
(0)–(3) as one possible process for perfectly rational belief revision. This
leaves us with the following open question.
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Open Question. Is there a procedure that describes another possible
process for perfectly rational belief revision, but generates a belief
revision strategy not constructible through procedure (0)–(3)?

If the answer is “yes,” then the putative conclusion is false. So, to make
the argument valid, we need to add at least the following premise (or
something to the same effect).

Premise (II). The answer to the above question is “no.”

But this second premise is far from obvious, so an argument for it is
required. Indeed, since procedure (0)–(3) is committed to Preservation,
the Three Composers case is a potential counterexample to Premise (II).
Perhaps one can try to argue that procedure (0)–(3) describes a very
“paradigmatic” process for perfectly rational belief revision—so paradig-
matic that the answer to the open question is “no,” and that the putative
conclusion must be true. It remains to explore how one may elaborate on
this line of thought.

So, for those who are sympathetic to the philosophical significance of
partial meet contraction (0)–(3), a foundational issue in belief revision
theory is how we may provide more premises besides (I) and produce a
sensible, valid argument for the putative conclusion.

But even if such an argument can be produced, Premise (I) can be
challenged. That is, one may challenge the very possibility of a workable
interpretation of procedure (0)–(3). Recall the main idea of this procedure.
Suppose that one receives information φ, and that φ is incompatible
with the set B of one’s old beliefs. Then some old beliefs have to be
retracted before φ is added to one’s stock of beliefs. That is, before one
adds φ, one needs to find a contracted set B÷¬φ of beliefs, a subset of B
that is compatible with φ. It is hypothesized that one should not retract
beyond necessity (but why?).22 So let the agent consider all elements of
the remainder set B⊥¬φ, i.e. all inclusion-maximal subsets of B that are
compatible with φ. Then let relation ≥ sort out the “best” of those subsets.
The intersection of those best subsets,

⋂{X ∈ B⊥¬φ : X ≥ Y for all Y ∈
B⊥¬φ}, is then identified with the contracted set of beliefs, B÷¬φ. That’s
the main idea. But that raises an issue concerning the right interpretation
of ≥. Let us try the following interpretation:

Interpretation of ≥ (1). X ≥ Y means that X is at least as good as
Y as a candidate for B÷¬φ.

Under this interpretation, the intersection of the “best” candidates for
B÷¬φ (“best” with respect to ≥) may not be a “best” candidate for B÷¬φ

(“best,” again, with respect to ≥). So a non-optimal candidate may be

22 For more on this issue, see Rott (2000).
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selected! So this particular interpretation of X ≥ Y makes the construction
process incoherent: one does not choose from the best candidates, but opts
for the intersection of the best candidates, which may be sub-optimal.

What else could X ≥ Y mean? Let us try Gärdenfors’ (1984) suggestion:

Interpretation of ≥ (2). X ≥ Y means that X is epistemically at
least as “important” as Y.

Following this interpretation, procedure (0)–(3) assumes that the contracted
belief set B ÷ ¬φ must be the intersection of the most “epistemically
important” elements of B⊥¬φ. Gärdenfors’ interpretation of ≥ does not
cause any incoherence, but he leaves us with some unanswered questions.
First, how should we understand the concept that Gärdenfors refers to
as epistemic importance? Second, why should the contracted belief set
be the intersection of the epistemically most important candidates? That
is, why are the concepts of belief contraction and epistemic importance
normatively related that way? Plausible answers to these questions are
required if we want to use Gärdenfors’ interpretation of ≥ to defend
Premise (I) and, ultimately, to argue for the putative conclusion listed
above.

So there are a number of issues to address if we want to take seriously
the construction of partial meet contraction and turn it into an explicit
argument. For more on how we may take partial meet contraction seriously,
see Gärdenfors (1984), Levi (2004), and Arló-Costa and Levi (2006).

6.3 Argument from Construction: Learning-Theoretic Analysis

Let us examine another technique for constructing belief revision theories:
learning-theoretic analysis. Recall that this construction selects belief re-
vision strategies according to some decision rule or achievabilist thesis
(Section 4.6). This suggests the following argument schema, where T is a
formal theory of belief revision, i.e. a set of revision strategies.

Premise (I). J (as a decision rule or achievabilist thesis) judges a
strategy to be not “OK” if that strategy is not in T.

Premise (II). If J judges a strategy to be not “OK”, then that strategy
is not rational (or epistemically justified, or the like).

Putative Conclusion. Therefore, a strategy is rational (or epistemi-
cally justified, or the like) only if it is in T.

A candidate for J is the Dominance principle, as mentioned in Section 4.6.
When outcomes, or learning performances, are specified in greater detail,
it is likely that only very few strategies are dominated. Indeed, a general
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feature of the Dominance principle is that it becomes weaker when out-
comes are specified in greater detail. So, in general, it would be difficult to
use the dominance principle to argue for a strong normative thesis.

In that case, one might consider resorting to another candidate for
J mentioned in Section 4.6: the Maximin decision rule. But there is a
longstanding worry that, in many situations, the Maximin rule is too
pessimistic to be the right rule to apply. Indeed, the dominant view in
decision theory is that a correct decision rule has to involve one’s degrees
of belief over the columns in the decision table, rather than (pessimistically)
focusing on the worst possible outcomes. There is a possible response in
favor of applying Maximin to some contexts. The learning-theoretic anal-
ysis is actually developed to address the so-called problem of induction.
Namely, it is meant to respond to the inductive skeptic’s questions: “How
can we justify induction?” “How can we justify inductive strategies rather
than skeptical strategies?” “How can we justify the use of a particular
inductive strategy rather than an alternative inductive strategy?” To prop-
erly address these tough questions, we cannot rely on anyone’s degrees
of belief over the columns in the decision table, for fear of begging the
skeptic’s question—or so Lange (2002) argues. So, to make a decision
without begging the skeptic’s question, the right decision rule, if there is
one, has to be a qualitative decision rule. And the Maximin rule seems a
good candidate—or so this response suggests and promises to elaborate.
This idea, which favors the use of Maximin in some contexts, may be
traced at least back to the Maximin foundation of statistical inference due
to Wald (1950). Note that those sympathetic to the above line of thought do
not have to stick with Maximin but can switch to, and argue for, another
qualitative decision rule that does not presuppose degrees of belief. Kelly
(2007), for example, proposes a kind of dominance principle that applies
to the worst-case bounds of “complexity classes”—a decision rule inspired
by how computer scientists evaluate the efficiency of problem-solving
algorithms.

There is another kind of candidate for J mentioned in Section 4.6,
achievabilist theses, which take this form: “If the empirical problem in
question is easy enough to allow a revision strategy to achieve epistemic
standard X, then a revision strategy for that empirical problem is “OK”
only if it achieves (at least) X.” Achievabilist theses have seldom been
formulated explicitly in learning theory, and they seem to be central to the
way Putnam (1965) and Gold (1967) created formal learning theory in the
1960’s—or so Kelly (1996) seems to suggest. But which achievabilist theses
are correct and how should they be defended or at least motivated? There
have been very few systematic discussions on this issue in the literature,
but see Kelly et al. (2016) and Genin and Kelly (2018) for examples of
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how certain epistemic standards may be motivated and put to use in
achievabilist theses.

7 concluding remarks

We have discussed a number of foundational issues about belief revision
theory. Let us recap what we have covered. Have a look at the italicized
terms below.

A belief revision theory is meant to make normative or evaluative(i)
claims(ii) about revision of beliefs in light of new information(iii).

With respect to (i), we have noted that alternative normative interpretations
can be given to a formal belief revision theory, and have seen that the choice
among those possible interpretations amounts to the choice among very
different research programs in belief revision theory (Section 2.3). With
respect to (ii), we have examined some methods that we may use to argue
for or against the normative claims that a belief revision theory is intended
to make (Section 5 and Section 6), including various potential difficulties or
issues that we need to address when trying to apply those argumentative
methods. With respect to (iii), we have only briefly discussed the issue of
what counts as information and the problem of choosing among different
conceptions of information (Section 5.3).

For discussions of other philosophical issues, see Levi (1983), Levi (1991),
Levi (2004), Gärdenfors (1988), Rott (2000), Rott (2001), Hansson (1999),
Hansson (2003), Gillies (2004), and Genin and Kelly (2018).

8 appendix

8.1 Nonmonotonic Logic and Belief Revision Theory

A nonmonotonic consequence relation is a binary relation |∼ between sen-
tences. Understand φ |∼ψ as saying of |∼ that it licenses the inference from
φ to ψ—a possibly defeasible, inductive, or plausible inference. Nonmono-
tonic logic, if broadly construed, aims at distinguishing nonmonotonic
consequence relations that are good in one sense or another. There are
many approaches to nonmonotonic logic; they differ in the procedures
that are used to sort out “good” nonmonotonic consequence relations; see
Brewka et al. (2008) for a review.

Makinson and Gärdenfors (1991) propose a translation between simple
belief revision strategies S and nonmonotonic consequence relations |∼ .
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Their translation is based on the following bridge principle (which I state
in terms of the S-notation used here):

ψ ∈ S(φ) iff φ |∼ψ.

To be more precise: given any simple belief revision strategy S, we can
use the bridge principle to define a nonmonotonic consequence relation
|∼S as follows: φ |∼Sψ iff ψ ∈ S(φ). Conversely, given any nonmonotonic

consequence relation |∼ , we can use the bridge principle to define a
simple belief revision strategy S |∼ as follows: S |∼(φ) =def {ψ : φ |∼ψ} and
S |∼() =def S |∼(>), where > is a tautology.

This establishes a one-to-one correspondence between all nonmonotonic
consequence relations and all simple belief revision strategies S such that
S() = S(>).

8.2 General Definition of Learning

Let an information space I be given, which contains some finite sequences
of sentences, meant to represent possible available pieces of information. Let
a question Q be identified with a set of mutually incompatible sentences,
called the potential answers to Q. The potential answers to Q may, or may
not, be jointly exhaustive—let the disjunction of the potential answers
to Q be understood as the presupposition of question Q. Let a decision
table be given, together with a set C of columns as mutually incompatible
possibilities. Those columns/possibilities are assumed to be so specific
that each column C ∈ C either entails exactly one potential answer to
question Q or it entails the negation of Q’s presupposition. With respect
to the above setting (Q, I , C), define the following concepts.

◦ An I-information stream is an infinite sequence (φ1, φ2, . . .) of sen-
tences such that its finite initial segments are all in I .

◦ Say that an I-information stream (φ1, φ2, . . .) is compatible with a
column C ∈ C iff the infinite conjunction

∧
i≥1 φi is compatible with

possibility C.

◦ The true answer to question Q given column C, written Ans(Q | C),
is defined as the unique potential answer to Q that C entails, if such
a unique answer exists; otherwise, Ans(Q | C) is undefined.

We are finally in a position to define learning with respect to the above
setting.

◦ Say that a strategy S will learn the true answer to question Q given
column C just in case:
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(1) the true answer Ans(Q | C) exists;

(2) for each I-information stream (φ1, φ2, . . .) compatible with C,
there exists n ≥ 1, called a “learning moment,” such that for
each i ≥ n, S(φ1, φ2, . . . , φi) is consistent and entails Ans(Q | C).
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8
R A N K I N G T H E O RY Franz Huber

In epistemology ranking theory is a theory of belief and its revision.
It studies how an ideal doxastic agent should organize her beliefs and
conditional beliefs at a given moment in time, and how she should revise
her beliefs and conditional beliefs across time when she receives new
information. In this entry I will first present some background, most
notably the AGM theory of belief revision (Alchourrón, Gärdenfors, &
Makinson, 1985). In order to motivate the introduction of ranking theory I
will then focus on the problem of iterated belief revisions. After presenting
the elements of ranking theory (Spohn, 1988, 2012) I will show how this
theory solves the problem of iterated belief revisions. I will conclude by
sketching two areas of future research and by mentioning applications
of ranking theory outside epistemology. Along the way we will see how
ranking theory, a theory of belief, compares to subjective probability theory
or Bayesianism, which is a theory of partial beliefs or degrees of belief.

1 introduction

Sophia believes many things, among others that it will rain on Tuesday,
that it will be sunny on Wednesday, and that weather forecasts are always
right. Belief revision theory tells Sophia how to revise her beliefs when
she learns that the weather forecast for Tuesday and Wednesday predicts
rain. As we will see, this depends on the details of her beliefs, but under
one way of filling in the details she should keep her belief that it will rain
on Tuesday and give up her belief that it will be sunny on Wednesday. To
state in full detail how Sophia should revise her beliefs when she learns
new information we need a representation of her old beliefs and of the
new information she receives.

In this entry I will focus on ideal doxastic agents who do not suffer
from the computational and other physical limitations of ordinary doxastic
agents such as people and computer programs. These ideal doxastic agents
get to voluntarily decide what to believe (and to what degree of numerical
precision); they never forget any of their (degrees of) beliefs; and they
always believe all logical and conceptual truths (to a maximal degree).
We may perhaps define a (doxastic or cognitive) agent to be ideal just in
case any (cognitive) action that is physically possible is an action that is
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possible for her. Such ideal agents ought to do exactly that which they
ought to do if they could, where the ‘can’ that is hidden in the ‘could’
expresses possibility for the agent, not metaphysical possibility. Hence the
principle that Ought Implies Can does not put any constraints on what an
ideal agent should do, and on what an ideal doxastic agent should believe.

Belief revision theory models belief as a qualitative attitude towards
sentences or propositions: the ideal doxastic agent believes a proposition,
or she disbelieves the proposition by believing its negation, or she sus-
pends judgment with respect to the proposition and its negation. This
is different from the theory of subjective probabilities, also known as
Bayesianism (Easwaran 2011a, 2011b; Titelbaum, this volume; Weisberg
2011; Wenmackers, this volume), where belief is modeled as a quantita-
tive attitude towards a proposition: the ideal doxastic agent believes a
proposition to a specific degree, her degree of belief, or credence, for the
proposition. However, we will see that, in order to adequately model con-
ditional beliefs and iterated belief revisions, ranking theory also models
the ideal agent’s doxastic state with numbers, and thus more than just the
set of propositions she believes. Genin (this volume) discusses the relation
between belief and degree of belief.

2 belief revision

Spohn (1988, 1990) develops ranking theory in order to fix a problem
that besets the AGM theory of belief revision. In order to provide some
background for ranking theory I will first present the AGM theory. Ranking
theory will then arise naturally out of the AGM theory. The latter theory
derives its name from the seminal paper by Alchourrón et al. (1985).
Comprehensive overviews can be found in Gärdenfors (1988), Gärdenfors
and Rott (1995), Rott (2001), and Lin (this volume).

One version of the AGM theory of belief revision represents the ideal
doxastic agent’s old beliefs, her doxastic state at a given moment in time, by
a set of sentences from some formal language, her belief set, together with
an entrenchment ordering over these sentences. The entrenchment ordering
represents how firmly the ideal doxastic agent holds the beliefs in her
belief set. It represents the details of the ideal agent’s doxastic state. The
new information is represented by a single sentence. The AGM theory
distinguishes between the easy case, called expansion, and the general case,
called revision. In expansion the new information does not contradict the
ideal doxastic agent’s old belief set and is simply added. In revision the
new information may contradict the ideal doxastic agent’s old belief set.
The general case of revision is difficult, because the ideal doxastic agent
has to turn her old belief set, which is assumed to be consistent, into a new
belief set that contains the new information and is consistent. Usually the
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general case is dealt with in two steps. In a first step, called contraction, the
old belief set is cleared of everything that contradicts the new information.
In a second step one simply expands by adding the new information. This
means that the difficult doxastic task is handled by contraction, which
turns the general case of revision into the easy case of expansion.

A formal language L is defined inductively, or recursively, as follows. L
contains the contradictory sentence p⊥q and all elements of a countable
set of propositional variables PV = {pPq, pQq, pRq, . . .}. Furthermore,
whenever A and B are sentences of L, then so are the negations of A and
of B, p¬Aq and p¬Bq, respectively, as well as the conjunction of A and B,
p(A ∧ B)q. Finally, nothing else is a sentence of L. The new information
is represented by a single sentence A from L. The ideal agent’s doxastic
state is represented by a set of sentences, her belief set B ⊆ L, plus
an entrenchment ordering � for B. The entrenchment ordering, which
represents the details of the ideal doxastic agent’s beliefs, orders the
agent’s beliefs according to how reluctant she is to give them up: the more
entrenched a belief, the more reluctant she is to give it up.

The entrenchment ordering does most of the work in a revision of the
agent’s beliefs. Suppose the agent receives new information that contra-
dicts her belief set. Since the new belief set that results from the revision
has to be consistent, some of the old beliefs have to go. The entrenchment
ordering determines which beliefs have to go first: the least entrenched be-
liefs are the beliefs that have to go first. If giving up those is not enough to
restore consistency, the beliefs that are next in the entrenchment ordering
have to go next. And so on. The beliefs that would be given up last are the
most entrenched ones. According to Maximality, they are the tautological
sentences, which are always believed and never given up, because doing so
cannot restore consistency. On the other end of the spectrum are the least
entrenched sentences. According to Minimality, they are the sentences the
agent does not even believe to begin with. These sentences do not belong
to the agent’s belief set and so are gone before the revision process has
even begun.

If one sentence logically implies another sentence, then, according to
Dominance, the latter cannot be more entrenched than the former, as
giving up the belief in the latter sentence is to also give up the belief in
the former sentence. Dominance implies that the entrenchment ordering
is reflexive: every sentence is at least as entrenched as itself. According to
Conjunctivity, two sentences cannot both be more entrenched than their
conjunction: one cannot give up one’s belief in a conjunction without
giving up one’s belief in at least one of the conjuncts. In combination
with Dominance, Conjunctivity implies that the entrenchment ordering
is connected: any two sentences can be compared to each other in terms
of their comparative entrenchment. That is, either the first sentence is at
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least as entrenched as the second sentence, or the second sentence is at
least as entrenched as the first sentence, or both. Finally, to ensure that the
entrenchment ordering is a well-behaved ordering relation, it is assumed
to be transitive by Transitivity.

More precisely, where ` is the logical consequence relationship on L
and Cn (B) = {A ∈ L : B ` A} is the set of logical consequences of B
(and ∅ is the empty set {}), the entrenchment ordering has to satisfy the
following postulates. For all sentences A, B, and C from L:

�1. If A � B and B � C, then A � C. Transitivity

�2. If {A} ` B, then A � B. Dominance

�3. A � A ∧ B or B � A ∧ B. Conjunctivity

�4. Suppose B 6` ⊥. Then A /∈ B if, and only if,
for all B ∈ L: A � B. Minimality

�5. If A � B for all A ∈ L, then ∅ ` B. Maximality

The work that is done by the entrenchment ordering in a revision of
the agent’s beliefs can also be described differently in terms of expansion,
revision, and contraction, which turn belief sets and new information
into belief sets (see Caie, this volume). Formally they are functions from
℘(L)×L into ℘(L).

Expansion +̇ turns each old belief set B ⊆ L and each sentence A
from L into a new belief set B+̇A = Cn (B ∪ {A}). This is the easy case
described earlier about which there is little more to be said.

The difficult and more interesting case is revision ∗, which turns each
old belief set B ⊆ L and each sentence A from L into a new belief set
B ∗ A. The operator ∗ is required to satisfy a number of postulates.

Closure requires revised belief sets to be closed under the logical conse-
quence relation: after the revision is completed, the agent ought to believe
all (and only) the logical consequences of the revised belief set. Congru-
ence is similar in spirit to Closure and requires that it is the content of the
new information received, and not its particular formulation, that deter-
mines what is added, and what is removed, from the agent’s belief set in
a revision. Success requires that revising a belief set by new information
succeeds in adding the new information to the agent’s belief set—and,
given Closure, all sentences it logically implies. Consistency requires the
revised belief set to be consistent as long as the new information is consis-
tent. The remaining postulates all formulate different aspects of the idea
that, when revising her belief set by new information, the agent should
add and remove as few beliefs as possible from her belief set, subject to
the constraints that the resulting belief set is consistent and that the new
information has been added successfully.
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Inclusion requires that revising a belief set does not create any new
beliefs that are not also created by simply adding the new information. In
a sense it says that expansion is a special case of revision. Preservation
requires that revising a belief set by new information that does not con-
tradict the agent’s old belief set does not lead to the loss of any beliefs.
Conjunction 1 requires that, when revising her belief set by a conjunction,
the agent adds only beliefs that she also adds when first revising her belief
set by one of the two conjuncts, and then adding the second conjunct.
Conjunction 2 requires that, when revising her belief set by a conjunction,
the agent adds all beliefs that she adds when first revising her belief set by
one of the two conjuncts, and then adding the second conjunct—provided
the second conjunct is consistent with the result of revising her belief set
by the first conjunct. More precisely, a revision function has to satisfy the
following postulates. For all sets of sentences B ⊆ L and all sentences A
and B from L:

∗1. B ∗ A = Cn (B ∗ A). Closure

∗2. A ∈ B ∗ A. Success

∗3. B ∗ A ⊆ Cn (B ∪ {A}). Inclusion

∗4. If B 6` ¬A, then B ⊆ B ∗ A. Preservation

∗5. If {A} ` B and {B} ` A, then B ∗ A = B ∗ B. Congruence

∗6. If ∅ 6` ¬A, then ⊥ 6∈ B ∗ A. Consistency

∗7. B ∗ (A ∧ B) ⊆ Cn
(
(B ∗ A) ∪ {B}

)
. Conjunction 1

∗8. If ¬B 6∈ B ∗ A, then
Cn
(
(B ∗ A) ∪ {B}

)
⊆ B ∗ (A ∧ B). Conjunction 2

The two-step view of revision described previously is known as the Levi
identity (Levi, 1977). It has the ideal doxastic agent first contract .− her
old belief set B by the negation of the new information, ¬A, thus making
it consistent with the new information (as well as everything logically
implied by the new information). Then it has her expand the result B .−¬A
by adding the new information A:

B ∗ A = Cn
(
(B .−¬A) ∪ {A}

)
.

The Levi identity puts contraction center stage in the revision process.
Contraction .− turns each old belief set B ⊆ L and each sentence A from L
into a “reduced” belief set B .− A that is cleared of A as well as everything
logically implying A. It is required to satisfy the following postulates. For
all sets of sentences B ⊆ L and all sentences A and B from L:
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.−1. B .− A = Cn (B .− A). Closure

.−2. If ∅ 6` A, then A 6∈ Cn (B .− A). Success

.−3. B .− A ⊆ Cn (B). Inclusion

.−4. If B 6` A, then B .− A = B. Vacuity

.−5. If {A} ` B and {B} ` A, then B .− A = B .− B. Congruence

.−6. Cn (B) ⊆ Cn
(
(B .− A) ∪ {A}

)
. Recovery

.−7. (B .− A) ∩ (B .− B) ⊆ B .− (A ∧ B). Conjunction 1

.−8. If A 6∈ B .− (A ∧ B), then B .− (A ∧ B) ⊆ B .− A. Conjunction 2

Closure requires contracted belief sets to be closed under the logical
consequence relation: after the contraction is completed, the agent ought
to believe all (and only) the logical consequences of the contracted belief set.
Congruence is similar in spirit to Closure and requires that it is the content
of the sentence to be removed, and not its particular formulation, that
determines what is removed from the agent’s belief set in a contraction.
Success requires that contracting a belief set by a sentence that is not
tautological succeeds in removing this sentence from a belief set—and,
given Closure, all sentences logically implying it. Inclusion requires that
contracting a belief set does not add any beliefs to the belief set. The
remaining postulates all formulate different aspects of the idea that, when
contracting her belief set by a sentence, the agent should remove as few
beliefs as possible from her belief set, subject to the constraints that the
resulting belief set is consistent and that the sentence to be removed,
together with all sentences logically implying it, is removed successfully.

Vacuity requires that contracting a belief set by a sentence leaves the
belief set unchanged if the sentence that was to be removed was not even
part of the belief set to begin with. Recovery requires that contracting a
belief set by a sentence removes as few beliefs as possible so that adding
the removed sentence again afterwards allows the agent to recover all her
previously removed beliefs. Conjunction 1 requires that, when contracting
her belief set by a conjunction, the agent does not remove any beliefs that
she does not also remove when contracting by one or the other of the two
conjuncts alone. Finally, Conjunction 2 requires the following: if a conjunct
is removed in contracting a belief set by a conjunction, then no belief gets
removed in contracting the belief set by this conjunct that does not also
get removed in contracting this belief set by the entire conjunction. The
idea behind the last two postulates is that giving up one of its conjuncts
is all the ideal doxastic agent needs to do in order to give up an entire
conjunction.
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The Levi identity turns each contraction operator .− satisfying .−1 – .−8
into a revision operator ∗ satisfying ∗1 – ∗8. The converse is true of the
Harper identity (Harper, 1976). The latter has the ideal doxastic agent first
revise the old belief set B by the negation of the new information, ¬A.
Then it has her remove everything from the result B ∗ ¬A that was not
already also a logical consequence of the old belief set B:

B .− A = (B ∗ ¬A) ∩ Cn (B) .

If we have a belief set B ⊆ L we can use an entrenchment ordering � for
B to define a revision operator ∗ for L as follows. For every sentence A
from L:

B ∗ A = Cn ({B ∈ L : ¬A ≺ B} ∪ {A}) ,

where A ≺ B holds if, and only if, A � B and B 6� A.
The idea behind this equation is the following. When the ideal doxastic

agent revises ∗ her old belief set B by the new information A she first
has to clear B of ¬A as well as everything else that is as entrenched
as, or less entrenched than, ¬A. For instance, B also has to be cleared
of everything that logically implies ¬A. However, it follows from the
definition of an entrenchment ordering that all sentences B from the ideal
doxastic agent’s old belief set B that are more entrenched than ¬A can
be preserved. This gives us the “preserved” belief set {B ∈ L : ¬A ≺ B}.
Then the ideal doxastic agent adds the new information A to obtain
{B ∈ L : ¬A ≺ B} ∪ {A}. Finally she adds all sentences that are logically
implied by the preserved belief set together with the new information. As
shown by Gärdenfors (1988) and Gärdenfors and Makinson (1988) one can
then prove

Theorem 1 Let L be a formal language. For each set of sentences B ⊆ L and
each entrenchment ordering � for B satisfying � 1 –� 5 there is a revision
operator ∗ from {B}×L into ℘ (L) satisfying ∗1 – ∗8 restricted to B such that
for all A ∈ L:

B ∗ A = Cn ({B ∈ L : ¬A ≺ B} ∪ {A}) .

For each revision operator ∗ from ℘ (L)×L into ℘ (L) satisfying ∗1 – ∗8 and
each set of sentences B ⊆ L there is an entrenchment ordering� for B satisfying
�1 –�5 such that for all A ∈ L:

B ∗ A = Cn ({B ∈ L : ¬A ≺ B} ∪ {A}) .

This theorem states that the postulates for entrenchment orderings trans-
late into the postulates for revision functions, and conversely. Caie (this
volume, Section 2.3) states the analogous theorem regarding the relation-
ship between the postulates for entrenchment orderings and the postulates
for contraction functions.
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There is a different way of representing postulates ∗1 – ∗8 for revision
operators ∗ due to Grove (1988). Similar to Lewis’ (1973) theory of coun-
terfactuals it uses systems of spheres defined on a set of possible worlds
instead of entrenchment orderings defined on a formal language (for more
on counterfactuals see Briggs, this volume). A set of possible worlds can
be thought of as a set of complete, or maximally specific, descriptions of
the way the world could be. One approach, used by Grove (1988), is to
identify possible worlds with maximally consistent sets of sentences from
L, i.e. sets of sentences that are consistent, but that become inconsistent
as soon as a single new sentence is added. Another approach is to take
possible worlds as primitive. For present purposes we do not have to take
a stance on this issue and can assume that we are given a set of possible
worlds wL relative to which we interpret the sentences from L.

In order to state Grove’s (1988) approach it will be useful to have the
following notation. JAK =

{
ω ∈ wL : ω |= A

}
is the proposition expressed

by the sentence A from L, i.e. the set of possible worlds in which the sen-
tence A is true. JBK =

{
ω ∈ wL : ω |= A for all A ∈ B

}
is the proposition

expressed by the set of sentences B ⊆ L. In addition we need to assume
that our language L is sufficiently rich in expressive power so that for each
proposition p ⊆ wL there is a set of sentences from L, a “theory,” T

(
p
)

that expresses or means p, i.e. JT
(

p
)
K = p.

Let p ⊆ wL be a proposition and let s ⊆ ℘(wL) be a set of propositions.
The set s is a system of spheres in wL that is centered on p if, and only if, for
all propositions q, r ⊆ wL and all sentences A from L:

s1. If q, r ∈ s, then q ⊆ r or r ⊆ q. s is nested

s2. p ∈ s; and: if q ∈ s, then p ⊆ q. s is centered on p

s3. wL ∈ s.

s4. If JAK ∩ u 6= ∅ for some u ∈ s, then there is u∗ ∈ s such that:
JAK∩ u∗ 6= ∅, and u∗ ⊆ v for all v ∈ s with JAK∩ v 6= ∅.

Requirement s1 says that systems of spheres are nested: any two spheres
are such that one is contained in the other, or they are the same sphere.
Requirement s2 says that the center of a system of spheres must itself be a
sphere in this system, and that every other sphere in the system contains
the center as a sub-sphere. Requirement s3 says that the set of all possible
worlds must be a sphere in every system of spheres. This implies that the
set of all possible worlds contains every other sphere in any given system
of spheres as a sub-sphere. Finally, in combination with s3 requirement
s4 says that for each logically consistent sentence A there is a smallest
sphere u∗ ∈ s that properly overlaps (has a non-empty intersection) with
the proposition expressed by A, JAK.
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Let cs (A) = JAK∩ u∗ and define cs (A) = ∅ if A is logically inconsistent.
Then cs (A) is the set of possible worlds in JAK that are “closest” to the
center p, where the meaning of ‘closeness’ is determined by the system of
spheres s. If A is logically consistent with (a set of sentences expressing)
the center p, then cs (A) is just the intersection of the center p with the set
of possible worlds JAK, JAK ∩ p. This is the easy case of expansion. The
difficult case of revision arises when A is not logically consistent with (a
set of sentences expressing) the center p. In this case the ideal doxastic
agent has to leave the center and move to the first sphere u∗ that properly
overlaps with the proposition expressed by A and adopt their intersection,
JAK∩ u∗, as cs (A). Figure 1 represents this situation.

p

JAK

cs (A) = JAK∩ u∗

Figure 1: The possible worlds “closest” to the center p

If we have a belief set B ⊆ L we can use a system of spheres s in wL
that is centered on JBK ⊆ wL to define a revision operator ∗ restricted to
B as follows. For every sentence A from L:

B ∗ A = T
(
cs (A)

)
.

The idea is that what the ideal doxastic agent ends up believing after
revising ∗ her old belief set B with the new information A is (a set of
sentences expressing) the proposition cs (A) that contains the possible
worlds in JAK that are closest when the proposition expressed by her
old belief set, JBK, is the center. Expansion is the special case where the
proposition expressed by the new information properly overlaps with the
proposition expressed by the old belief set, JAK∩ JBK 6= ∅. In this special
case the ideal doxastic agent does not have to leave the old center JBK
of her doxastic state; it suffices if she narrows it down to the possible
worlds also contained in JAK. However, in the general case of revision this
intersection may be empty. In this general case the ideal doxastic agent
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may have to leave the innermost sphere JBK and move to the smallest
sphere u∗ that properly overlaps with JAK and adopt their intersection,
u∗ ∩ JAK, as the new center of her doxastic state.

As before we can picture the system of spheres centered on JBK as an
“onion” around JBK. The grey area JB ∗ AK = JT

(
cs (A)

)
K = u∗ ∩ JAK is

the logically strongest proposition the ideal doxastic agent believes after
revising her old belief set B by the new information A; it is the new center
of her doxastic state (Figure 2).

JBK

JAK

JB ∗ AK

Figure 2: The strongest proposition believed after revising B by A

Grove (1988) proves the following theorem which states that an ideal
doxastic agent can be represented as revising her beliefs by relying on a
system of spheres satisfying s1 – s4 if, and only if, she can be represented as
revising her beliefs by employing a revision function satisfying postulates
∗1 – ∗8.

Theorem 2 Let L be a formal language, and let wL be a set of possible worlds
relative to which the sentences from L are interpreted and relative to which L
is sufficiently rich. For each set of sentences B ⊆ L and each system of spheres
s in wL that is centered on JBK and satisfies s1 – s4 there is a revision operator
∗ from {B} × L into ℘(L) satisfying ∗1 – ∗8 restricted to B such that for all
A ∈ L:

B ∗ A = T
(
cs (A)

)
.

For each revision operator ∗ from ℘(L)× L into ℘(L) satisfying ∗1 – ∗8 and
each set of sentences B ⊆ L there is a system of spheres s in wL that is centered
on JBK and satisfies s1 – s4 such that for all A ∈ L:

B ∗ A = T
(
cs (A)

)
.
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The two representations of belief revision in terms of systems of spheres
and in terms of belief revision functions are thus equivalent. Combined
with Theorem 1 this implies that the representation of belief revision in
terms of systems of spheres and in terms of entrenchment orderings are
also equivalent.

As an aside let me note that Grove’s (1988) notion of a system of spheres
is more general than Lewis’s (1973) notion in the following respect. Grove
(1988) allows s to be centered on arbitrary propositions p ⊆ wL, whereas
Lewis (1973, 14f) requires the center p to contain the actual world, and
nothing but the actual world. These last two requirements are known as
the principles of weak centering and of strong centering, respectively (see
Briggs, this volume). In another respect Grove’s (1988) notion is less general
than Lewis’s (1973). This is so, because requirement s4 makes a doxastic
version of the limit assumption, which Lewis (1973, 19f) famously rejects
and which Herzberger (1979) shows to be equivalent to the condition that
the set of counterfactual consequences {C ∈ L : A� C} of any consistent
sentence A be consistent. Ranking theory also makes a doxastic version of
the limit assumption.

In the AGM theory of belief revision the ideal agent’s old doxastic state
is represented by her belief set B together with her entrenchment ordering
� for B. The latter ordering guides the revision process in that it specifies
which elements of the old belief set are given up, and which are kept,
when new information D is received. The result of revising the old belief
set by the new information D is a new belief set B ∗ D. Sophia’s old belief
set B includes the beliefs that it will rain on Tuesday, that it will be sunny
on Wednesday, and that weather forecasts are always right. Suppose her
belief A that it will be sunny on Wednesday is less entrenched than her
belief B that it will rain on Tuesday, which in turn is less entrenched than
her belief C that weather forecasts are always right, A ≺ B ≺ C.

On Monday Sophia comes to believe that the weather forecast for Tues-
day and Wednesday predicts rain, D. Consequently she has to give up her
belief A that it will be sunny on Wednesday or her belief C that weather
forecasts are always right. The reason is that it follows from D that at
least one of those two beliefs is false, i.e. {D} ` ¬A ∨ ¬C. This implies
that A ∧ C � ¬D. Since A is less entrenched than C, i.e. A ≺ C, A has to
go. Furthermore, since {C, D} 6` ¬B Sophia need not give up her belief
B that it will rain on Tuesday if she holds onto her belief C that weather
forecasts are always right, and adds the belief D that the weather forecast
for Tuesday and Wednesday predicts rain. In addition let us assume that
¬D ≺ B so that Sophia’s entrenchment ordering looks as follows: where
X ∼ Y is short for X � Y and Y � X,

⊥ ∼ ¬A ≺ A ∼ A ∧ C � ¬D ≺ B ≺ C ≺ A ∨ ¬A.
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Thus Sophia’s new belief set is

B ∗ D = Cn ({X : ¬D ≺ X} ∪ {D}) = Cn ({B, C, D,¬A}) .

To Sophia’s surprise it is sunny on Tuesday after all. Therefore Sophia
wants to revise her newly acquired belief set B ∗D a second time by ¬B to
correct her belief B that it will rain on Tuesday. In addition, Sophia has to
give up her belief D that the weather forecast for Tuesday and Wednesday
predicts rain (this might be because she has misheard the weather forecast)
or her belief C that weather forecasts are always right (this might be
because she has been too gullible). The reason is that it follows from
¬B that at least one of those two beliefs is false, i.e. {¬B} ` ¬D ∨ ¬C.
Unfortunately AGM belief revision theory is of no help here. While Sophia
could use her entrenchment ordering to revise her old belief set B to
a new belief set B ∗ D, the entrenchment ordering itself has not been
revised. Sophia’s new doxastic state is silent as to whether D is now more
entrenched than C (this might be because she was too gullible) or C is now
more entrenched than D (this might be because she misheard the weather
forecast) or C is now as entrenched as D (this might be because she was
too gullible and misheard the weather forecast). However, the latter is
exactly the kind of information that Sophia needs in order to revise her
beliefs a second time.

3 iterated belief revision

More generally, the problem is that Sophia’s doxastic state is represented
as a belief set plus an entrenchment ordering before the revision process,
but as a belief set without an entrenchment ordering after the revision
process. To handle iterated belief revisions the ideal agent’s doxastic state
has to be represented in the same way before and after the revision process.
Gärdenfors and Rott (1995, p. 37) call this the “principle of categorical
matching.”

Nayak (1994), Boutilier (1996), Darwiche and Pearl (1997), Segerberg
(1998), Fermé (2000), Rott (2003), Rott (2006), and others do exactly this
(see also Caie, this volume, Section 2.4). They augment the AGM postulates
by additional postulates specifying how the ideal doxastic agent should
revise her entrenchment ordering in addition to her belief set when she
receives new information. On their accounts the ideal agent’s doxastic
state is represented as a belief set plus an entrenchment ordering both
before and after the revision process, and both of these two elements are
revised when new information is received.

Let us have a closer look at the proposal by Darwiche and Pearl (1997)
(Caie, this volume, Section 2.4 also discusses Boutilier 1996’s proposal).
In addition to postulates ∗1 – ∗8 they propose four more postulates for
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iterated belief revision. The first of these, ∗9, says that revising an old
belief set by new information (say, a conjunction) should result in the same
new belief set as first revising the old belief set by a logical consequence of
the new information (say, one of the two conjuncts) and then revising the
resulting belief set by the new information in its entirety. That is, revision
by a more specific piece of information such as that Sophia had red wine
should override all changes that result from first revising the old belief set
by a less specific piece of information such as that Sophia had wine.

The second of these new postulates, ∗10, says that revising an old
belief set consecutively by two pieces of information that are logically
inconsistent should result in the same new belief set as revising the old
belief set by the second piece of information alone. That is, revision by
the second piece of information—say, that Sophia had red wine—should
override all changes that result from first revising the old belief by the first
piece of information that is logically incompatible with the second piece
of information—say, that Sophia had no wine.

Next suppose the ideal doxastic agent holds a belief after revising her
old belief set by a piece of information. This may, but need not be a new
belief, i.e. a belief not held previously. The third new postulate, ∗11, says
that the ideal doxastic agent should also hold this belief if she first revises
her old belief set by this very belief and then revises the resulting belief
set by said piece of information.

Finally, suppose there is a sentence that is logically compatible with
the result of revising the ideal doxastic agent’s old belief set by a piece of
information. The fourth new postulate, ∗12, says that this sentence should
also be logically compatible with what the ideal doxastic agent ends up
believing if she first revises her old belief set by this very sentence and
then revises the resulting belief set by said piece of information.

More precisely, Darwiche and Pearl (1997) require the following of all
sets of sentences B ⊆ L and all sentences A and B from L:

∗9. If {A} ` B, then (B ∗ B) ∗ A = B ∗ A.

∗10. If {A} ` ¬B, then (B ∗ B) ∗ A = B ∗ A.

∗11. If B ∈ B ∗ A, then B ∈ (B ∗ B) ∗ A.

∗12. If ¬B 6∈ B ∗ A, then ¬B 6∈ (B ∗ B) ∗ A.

In order to represent these four new postulates more perspicuously it will
be helpful to consider the following reformulation of a system of spheres
s in wL centered on some proposition p.

Let p ⊆ wL be a proposition and let ≤ be a binary relation on wL. The
relation ≤ is an implausibility ordering on wL with center p just in case the
following holds for all possible worlds ω, ω′, and ω′′ from wL and all
propositions q ⊆ wL:
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≤1. ω ≤ ω′ or ω′ ≤ ω. ≤ is connected

≤2. If ω ≤ ω′ and ω′ ≤ ω′′, then ω ≤ ω′′. ≤ is transitive

≤3. ω ∈ p if, and only if, for all ω∗ ∈ wL : ω ≤ ω∗.

≤4. If q 6= ∅, then
{

ω ∈ q : ω ≤ ω∗ for all ω∗ ∈ q
}
6= ∅.

As suggested by its name, an implausibility ordering on wL with center
p orders the possible worlds from wL according to their implausibility.
Among other things, it is required that any two possible worlds can be
compared with respect to their implausibility: either the first possible
world is at least implausible as the second possible world, or the second
possible world is at least as implausible as the first possible world, or both.
It is also required that the ordering is transitive: if one possible world is at
least as implausible as a second possible world, and the second possible
world is at least as implausible as a third possible world, then the first
possible world is at least as implausible as the third possible world.

Furthermore it is required that the possible worlds in the center are
no more implausible than all possible worlds. That is, the center is the
proposition that contains all and only the least implausible possible worlds.
Finally it is required that each proposition that contains a possible world
also contains a possible world that is no more implausible than all possible
worlds in this proposition. The latter feature allows us to identify the
implausibility of a non-empty or logically consistent proposition with the
implausibility of the least implausible possible world(s) comprised by this
proposition.

A system of spheres centered on p can be understood as an implausi-
bility ordering with the center p containing the least implausible possible
worlds. In terms of such an implausibility ordering the problem with
the original AGM approach is the following. Before the revision process
the ideal agent’s doxastic state is represented as a belief set B plus an
implausibility ordering ≤B with center JBK. After revision by the new
information A the ideal agent’s doxastic state is represented as a belief
set B ∗ A, but without a corresponding implausibility ordering ≤B∗A. Gär-
denfors and Rott’s (1995) principal of categorical matching urges us to
represent the ideal agent’s doxastic state as a belief set plus an implausi-
bility ordering both before and after the revision process. In these terms
Darwiche and Pearl’s (1997) postulates ∗9 – ∗12 become the following
simple requirements.

First, the implausibility ordering among the possible worlds within the
proposition expressed by the new information should be the same before
and after a revision by the new information. Second, the implausibility
ordering among the possible worlds outside of the proposition expressed
by the new information should also be the same before and after a revision
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by the new information. Third, if a possible world within the proposition
expressed by the new information is less implausible than a possible world
outside of this proposition before revision by the new information, then
this should remain so after a revision by the new information. Fourth, if a
possible world within the proposition expressed by the new information
is at least as implausible as a possible world outside of this proposition
before revision by the new information, then this should also remain so
after a revision by the new information. That is, where ω < ω′ holds for
arbitrary possible worlds ω and ω′ from wL if, and only if, ω ≤ ω′ and
ω′ 6≤ ω, the following is required of all possible worlds ω and ω′ from wL
and all sentences A from L:

≤5. If ω, ω′ ∈ JAK, then: ω ≤B ω′ just in case ω ≤B∗A ω′.

≤6. If ω, ω′ 6∈ JAK, then: ω ≤B ω′ just in case ω ≤B∗A ω′.

≤7. If ω ∈ JAK and ω′ 6∈ JAK and if ω <B ω′, then ω <B∗A ω′.

≤8. If ω ∈ JAK and ω′ 6∈ JAK and ω ≤B ω′, then ω ≤B∗A ω′.

Before we turn to a representation theorem for iterated belief revision let
us consider a third representation theorem for belief revision. Theorem 1

and Theorem 2 tell us that the representation of belief revision in terms
of entrenchment orderings, in terms of belief revision functions, and in
terms of systems of spheres are all equivalent. According to the following
theorem due to Grove (1988) this equivalence extends to the representation
of belief revision in terms of implausibility orderings.

Theorem 3 Let L be a formal language, and let wL be a set of possible worlds
relative to which the sentences from L are interpreted and relative to which L
is sufficiently rich. For each set of sentences B ⊆ L and each implausibility
ordering ≤ on wL with center JBK that satisfies ≤ 1 –≤ 4 there is a revision
operator ∗ from {B} × L into ℘(L) satisfying ∗1 – ∗8 restricted to B such that
for all A ∈ L:

B ∗ A = T
({

ω ∈ JAK : ω ≤ ω∗ for all ω∗ ∈ JAK
})

.

For each revision operator ∗ from ℘(L) × L into ℘(L) that satisfies ∗1 – ∗8
and each set of sentences B ⊆ L there is an implausibility ordering ≤ on wL
with center JBK satisfying ≤1 –≤4 such that for all A ∈ L:

B ∗ A = T
({

ω ∈ JAK : ω ≤ ω∗ for all ω∗ ∈ JAK
})

.

The complicated looking proposition {ω ∈ JAK : ω ≤ ω∗ for all ω∗ ∈ JAK}
is simply the set of the least implausible possible worlds in which the new
information A is true. This means that the belief set B ∗ A that results from
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revising ∗ the ideal doxastic agent’s old belief set B by new information
A expresses the proposition that is comprised by the least implausible
A-worlds.

Against this background we can now state the following representation
theorem for iterated belief revision due to Darwiche and Pearl (1997).
According to it the representation of iterated belief revision in terms
of belief revision functions à la postulates ∗9 – ∗12 is equivalent to the
simple representation of iterated belief revision in terms of implausibility
orderings à la ≤5 –≤8.

Theorem 4 Let L and wL be as in Theorem 3. Suppose ∗ is a revision operator
from ℘(L)×L into ℘(L) that satisfies ∗1 – ∗8. According to Theorem 3, there
exists a family of implausibility orderings (≤B)B⊆L on wL such that for each
set of sentences B ⊆ L: ≤B satisfies ≤1 –≤4 and is such that, for all sentences
A ∈ L, B ∗ A = T

({
ω ∈ JAK : ω ≤B ω∗ for all ω∗ ∈ JAK

})
. For this ∗ and

any one of these families (≤B)B⊆L: ∗ satisfies ∗9 – ∗12 if, and only if, for every
set of sentences B ⊆ L, ≤B satisfies ≤5 –≤8.

The approaches to iterated belief revision mentioned above all have in
common that the ideal agent’s doxastic state is represented as a belief set
plus an entrenchment ordering/system of spheres/implausibility ordering
both before and after the revision process. Furthermore these approaches
have in common that the new information is represented as a single
sentence (or a single proposition). The latter is also true for the approach
by Jin and Thielscher (2007) discussed below, but not for what Rott (2009)
calls “two-dimensional” belief revision operators (see also Cantwell 1997;
Fermé and Rott 2004; Rott 2007).

In one-dimensional belief revision, as we may call it, the new informa-
tion comes as a “naked” (Rott, 2007) sentence or proposition. It is the job
of the various belief revision methods, as opposed to the new informa-
tion itself, to say exactly where in the new entrenchment ordering/sys-
tem of spheres/implausibility ordering the new sentence or proposition
should be placed. These belief revision methods include lexicographic re-
vision (Nayak, 1994), natural revision (Boutilier, 1996), irrevocable revision
(Segerberg, 1998; Fermé, 2000), irrefutable revision (Rott, 2006), and still
others. In two-dimensional belief revision it is the new information itself
that carries at least part of this information. Here the new information does
not say that the input sentence A is true (so should be accepted according
to the Success postulate). Instead it specifies, at least to some extent, how
firmly A is accepted or believed by specifying that, in the new entrenchment
ordering �∗, A is at least as entrenched as some “reference sentence” B.
Thus the new information is now of the form: A �∗ B. (For the purposes
of this entry we may ignore “non-prioritized” belief revision, where the
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new information need not be accepted. See Hansson, Fermé, Cantwell,
and Falappa, 2001.)

Let us return to our example. On Monday Sophia comes to believe
that the weather forecast for Tuesday and Wednesday predicts rain, D.
In one-dimensional belief revision she picks one of the iterated belief
revision methods mentioned above. Then she revises her old belief set
B and entrenchment ordering �B to obtain a new belief set B ∗ D and
a new entrenchment ordering �B∗D. Different methods return different
outputs, but on all of them Sophia ends up believing that it will rain on
Tuesday, B. On Tuesday Sophia sees that it is sunny and so receives the
new information that it does not rain after all, ¬B. In one-dimensional
belief revision Sophia proceeds as before.

In two-dimensional belief revision Sophia does not receive the quali-
tative information ¬B about Tuesday’s weather. Instead she receives the
comparative information C �∗ ¬B about her new doxastic state. This piece
of new information says that, in her new entrenchment ordering �∗, the
claim that it does not rain on Tuesday is at least as entrenched as the claim
that weather forecasts are always right, indicating that she trusts her sight
at least as much as the weatherperson (we could take a reference sentence
other than C).

Now, there still are several belief revision methods to choose from (see
Rott 2009). Among others, this reflects the fact that Sophia can respect the
constraint C �∗ ¬B by lowering the doxastic status of C, or by raising the
doxastic status of ¬B. However, the new information now is more specific
and leaves less room to be filled by the revision method. It is then only a
small, but crucial step to equip Sophia with the quantitative, numerical
information that ¬B is entrenched to a specific degree. In this case the
new information completely determines exactly where ¬B is located in the
new entrenchment ordering on its own, without the help of the revision
method. The latter merely has to incorporate this new information into
Sophia’s old doxastic state in a consistent way. Ranking theory does exactly
this.

Before presenting ranking theory let us return to the qualitative ap-
proaches to iterated belief revision. Postulates ∗1 – ∗12 are still compatible
with many conflicting belief revision methods. Jin and Thielscher (2007)
attempt to remedy this situation by additionally requiring the ideal doxas-
tic agent to consider the new information B to be independent of a sentence
A after revision by B if she considered B to be independent of A before
revision by B. In other words, revision should preserve independencies.
While the idea behind Jin and Thielscher (2007)’s proposal seems to be
correct, their actual requirement turns out to be too strong. The reason is
that their notion of dependence is too strong in the sense that too many
sentences are rendered independent of other sentences.



414 franz huber

According to Jin and Thielscher (2007) a believed sentence A is inde-
pendent of another sentence B if the believed sentence A is still believed
after revision by the negation of the other sentence, ¬B. However, I can
receive new information ¬B—say, that the captain of my favorite soccer
team will not be fit for the match—whose negation ¬¬B is positively
relevant to, and so not independent of, a belief of mine A—say, that my
favorite soccer team will win the match—without making me give up
this belief of mine altogether. More generally, the ways two sentences
can depend on each other are many and varied, and the qualitative and
comparative notions of AGM belief revision theory and its refinements
seem to be too coarse-grained to capture these dependencies. Hild and
Spohn (2008) argue axiomatically, and we will see in the next section, that,
in order to adequately represent all dependencies, and to handle iterated
belief revisions, one has to go all the way from qualitative belief sets and
comparative entrenchment orderings/systems of spheres/implausibility
orderings to quantitative, numerical ranking functions.

4 ranking theory

Ranking functions are introduced by Spohn (1988, 1990) to represent
qualitative conditional belief. A comprehensive overview can be found
in Spohn (2012). The theory is quantitative or numerical in the sense
that ranking functions assign numbers, so-called ranks, to sentences or
propositions. These numbers are needed for the definition of conditional
ranking functions which represent conditional beliefs. As we will see, once
conditional ranking functions are defined we can interpret everything
in purely qualitative, albeit conditional terms. The numbers assigned by
conditional ranking functions are called conditional ranks. They are defined
as differences of non-conditional ranks.

Instead of taking the objects of belief to be sentences of a formal language
it is both more general and more convenient to take them to be propositions
of some field or algebra over a set of possible worlds W. Here is the relevant
definition. A set of subsets of W, A ⊆ ℘(W), is an algebra over W if, and
only if,

(i) the empty or contradictory set ∅ is a proposition in A,

(ii) if A is a proposition in A, then the complement or negation of A,
W \ A = A, is also a proposition in A, and

(iii) if both A and B are propositions in A, then the union or disjunction
of A and B, A ∪ B, is also a proposition in A.

An algebra A over W is a σ-algebra if, and only if, the following holds
for every countable set B ⊆ ℘(W): if all the members or elements of
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B are propositions in A, i.e. if B ⊆ A, then the union or disjunction of
the elements of B,

⋃B, is also a proposition in A. Finally, an algebra A
over W is complete if, and only if, the following holds for every (countable
or uncountable) set B ⊆ ℘(W): if all the members or elements of B are
propositions in A, i.e. if B ⊆ A, then the union or disjunction of the
elements of B,

⋃B, is also a proposition in A. The power-set of a set of
possible worlds W, ℘(W), is a complete algebra over W.

A function $ : A → N ∪ {∞} from an algebra of propositions A over
a non-empty set of possible worlds W into the set of natural numbers N

extended by infinity ∞, N ∪ {∞}, is a ranking function on A just in case
for all propositions A and B from A:

$ (W) = 0, (1)

$ (∅) = ∞, (2)

$ (A ∪ B) = min
{

$ (A) , $ (B)
}

. (3)

As in probability theory, if A is a σ-algebra, axiom (3) can be strengthened
to countable unions. The resulting ranking function is called “countably
minimitive.” In contrast to probability theory, if A is a complete algebra,
axiom (3) can even be strengthened to arbitrary unions. The resulting
ranking function is called “completely minimitive.”

For a non-empty or consistent proposition A 6= ∅ fromA the conditional
ranking function $

(
· | A

)
: A \ {∅} → N ∪ {∞} based on the (non-

conditional) ranking function $ (·) : A →N∪ {∞} is defined as

$
(
· | A

)
=

 $ (· ∩ A)− $ (A) , if $ (A) < ∞,

∞ or 0, if $ (A) = ∞.

For the case where $ (A) = ∞ Goldszmidt and Pearl (1996, p. 63) suggest
∞ as the value for $

(
B | A

)
for all propositions B from A. For this case

Huber (2006, p. 464) suggests 0 as the value for $
(

B | A
)

for all non-
empty or consistent propositions B from A and additionally stipulates
$
(
∅ | A

)
= ∞ to ensure that every conditional ranking function on A is a

ranking function on A.
A ranking function $ is regular if, and only if,

$ (A) < $ (∅) = ∞,

for all non-empty or consistent propositions A from A. In contrast to
probability theory it is always possible to define a regular ranking function,
no matter how rich or fine-grained the underlying algebra of propositions
(see Hájek, manuscript).

Ranks are interpreted doxastically as grades of disbelief. A proposition
A is disbelieved just in case A is assigned a positive rank, $ (A) > 0. A
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proposition that is not disbelieved is assigned rank 0, but this does not
mean that it is believed. Instead, belief in a proposition is characterized
as disbelief in its negation: a proposition A is believed just in case the
negation of A, A, is disbelieved, $

(
A
)
> 0. An agent suspends judgment

with respect to a proposition (and its negation) if, and only if, both the
proposition and its negation are assigned rank 0.

A proposition A is disbelieved conditional on a proposition C just in
case A is assigned a positive rank conditional on C, $

(
A | C

)
> 0. A

proposition A is believed conditional on a proposition C just in case
the negation of A, A, is disbelieved conditional on C, $

(
A | C

)
> 0. It

takes getting used to read positive numbers in this “negative” way, but
mathematically this is the simplest way to axiomatize ranking functions.

Note that it follows from Huber’s (2006) definition of a conditional
ranking function that the ideal doxastic agent should not disbelieve a
proposition A conditional on itself, $

(
A | A

)
= 0, if, and only if, A is

non-empty or consistent.
In doxastic terms the first axiom says that the ideal doxastic agent

should not disbelieve the tautological proposition W. The second axiom
says that she should disbelieve the empty or contradictory proposition ∅
with maximal strength ∞. Given the definition of conditional ranks, the
second axiom can also be read in purely qualitative, albeit conditional
terms: in these terms it says that the ideal doxastic agent should disbelieve
the empty or contradictory proposition conditional on any non-empty
or consistent proposition. It follows that the ideal doxastic agent should
believe the tautological proposition with maximal strength, or conditional
on any non-empty or consistent proposition.

Part of what the third axiom says is that the ideal doxastic agent should
disbelieve a disjunction A ∪ B just in case she disbelieves both its disjuncts
A and B. Given the definition of conditional ranks, the third axiom ex-
tends this requirement to conditional beliefs. As noted above, the ideal
doxastic agent should not disbelieve a non-empty or consistent proposi-
tion conditional on itself. Given this consequence of the definition of a
conditional ranking function, the third axiom says—in purely qualitative,
albeit conditional terms—the following. For all non-empty or consistent
propositions C, the ideal doxastic agent should disbelieve a disjunction
A ∪ B conditional on C just in case she disbelieves A conditional on C and
she disbelieves B conditional on C. Countably and completely minimi-
tive ranking functions extend this “conditional consistency” requirement
to countable and arbitrary unions, respectively. For any non-empty or
consistent proposition C, the ideal doxastic agent should disbelieve

⋃B
conditional on C just in case she disbelieves each disjunct B from B condi-
tional on C. We thus see that all that axioms (1)–(3) of ranking theory ask
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of the ideal doxastic agent is that her beliefs be consistent, and that her
conditional beliefs be conditionally consistent.

Ranks are numerical, but unlike probabilities, which are measured
on an absolute scale, ranks do not utilize all the information carried by
these numbers. Instead, ranks are at best measured on a ratio scale (Hild
& Spohn, 2008)—at best, because even the choice of 0 as threshold for
disbelief is somewhat arbitrary, as Spohn (2015, p. 9) notes (but see Raidl,
2018, for subtle differences for conditional belief). Some positive, but finite
natural number would do just as well. This is perhaps most perspicuous
by considering what Spohn (2012) calls the two-sided ranking function
β : A → Z∪ {∞} ∪ {−∞} whose range is the set of integers Z extended
by plus infinity ∞ and minus infinity −∞, Z∪ {∞} ∪ {−∞}. β is defined
in terms of $ as follows: for all propositions A in A, β (A) = $

(
A
)
− $ (A).

Ranking functions and two-sided ranking functions are interdefinable. The
latter are more difficult to axiomatize, but they may be more intuitive,
because they characterize belief in positive terms as follows.

A proposition A is believed if, and only if, its two-sided rank is positive,
β (A) > 0. A proposition A is believed conditional on a proposition C
if, and only if, its two-sided conditional rank is positive, β

(
A | C

)
> 0.

Interestingly, any other finite threshold equally gives rise to a notion of
belief (that is consistent and deductively closed as explained below): a
proposition is believed if, and only if, its rank is greater than some finite,
non-negative threshold n, β (A) > n. Hence ranking theory validates
the Lockean thesis (Foley, 2009; Hawthorne, 2009). Furthermore, while
it may appear unfair to reserve infinitely many numbers for belief and
for disbelief, and only the number 0 for suspension of judgment, we now
see that this is not essential to the theory and can be fixed by adopting
a threshold other than 0 (there are still only finitely many levels for
suspension of judgment, though).

Doxastically interpreted, axioms (1)–(3) are synchronic norms for how
an ideal doxastic agent should organize her beliefs and conditional beliefs
at a given moment in time. These axioms are supplemented by diachronic
norms for how she should update her beliefs and conditional beliefs over
time if new information of various formats is received. The first update
rule is defined for the case where the new information comes in the form
a certainty. It mirrors the update rule of strict conditionalization from
probability theory (Vineberg, 2000).

Update Rule 1 (Plain Conditionalization, Spohn 1988) If $ (·) : A →
N ∪ {∞} is the ideal doxastic agent’s ranking function at time t, and between t
and the later time t′ her ranks for E and E from A are directly affected and she
becomes certain of E, but no logically stronger proposition (i.e. her rank for E at
t is finite, and E is the logically strongest proposition for whose negation E her



418 franz huber

rank at t′ is ∞), and her ranks are not directly affected in any other way such as
forgetting etc., then her ranking function at t′ should be $E (·) = $

(
· | E

)
.

Plain conditionalization asks the ideal doxastic agent to revise her beliefs
and conditional beliefs by holding onto those conditional beliefs whose
condition is the most specific, i.e. logically strongest, proposition she be-
came certain of, subject to the constraint that the beliefs and conditional
beliefs in the resulting new belief set are consistent and conditionally con-
sistent, respectively. In slightly different terminology we can say that plain
conditionalization has the ideal agent revise her doxastic state by hold-
ing onto those inferential beliefs whose premise is the logically strongest
proposition she became certain of as a result of some experiential event
that is not under her doxastic control.

The second update rule is defined for the case where the new infor-
mation comes in the form of new ranks for the elements of a partition.
It mirrors the update rule of Jeffrey conditionalization from probability
theory (Jeffrey, 1983).

Update Rule 2 (Spohn Conditionalization, Spohn 1988) If $ (·) : A →
N ∪ {∞} is the ideal doxastic agent’s ranking function at time t, and between
t and the later time t′ her ranks on the experiential partition {Ei ∈ A : i ∈ I}
are directly affected and change to ni ∈ N ∪ {∞} with min {ni : i ∈ I} = 0,
and ni = ∞ if $ (Ei) = ∞, and her ranks are not directly affected on any finer
partition or in any other way such as forgetting etc., then her ranking function
at t′ should be $Ei→ni (·),

$Ei→ni (·) = min i∈I

{
$
(
· | Ei

)
+ ni

}
.

Spohn conditionalization asks the ideal doxastic agent to revise her beliefs
and conditional beliefs by holding onto those conditional beliefs whose
conditions are the most specific propositions whose doxastic standing
has changed as a result of some experiential event that is not under her
doxastic control, subject to the constraint that the beliefs and conditional
beliefs in the resulting new belief set are consistent and conditionally
consistent, respectively. The restriction to hold fixed only those conditional
beliefs whose conditions are the most specific propositions whose doxastic
standing has been directly affected is important.

Suppose you hold the conditional beliefs that Sophia will have white
wine tonight if there is wine left, and that she will have red wine tonight
if there is red wine left, but no white wine—say, because you believe that
Sophia prefers having white wine to having red wine to having no wine.
Suppose further you subsequently come to believe, as a result of being
told so by a source you deem reliable, that there is red wine left, but no
white wine. Since your beliefs are deductively closed you also come to
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believe that there is wine left. In this case you should not hold onto your
conditional belief that Sophia will have white wine tonight if there is wine
left. Instead, you should only hold onto your conditional belief that Sophia
will have red wine tonight if there is red wine left, but no white wine. The
same is true if you subsequently do not merely come to believe, but become
certain in this way that there is red wine left, but no white wine. This
is the reason for the restriction in plain conditionalization to hold fixed
only those conditional beliefs whose condition is the logically strongest
proposition the ideal doxastic agent becomes certain of. Furthermore,
this illustrates that plain conditionalization is the special case of Spohn
conditionalization where the experiential partition is

{
E, E

}
and where

the new ranks are 0 and ∞, respectively.
The third update rule is defined for the case where the new information

reports the differences between the old and the new ranks for the elements
of a partition. It mirrors the update rule of Field conditionalization from
probability theory (Field, 1978) and is developed further in Bewersdorf
(2013) .

Update Rule 3 (Shenoy Conditionalization, Shenoy 1991) If $ (·) : A →
N ∪ {∞} is the ideal doxastic agent’s ranking function at time t, and between
t and the later time t′ her ranks on the experiential partition {Ei ∈ A : i ∈ I}
are directly affected and change by zi ∈N, where min {zi : i ∈ I} = 0, and her
ranks are not directly affected on any finer partition or in any other way such as
forgetting etc., then her ranking function at t′ should be $Ei↑zi (·),

$Ei↑zi (·) = min i∈I
{

$ (· ∩ Ei) + zi −m
}

,

where m = min i∈I
{

zi + $ (Ei)
}

.

Spohn conditionalizing E and E to 0 and n, respectively, keeps the relative
positions of all possible worlds in E and all possible worlds in E fixed.
It improves the rank of E to 0 and changes the rank of E to n. Shenoy
conditionalizing E and E by 0 and n, respectively, improves the possibilities
within E by n, as compared to the possibilities in E. The value m is a
normalization parameter ensuring that at least one possible world is
assigned rank zero so that the result is a ranking function.

Spohn and Shenoy conditionalization can be defined in terms of each
other. Their difference lies in the interpretation of the input parameters.
Spohn conditionalization is result-oriented in the sense that the numbers
ni characterize the result of the experiential event on the agent’s ranks
for the propositions Ei. The latter depend in part on the agent’s initial
ranks, which is why the numbers ni do not characterize the impact of the
experiential event as such, independently of the agent’s initial beliefs. In
contrast to this the numbers zi in Shenoy conditionalization do characterize
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the impact of the experiential event as such, independently of the agent’s
initial beliefs. They do so in the sense that the rank of Ei is deteriorated by
zi relative to the rank of the “best” cell. Note that, when there are more
than two cells, the latter need not be the cell with the lowest initial rank.

In the case of both Spohn and Shenoy conditionalization the new infor-
mation consists of a (partition of) proposition(s) together with a (list of)
number(s). This reflects the fact that the quality of new information varies
with how reliable or trustworthy the agent deems its source: it makes
a difference if the weatherperson who Sophia does not know predicts
that it will rain, if a friend Sophia trusts tells her so, or if Sophia sees
for herself that it is raining. In each case the proposition Sophia comes
to believe is that it is raining, but the effect of the new information on
her old beliefs will be a different one in each case. The difference in how
reliable or trustworthy Sophia deems the sources of the new information
is reflected in the numbers accompanying this proposition.

All that axioms (1)–(3) ask of the ideal doxastic agent is that her beliefs be
consistent, and that her conditional beliefs be conditionally consistent. We
will see below that all that update rules (1)–(3) ask of her is that her beliefs
remain consistent, and that her conditional beliefs remain conditionally
consistent.

Sophia’s ranking function r will assign a positive rank to the proposition
JAK that it will not be sunny on Wednesday. Her ranking function r will
assign a greater rank to the proposition JBK that it will not rain on Tuesday.
Her ranking function r will assign an even greater rank to the proposition
JCK that weather forecasts are not always right so that

0 < r
(
JAK

)
< r

(
JBK
)
< r

(
JCK
)

.

More generally, for regular ranking functions r, the ordering A �r B on L
just in case

r
(
JAK

)
≤ r

(
JBK
)

is an entrenchment ordering for

B =

{
C ∈ L : r

(
JCK
)
> 0

}
.

In what follows I will assume that r is regular.
In other words, the set of propositions

sr =
{

r−1 (n) ⊆W : n ∈N
}

is a system of spheres in W centered on r−1 (0), where

r−1 (n) =
{

ω ∈W : r ({ω}) = n
}
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is the set of possible worlds that are assigned rank n. In still other words,
the ordering ω ≤r ω′ on W just in case r

(
{ω
}
) ≤ r

(
{ω′

}
) is an implausi-

bility ordering on W with the center being the conjunction or intersection
of all beliefs,

⋂{
JCK ⊆W : r

(
JCK
)
> 0

}
=
{

ω ∈W : r ({ω}) = 0
}

.

(I make the simplifying assumption that the algebra of propositions A
is the power set of W. If this assumption is not made, these definitions
are slightly more complicated.) Therefore ranking theory satisfies the
postulates of AGM belief revision theory. It also satisfies the four additional
postulates ∗9 – ∗12 for iterated belief revision proposed by Darwiche and
Pearl (1997). This can easily be verified by checking that the four postulates
≤5 –≤8 hold for ≤r (see also Spohn 2012, chapter 5.6). In what follows I
will suppress ‘JK’ and denote propositions by capital letters.

When Sophia comes to believe on Monday that the weather forecast for
Tuesday and Wednesday predicts rain, she has to tell us how strongly she
now disbelieves the proposition D that the weather forecast for Tuesday
and Wednesday does not predict rain in order for Spohn conditionalization
to tell her how to revise her beliefs. As an approximation it suffices if she
tells us how many information sources saying D it would now take for her
to give up her disbelief D, as compared to how many information sources
saying X it would then have taken for her to give up her disbelief that X
for X = A, B, C, D, A, B, C, D. Suppose Sophia’s old ranks are r(A) = 1,
r(D) = 2, r(B) = 5, and r(C) = 7, and her new rank is r∗(D) = 13.
According to Spohn conditionalization Sophia’s new ranks are:

r∗ (X) = min
{

r
(
X | D

)
+ 0, r

(
X | D

)
+ 13

}
.

In order to calculate Sophia’s new ranks r∗(X) we thus need her old
conditional ranks r(X | D) and r(X | D) as well as her new ranks for the
conditions D and D. This in turn requires us to determine her old ranks
for various conjunctions. Suppose the numbers are as in Figure 3. Then
Sophia’s new ranks are r∗(C) = 6, r∗(B) = 7, r∗(A) = 7, r∗(D) = 13.

Note that C is a proposition Sophia believes both before and after
revision by D, r(C) > 0 and r∗(C) > 0, although D is positively relevant to,
and so not independent of, C in the sense that r(C | D) = 7 > 6 = r(C | D).
In other words, Sophia receives new information D whose negation is
positively relevant to, and so not independent of, her belief that C without
making her give up her belief that C. On the other hand, if Sophia considers
D independent of a proposition X before revision by D, then she also does
so after revision by D. More generally, suppose two propositions A and
B are independent according to a ranking function r, r(A | B) = r(A | B)
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Figure 3: Sophia’s old and new ranks for various conjunctions

and r(A | B) = r(A | B). In this case A and B are independent according to
any ranking function r∗ that results from r by what we may call a “Spohn
shift” on the partition {B, B}, i.e. the result of Spohn conditionalization on
this partition for an arbitrary pair of natural numbers.

This feature, which is known as rigidity, vindicates the idea behind Jin
and Thielscher (2007)’s proposal that revision should preserve indepen-
dencies. It does so by fixing their notion of independence. For more on the
definition of rank-theoretic independence see Spohn (1999). As an aside
let me note that, while rigidity is generally considered to be a desirable
feature of an update rule, Weisberg (2009, 2015) uses rigidity to argue
that neither Bayesianism nor Dempster-Shafer theory (Haenni, 2009) nor
ranking theory can handle a phenomenon he terms perceptual undermining.
Huber (2014a) defends these theories against Weisberg’s charge.

Spohn conditionalization gives Sophia a complete new ranking function
r∗ that she can use to revise her newly acquired belief set

B∗ =
{

X ∈ A : r∗
(

X
)
> 0

}
a second time when she learns on Tuesday that it is sunny after all. All she
has to do is tell us how strongly she then disbelieves the proposition B that
it will rain on Tuesday. If r∗∗ (B) = 13, her newer ranks are r∗∗(A) = 1,
r∗∗(C) = 11, r∗∗(D) = 11. See Figure 4.
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Figure 4: Sophia’s new and newer ranks for various conjunctions

This means that Sophia did not mishear the weather forecast, but was
too gullible (or so we assume for purposes of illustration), and so has to
give up her belief C that weather forecasts are always right. In addition
she also has to regain her belief A that it will be sunny on Wednesday.

At the end of this section Sophia’s doxastic career is pictured as a
sequence of “onions.” The difference to the AGM theory is that, in ranking
theory, the layers carry numbers which reflect how far apart they are from
each other according to the ideal agent’s doxastic state. A different way to
picture the situation is to allow for empty layers and to have one, possibly
empty, layer for each natural number.

We see that ranking theory handles indefinitely iterated belief revisions.
It does so in contrast to the AGM theory of belief revision. However, it
does so also in contrast to probability theory. As yet another aside, let
me briefly explain why. In probability theory the ideal doxastic agent is
sometimes forced to assign probability 0 to some non-empty or consistent
proposition. In order to enable her to learn such propositions the ideal
doxastic agent is usually represented by a Popper-Rényi measure which
is more general than a classical probability (Popper, 1955; Rényi, 1955;
Stalnaker, 1970; Spohn, 1986; Easwaran, this volume). However, as already
noted by Harper (1976), Popper-Rényi measures violate the principal of
categorical matching and so cannot handle iterated revisions of degrees of
belief: the result of conditionalizing a Popper-Rényi measure is not another
Popper-Rényi measure, but a classical probability; and as Boutilier (1995)
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notes, there is no straightforward analogue of Jeffrey conditionalization
for Popper-Rényi measures. Spohn (2006b) provides an even more general
notion of probability, ranked probability, which results from making prob-
abilities the objects of rank-theoretic belief. It handles iterated revisions
of probabilistic degrees of belief and satisfies the principal of categorical
matching: the result of conditionalizing a ranked probability is another
ranked probability.

Ranking theory is a normative theory that addresses the question how
an ideal doxastic agent should organize her beliefs and conditional beliefs
at a given moment in time, and how she should revise these beliefs across
time if she receives new information of various formats. Why should
an ideal doxastic agent obey the norms of ranking theory? That is, why
should an ideal doxastic agent organize her beliefs and conditional beliefs
at a given moment in time according to axioms (1)–(3)? And why should
she update her beliefs and conditional beliefs across time according to
update rules (1)–(3) if she receives new information of the appropriate
format? Who are we, Sophia asks, to tell her what—or rather: how—to
believe? To answer these questions, and to respond to Sophia, we need a
bit of terminology.

An ideal doxastic agent’s grade of entrenchment for a proposition A
is defined as the smallest number n such that she would give up her
disbelief in A if she received the information A from n sources she deemed
independent and minimally positively reliable, mp-reliable, about A, and
this was all that directly affected her doxastic state. If the ideal doxastic
agent does not disbelieve A to begin with, her grade of entrenchment for
A is 0. Her grade of entrenchment for A is higher, the more information
sources of the sort described it would take for her to give up her disbelief
in A.

As mentioned previously, whereas probabilities are measured on an
absolute scale, ranks are at best measured on a ratio scale. The same
is true for grades of entrenchment. Therefore we need to fix a unit for
these grades of entrenchment. We need to do the same when we want to
report the amount of money in your bank account, which is measured on
a ratio scale, or the temperature in Vienna on January 1, 2018, which is
measured on an interval scale. To say that the amount of money in your
bank account, or the temperature in Vienna on January 1, 2018, equals
17 is not saying anything if we do not also specify a unit such as Euros
or degrees of Celsius. Information sources that are deemed mp-reliable
are used to define the unit in which grades of entrenchment are reported.
Furthermore, to guarantee that these units can be added and compared,
just as we can add and compare sums of Euros and degrees of Celsius, we
need to make sure that these information sources are not only deemed
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to be mp-reliable by the ideal doxastic agent, but also independent in the
relevant sense.

We non-ideal doxastic agents generally do not deem our sources of
information independent or mp-reliable. One expert’s saying A will some-
times make us stop disbelieving A immediately, while the sermons of a
dozen others won’t. And the last-born’s telling a parent that there is no red
wine left after the first-born has already confessed to drinking it up won’t
make much of a difference to the parent’s grade of disbelief that there is
red wine left. However, this is no argument against the usefulness of this
notion. Information sources that are deemed independent and mp-reliable
are a theoretical construct that are assumed or postulated to exist. They
are the smallest units such that the reliability one deems any possible
information source to possess can be expressed as a multiple of them.

Let $ be the ideal doxastic agent’s entrenchment function, i.e. the func-
tion that summarizes her grades of entrenchment for all propositions from
A. Her belief set B$ is the set of propositions with a positive grade of
entrenchment,

B$ =

{
A ∈ A : $

(
A
)
> 0

}
.

Her belief set conditional on the consistent proposition C is the set of
propositions with a positive grade of entrenchment conditional on C,

B$(·|C) =

{
A ∈ A : $

(
A | C

)
> 0

}
.

B ⊆ A is consistent in the finite / countable / complete sense if, and only if, for
every finite/countable/arbitrary B− ⊆ B,

⋂B− 6= ∅. It is deductively closed
in the finite / countable / complete sense if, and only if, for every finite/count-
able/arbitrary B− ⊆ B and all A ∈ A: if

⋂B− ⊆ A, then A ∈ B. Similarly,
for a proposition C from A, B ⊆ A is conditionally consistent given C in the
finite / countable / complete sense if, and only if, for every finite/countable/ar-
bitrary B− ⊆ B: C ∩⋂B− 6= ∅. It is conditionally deductively closed given C
in the finite / countable / complete sense if, and only if, for every finite/count-
able/arbitrary B− ⊆ B and all A ∈ A: if C ∩⋂B− ⊆ A, then A ∈ B.

Now we can respond to Sophia as well as answer the question why an
ideal doxastic agent should organize her beliefs and conditional beliefs at
a given moment in time according to axioms (1)–(3), and why she should
update her beliefs and conditional beliefs across time according to update
rules (1)–(3) if she receives new information of the appropriate format. She
should do so, because

Theorem 5 An ideal doxastic agent’s belief set B$ and conditional belief sets
B$(·|C) for consistent conditions C are (conditionally) consistent and deductively
closed in the finite / countable / complete sense (given C)—and would remain so
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in response to any finite sequence of experiences—if, and only if, $ is a finitely
/ countably / completely minimitive ranking function that would be revised ac-
cording to update rules (1)–(3).

This theorem from Huber (2007) rests on several unstated assumptions
which are spelled out in Huber (manuscript).

The argument based on this theorem is supposed to establish the thesis
that an ideal doxastic agent’s beliefs and conditional beliefs should obey
the synchronic and diachronic rules of ranking theory. It provides a means-
end justification for this thesis in the spirit of epistemic consequentialism
(Percival, 2002; Stalnaker, 2002). The idea is that obeying the normative
constraints of ranking theory is a (necessary and sufficient) means to
attaining the end of being “eternally consistent and deductively closed.”
The latter end in turn is a (necessary, but insufficient) means to attaining
the end of always having only true beliefs, and, subject to the constraint
that all of them are true, as many thereof as possible. To the extent that the
ideal doxastic agent has this end, she should obey the norms of ranking
theory. It is not that we are telling Sophia what and how to believe. She
is the one who is assumed to have these ends. We merely point out the
obtaining means-end relationship. Of course, if Sophia does not desire
to always hold only true beliefs, and, subject to the constraint that all of
them are true, as many thereof as possible, our response will cut no ice.
But that is beside the point: it is mistaking a hypothetical imperative for a
categorical imperative.

Brössel, Eder, and Huber (2013) discuss the implications of this result
as well as its Bayesian role-model, Joyce’s (1998, 2009) “non-pragmatic
vindication of probabilism” (see also Pettigrew 2011, 2013), for considering
doxastic rationality a form of instrumental rationality, and for means-end
epistemology in general. Alternatively one may use the representation
result by Hild and Spohn (2008), or the rank-theoretic decision theory by
Giang and Shenoy (2000), to obtain a justification of ranking theory that
is deontological in spirit. For instance, the former result can be used to
argue that all and only ranking functions obey the duties, or categorical
imperatives, of iterated belief contraction, where these duties, or categorical
imperatives, take the form of axioms for iterated contractions of beliefs.

Figure 5 depicts Sophia’s ranking functions r and r∗ as “numbered
onions.” Alternatively (Figure 6) Sophia’s ranking function r can be pic-
tured as an onion with one, possibly empty, layer r−1 (n) for each natural
number n. Sophia’s old rank for D is 2, i.e. r(D) = 2, and her old rank for
D is 0, i.e. r(D) = 0. Sophia’s new ranking function r∗ results from her old
ranking function r by first improving the possible worlds in which D is
true by 2 ranks so that the new rank of D is 0, i.e. r∗ (D) = 0. In a second
step the possible worlds in which D is true are deteriorated by 13 ranks so
that the new rank of D is 13, i.e. r∗(D) = 13. The relative positions of the
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Figure 5: Sophia’s ranking functions depicted as “numbered onions”

possible worlds in which D is true, and the possible worlds in which D is
true, are expressed in the conditional ranking functions r(· | D) = r∗(· | D)

and r(· | D) = r∗(· | D). These relative positions or conditional ranks are
kept fixed.

5 areas of future research

In epistemology ranking theory is a theory of belief and its revision.
It studies how an ideal doxastic agent should organize her beliefs and
conditional beliefs at a given moment in time, and how she should revise
her beliefs and conditional beliefs across time when she receives new
information.

In this entry we have distinguished between the following four cases
of belief revision. The case where the new information comes in the
qualitative form of a sentence or proposition of the agent’s language or
algebra, as in the AGM theory of belief revision. The case where the new
information comes in the comparative form of the relative positions of
an input sentence and a reference sentence, as in two-dimensional belief
revision. The case where the new information comes in the quantitative
form of new grades of disbelief for various propositions, as in the case
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of update rules 1 and 2 of ranking theory. And the case where the new
information comes in the quantitative form of differences between the
old and new grades of disbelief for such sentences or propositions, as in
update rule 3 of ranking theory.

Let us call information that concerns only individual sentences or propo-
sitions of the agent’s language or algebra factual information, and the corre-
sponding changes in belief factual belief changes. In this entry we have only
discussed factual information and factual belief changes. Besides these
there are at least two other forms of information an ideal doxastic agent
can receive and, corresponding to these, at least two forms of non-factual
belief change. I will briefly mention these and then I will conclude by
mentioning applications of ranking theory outside epistemology, in the
philosophy of science, in metaphysics, and in the philosophy of language.

The first of these non-factual belief changes takes place when the ideal
doxastic agent learns that her language or algebra was too poor or coarse-
grained. For instance, Sophia may start out with a language that allows her
to distinguish between red wine and white wine, and then may acquire
the concept of rosé. Or she may learn that among the red wines one can
distinguish between barriques and non-barriques. When the ideal doxastic
agent receives such conceptual information she should perform a conceptual
belief change. A prominent conceptual change is that of logical learning. In
the syntactic AGM framework logical learning is normally studied in
terms of belief bases (Hansson, 1999). Belief bases differ from belief sets by
not being required to be closed under the logical consequence relation.
Huber (2015a) shows how logical learning, and conceptual belief changes
in general, can be dealt with in the semantic framework of ranking theory.

Another form of non-factual information is meta-information, and an
ideal doxastic agent receiving meta-information should perform a meta-
belief change (Stalnaker, 2009). Information about her own doxastic state,
as well as about (in-) dependencies among propositions, as reported by
indicative conditionals, causal claims, and counterfactual conditionals,
may be a form of meta-information. In the syntactic AGM framework one
might be able to study meta-changes with the help of dynamic doxastic
logic, DDL (Segerberg 1995; Lindström and Rabinowicz 1999; Caie, this
volume). DDL allows one to reason about one’s own beliefs. In the semantic
framework of ranking theory reasoning about one’s own beliefs has been
studied by Spohn (2012, chaper 9) based on Hild (1998). Huber (2015a)
shows how indicative conditionals can be learned in ranking theory.

In the philosophy of language Spohn (2013, 2015) uses ranking theory
to develop a unified theory of indicative, counterfactual, and many other
conditionals. On this expressivist account most conditionals express con-
ditional beliefs, but counterfactuals express propositions relative to the
agent’s conditional beliefs and a partition. Huber (2014b, 2017) introduces
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so-called alethic ranking functions and defines counterfactuals in terms of
them. Raidl (forthcoming) proves completeness results for these and other
semantics, and corrects mistakes in Huber (2014b, 2015b, 2017). Alethic
ranking functions are related to subjective ranking functions by “the royal
rule.” This is a normative principle that constrains a priori subjective ranks
by alethic ranks much like Lewis (1980)’s principal principle constrains a
priori subjective credences by objective chances. Huber (2017) show the
royal rule to be the necessary and sufficient means to attaining a cognitive
end that relates true beliefs in purely factual, non-modal propositions and
true beliefs in purely modal propositions. The philosophical background
for this is an idealism about alethic or metaphysical modality that contrasts
with the projectivist account of the metaphysical modalities of chance and
necessity developed by Spohn (2010a).

In metaphysics Spohn (1983, 2006a) uses ranking theory to develop a
theory of causation. This theory works with subjective ranking functions,
and so results in a subjective notion of causation, although there are at-
tempts at objectification (Spohn, 1993, 2012, chapter 15). Huber (2011) uses
the above-mentioned alethic ranking functions to arrive at a counterfactual
notion of causation. The conditional nature of ranking functions and a
precisification of Lewis’ (1979, p. 472) “system of weights or priorities”
allow Huber (2013c) to unify the two modalities of so-called “extended
causal models” (Halpern 2008; Halpern and Hitchcock 2010) into the one
modality of alethic ranking functions. Spohn (2010b) relates ranking theory
and causal models in a very different way.

In the philosophy of science Spohn explicates ceteris paribus conditions
(Spohn, 2002, 2014) and laws (Spohn, 2005) in terms of subjective ranking
functions. Huber (2015b) shows how the statistical notion of modes can be
used to empirically confirm the above-mentioned counterfactuals that are
defined in terms of alethic ranking functions.

None of this compares to Spohn (2012), which is the most comprehen-
sive treatment of ranking theory, and an invaluable resource for formal
epistemology full of philosophical insights.
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9
F U L L & PA RT I A L B E L I E F Konstantin Genin

Philosophers and scientists in allied fields use the term ‘belief’ to refer
roughly to the attitude taken toward a proposition regarded as true. That
first approximation is unlikely to satisfy those in search of a non-circular
definition. Early twentieth-century psychologists and philosophers of mind
attempted to address that difficulty by reducing belief to some sort of
behavioral disposition. Although the behaviorist project is usually taken to
have been a failure, there is broad consensus that belief leaves a distinctive
behavioral footprint: most philosophers would agree that an agent who
believes P can be expected to accept P as a premise in reasoning, planning
and deliberation. If I believe that the A train is running express, I will
plan to take it if going to Harlem, but try to catch the local if going to
the Museum of Natural History. Similarly banal examples can be easily
multiplied.

It is commonly held that belief is not just an all-or-nothing matter, but
admits of degrees. A veteran subway rider may have a higher degree
of belief in the proposition that the A train will run local next weekend
than in the proposition that the A train will run local next rush hour.
Philosophers sufficiently impressed by examples of this sort orient their
activity around the structure of “partial belief” rather than the all-or-
nothing attitude denoted by “full belief,” or belief simpliciter. Although it
is easy to generate plausible examples of partial beliefs, it is harder to say
exactly what is meant by a degree of belief. An agent’s degree of belief in
P may reflect their level of confidence in the truth of P, their willingness to
assent to P in conversation, or perhaps how much evidence is required to
convince them to abandon their belief in P. A venerable tradition, receiving
classical expression in Ramsey (1931) and de Finetti (1937), holds that
degrees of belief are most directly reflected in which bets regarding P an
agent is willing to accept. At least since Pascal, mainstream philosophical
opinion has held that degrees of belief are well-modeled by probabilities
(see Hacking, 1975, for a readable history). To this day, subjective, or
“epistemic,” probability remains one of the dominant interpretations of the
probability calculus.

A parallel tradition, though never as dominant, holds that degrees of
belief are neither so precise, nor as definitely comparable as suggested
by Pascal’s probabilistic analysis. Keynes (1921) famously proposes that
degrees of belief may enjoy only an ordinal structure, which admits of
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qualitative, but not quantitative, comparison. Keynes even suggests that
the strength of some pairs of partial beliefs cannot be compared at all.

Cohen (1980) traces another minority tradition to Francis Bacon’s Novum
Organum. On the usual probability scale a degree of belief of zero in
some proposition implies maximal conviction in its negation. On the
Baconian scale, a degree of belief of zero implies no conviction in either
the proposition or its negation. Thus, the usual scale runs from “disproof
to proof” whereas the Baconian runs from “no evidence, or non-proof to
proof” (Cohen, 1980, p. 224). In the past few decades, Baconian probability
has received increasing attention, resulting in theories approaching the
maturity and sophistication of those in the Pascalian tradition (Spohn,
2012; Huber, this volume).

Formal epistemologists are traditionally interested in both full and
partial belief, although most would probably take partial belief as the
primary object of study. Moss (2018) even argues that there are instances
of probabilistic knowledge that do not involve any full beliefs. On the
other hand, traditional analytic epistemologists and philosophers of mind
routinely study full belief and related all-or-nothing attitudes such as
knowledge and desire, but only rarely show interest in their graded
counterparts. The differential emphasis on partial beliefs, although often
commented upon, may reflect sociological factors more than any essential
difference between the fields. These differences will likely become less
pronounced in the future.

What is less often remarked upon is traditional epistemology’s focus
on individual beliefs, rather than entire systems of belief, as is typical
in formal epistemology. Traditional philosophers are interested in what
it means for an agent S to believe a particular proposition P. Represen-
tationalist philosopher of mind wonder how intentional states, or states
that involve “aboutness” arise at all, especially if the agents involved are
correctly understood as purely physical systems. Formal epistemologists
tend to take matters of mental representation for granted, rarely inquiring
into how the trick is worked. Dispositionalist philosophers of mind are
interested in analyzing an agent’s belief that P into a disposition to reason
or act, although they will disagree about how readily these dispositions
will be observed in behavior. Their focus on individual beliefs gives rise
to certain standard objections. A Muscovite who believes, in the 1930s,
that the Stalinist terror is morally wrong, may not betray her beliefs in her
behavior at all.

Formal epistemologists resolve such difficulties by insisting on a holism
about belief: it is entire systems of belief (and perhaps utility) that are
reflected in deliberation and action, otherwise underdetermined by in-
dividual beliefs. In general, formal epistemologists are interested in the
norms governing the structure and dynamics of whole systems of full or
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partial belief: how individual beliefs must systematically cohere in order to
be rational; how they must be reflected in decision making; and how they
ought to accommodate new evidence. Accordingly, those issues will be the
focus of this article. For a good introduction to belief in the philosophy of
mind, see Schwitzgebel (2015). See Hájek and Lin (2017) for a suggestive
discussion of how mainstream and formal epistemology would benefit
from increased sensitivity to each other’s concerns.

Not everyone agrees that both partial and full beliefs exist—there are
theorists who attempt to eliminate one or the other attitude. But any-
one who admits the existence of both full and partial belief inherits a
thorny problem: how are full beliefs related to partial beliefs? Two answers
immediately suggest themselves. The first claims that full belief is just
the maximal degree of partial belief. The second argues that full belief
is just partial belief above a certain threshold. Both answers give rise to
formidable problems. Other theorists claim that an agent’s partial beliefs
underdetermine their full beliefs in the absence of information about the
agent’s preferences.

In the last few years, the question of how partial and full belief are
related has received considerable attention in formal epistemology, giving
rise to several subtle, elegant and, unfortunately, incompatible solutions.
The debate between these alternatives is the heart of this article and is
presented in Section 5. The preceding sections develop the context and
background necessary to understand and appreciate this debate. Readers
who feel comfortable with these prerequisites, as well as those who are in
a hurry, may skip to the final section and refer back to previous sections
only as necessary.

1 the objects of belief

In the following we will see several proposed models for the structure
of belief. Most of these proposals take the objects of belief to be either
propositions, or sentences in a formalized language. This section reviews
the basic notions required to work with propositions and sentences. If
the reader feels overwhelmed with the technicalities in this section, they
should feel free to postpone them, and refer back to it on-the-fly. Readers
who are accustomed to working with these objects may freely skip this
section.

For our purposes, a possible world is a way the world, or some interesting
aspect of the world, might be. We let W denote the set of all possible
worlds, i.e. the set of all possible ways the world might be. It is not
necessary to think of these as objective, metaphysical realities. More often,
possible worlds are constrained by contextual presuppositions, and their
granularity reflects our interests. Suffice it to say that knowing the true
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possible world w ∈ W would satisfy an agent’s curiosity—she would
thereby settle some interesting matter under discussion. A proposition
P ⊆ W is a set of possible worlds, i.e. it is a partial specification of the
way the world is. To know that P is true is to know that the true world is
among the set of worlds {w : w ∈ P} since P is true in a possible world w
iff w ∈ P.

Propositions enjoy a set-theoretic structure. The relative complement
of P, ¬P = W \ P, is the set of all worlds in which P is false. If P, Q
are arbitrary propositions, then their intersection P ∩ Q is the set of all
worlds in which P and Q are both true. The disjunction P ∪ Q is the set
of worlds in which at least one of P, Q is true. The material conditional
P→ Q is the set of worlds ¬P ∪Q, in which either P is false or Q is true.
If P ⊆ Q we say that P entails Q and also that P is logically stronger than
Q. If P ⊆ Q and Q ⊆ P we write P ≡ Q and say that P and Q are logically
equivalent. The tautological proposition W is true in all worlds and the
contradictory proposition, the empty set ∅, is not true in any world. A set
of propositions A is consistent iff there is a world in which all the elements
of A are true, i.e. if ∩A 6= ∅. Otherwise, we say that A is inconsistent. A
set of propositions A is mutually exclusive iff the truth of any one element
implies the falsehood of all other elements. The set of logical consequences
of A, written Cn(A), is the set {B ⊆W : ∩A entails B}. Note that if A is
inconsistent, then Cn(A) is ℘(W), the set of all propositions over W.

A set of propositions F is a field (sometimes algebra) iff F contains W
and it is closed under intersection, union and complementation. That is
to say that if A, B are both elements of F then W, A ∪ B, A ∩ B, and ¬A
are also elements of F . A set of propositions F is a σ-field (sometimes
σ-algebra) iff it is a field that is closed under countable intersections, i.e. if
S ⊆ F is a countable collection of propositions, then the intersection of
all its elements ∩S is also an element of F . That definition implies that a
σ-field is also closed under countable unions. It is not difficult to prove
that an intersection of σ-fields is also a σ-field. That implies that every
collection of propositions F generates σ(F ), the least σ-field containing
F , by intersecting the set of all σ-fields containing F .

Propositions, although usually expressed by sentences in a language,
are not themselves sentences. That distinction is commonly drawn by
saying that propositions are semantic objects, whereas sentences are syn-
tactic objects. Semantic objects (like propositions) are meaningful, since
they represent meaningful possibilities, whereas bits of syntax must be
“interpreted” before they become meaningful. In a slogan: sentences are
potentially meaningful, whereas propositions already are.

For our purposes, a language Λ is identified with the set of all grammat-
ical sentences it contains. Sentences will be denoted by lowercase letters
p, q, . . .. The language Λ is assumed to contain a set of atomic sentences
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a, b, . . . which are not built out of any other sentences, as well as all the sen-
tences generated by combining the atomic sentences with truth-functional
connectives from propositional logic. In other words: if p, q are sentences
in Λ then ¬p, p∨ q, p∧ q, p→ q, and p↔ q are also sentences in Λ. These
are meant to be read respectively as “not p,” “p or q,” “p and q,” “if p,
then q,” and “p if and only if q.” The symbol ⊥ (pronounced “falsum”)
denotes an arbitrarily chosen contradiction (e.g. p ∧ ¬p) and the symbol
> denotes an arbitrary tautology. Some of the sentences in Λ follow “log-
ically” from others. For example, under the intended interpretation of
the truth-functional connectives, p follows from the sentence p ∧ q and
also from the set of sentences {q, q → p}. To capture the essentials of
logical consequence, we introduce a consequence operator, which maps any
set of sentences Γ to its logical consequences Cn(Γ). The consequence
operator is assumed to satisfy the following properties, which abstract the
characteristic features of deductive logic.

Γ ⊆ Cn(Γ). (Inclusion)

If Γ ⊆ ∆, then Cn(Γ) ⊆ Cn(∆). (Monotony)

Cn(Γ) = Cn(Cn(Γ)). (Idempotence)

Inclusion merely expresses the triviality that any sentence p is a deduc-
tive consequence of itself. Monotony expresses the fact that adding more
premises to a deductive argument allows you to derive all the same con-
clusions as you could with fewer. Idempotence says that Cn(∆) contains all
the deductive consequences of ∆. We use Γ ` p as an alternative notation
for p ∈ Cn(Γ) and Γ 0 p for p /∈ Cn(Γ). We write ` p for p ∈ Cn(∅). The
set of theorems of propositional logic is denoted by Cn(∅) since these can
be derived from the axioms alone, without any additional assumptions.

In the following, we will sometimes assume that the consequence opera-
tor satisfies the following additional property:

q ∈ Cn(∆ ∪ {p}) implies (p→ q) ∈ Cn(∆). (Deduction theorem)

The deduction theorem expresses the fact that you can prove the condi-
tional sentence p→ q by assuming p and then deriving q. Unsurprisingly,
it is possible to prove that this property holds for most deductive logics
one would encounter, including both propositional and first-order logic.

There is, of course, a systematic way to map sentences in a language
to propositions. A valuation function V maps every atomic sentence a in
Λ to a proposition V(a), the set of worlds in which a is true under that
interpretation of the atoms. The valuation function also interprets the
non-atomic sentences in a way that respects the intended meanings of
the logical connectives, i.e. so that V(>) = W, V(¬p) = W \ V(p), and
V(p∧ q) = V(p)∩V(q). In this fashion, each sentence in Λ is mapped to a
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set of possible worlds. Each language Λ and valuation function V generate
the field FΛ,V = {V(p) : p ∈ Λ}. In turn, FΛ,V generates σ(FΛ,V), the
least σ-field containing it.

We write Γ � p if for all valuations V,⋂
q∈Γ

V(q) ⊆ V(p).

Then, Γ � p expresses the fact that no matter how the non-logical vocabu-
lary of Λ are interpreted, p is true in all the worlds in which all sentences
in Γ are true. We say that p is valid iff {>} � p, i.e if W ⊆ V(p) for all
valuation functions. Then, p is valid iff p is true in all possible worlds, no
matter how the non-logical vocabulary are interpreted. For example, the
sentence p ∨ ¬p is valid.

We assume the following property of our deductive consequence rela-
tion.

If Γ ` p, then Γ � p. (Soundness)

Soundness says that if the sentence p is a derivable consequence of the
set of sentences Γ, then no matter how the non-logical vocabulary of
Λ are interpreted, p is true in all the worlds in which all the sentences
in Γ are true. That is to say that from true premises, our consequence
relation always derives true conclusions. Soundness also implies that
every theorem is valid. Soundness is a basic requirement of any deductive
consequence relation, and illustrates the intended connection between
deductive proof and semantic entailment.

Sentences are, in a sense, capable of expressing distinctions that propo-
sitions cannot. For example, the two sentences p and ¬¬p are obviously
distinct. But if p and q are provably equivalent, i.e. if ` p ↔ q, then
{p} ` q and {q} ` p. By Soundness, {p} � q and {q} � p. Therefore,
for any valuation function, V(p) = V(q). So p and q must express the
same proposition. Of course, an agent who is unaware of the equivalence
might believe p without believing q. What’s worse, every sentence p such
that ` p must express the tautological proposition W. Of course, ordinary
agents do not always recognize theorems of propositional logic. For this
reason, some argue that it is sentences, rather than propositions, that are
the appropriate objects of belief. However, most of the proposed models
we will study require that rational agents adopt the same belief attitude
toward logically equivalent sentences. So long as that is required, there
is no significant difference between taking the objects of belief to be sen-
tences or propositions. Still others are not satisfied with either sentences,
or propositions. Perry (1979), Lewis (1979) and Stalnaker (1981) argue
that in order to capture essentially indexical beliefs—beliefs that essentially
involve indexicals such as I, here, or now—the objects of belief must be
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centered propositions. We will not take up this helpful suggestion here,
but see Liao (2012) for a discussion of the costs and benefits of centered
propositions.

2 structures for full belief

2.1 Non-monotonic Logic

In Section 1 we introduced the notion of a deductive consequence relation.
The characteristic feature of a deductive consequence relation is that
conclusions are not retracted when premises are added.

If Γ ⊆ ∆, then Cn(Γ) ⊆ Cn(∆). (Monotony)

Of course, all sorts of seemingly rational everyday reasoning violates
Monotony. Reasoning according to typicality seems justified in ordinary
circumstances, but fails to satisfy Monotony. If you were told that Tweety is
a bird, you would be justified in concluding that Tweety flies, since typical
birds fly. You would retract your conclusion however, if you were to learn
that Tweety is a penguin. That does not mean that your original inference
was unreasonable or irrational. Inductive inference is also famously non-
monotonic. After observing one hundred white swans, you might conclude
that all swans are white. Of course, you would retract your conclusion
if you ever came across a black swan. Pace Pyrrhonian skepticism, there
must be at least some justified inductive inferences. Ethical reasoning is
also shot through with non-monotonicities. Ross (1930) discusses prima
facie duties, or defeasible obligations, that are binding unless superseded
by more urgent, and competing obligations. Ullman-Margalit (1983) points
out that legal reasoning routinely relies on presumptions—of innocence,
good faith, sanity, etc.—that may be withdrawn in light of new evidence.
Non-Monotony is simply unavoidable in ordinary human contexts.

Non-monotonic logic studies a defeasible consequence relation |∼ be-
tween premises, on the left of the wavy turnstile, and conclusions on the
right. One may think of the premises on the left as a set Γ of sentences
expressing “hard evidence” that an agent may possesses, and the conclu-
sions on the right to be the defeasible conclusions that are justified on the
basis of Γ. Thus, the expression Γ |∼ p may be read as “if I were to learn
all and only the sentences in Γ, I would be justified in concluding that p.”

Recall from Section 1 that a deductive consequence relation satisfies
Soundness, i.e. Γ ` p only if p is true in all the worlds in which all
sentences in Γ are true. It is clear from the preceding examples that
defeasible reasoning cannot satisfy Soundness. If Γ |∼ p then perhaps p is
true in “typical” worlds in which Γ is true, or in “most” worlds in which
Γ is true, or perhaps p is a sharply testable possibility compatible with Γ.
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We call a consequence relation ampliative if Γ |∼ p, but there are worlds in
which all sentences in Γ are true, but p is false. It is possible to construct
consequence relations that are non-ampliative and non-monotonic, but
ampliativity and non-monotonicity go hand in hand in all paradigmatic
cases.

The field of artificial intelligence has, since its inception, been concerned
with implementing some form of rational, ampliative, non-monotonic
reasoning in artificial agents. For these purposes, deductive consequence
relations are unhelpfully restrictive. That does not preclude the possibility
that there is some other logic that governs good ampliative reasoning. The
past forty years have seen the creation of many logics for non-monotonic
inference, often developed to model a specific kind of defeasible reasoning.
See Strasser and Antonelli (2018) for an excellent overview.

In view of this profusion of specialized logics, non-monotonic logic inves-
tigates which properties a logic of defeasible consequence must have in
order to count as a logic at all.1 Non-monotonic logic provides a crucial
lingua franca for comparing different logics of defeasible inference. It is
also extremely apt for the purposes of this article, because it allows us to
compare different normative theories of how beliefs ought to be updated
in light of new evidence, as well as theories of how full and partial beliefs
ought to relate to each other.

Before we proceed to the technical development, it will be helpful to
introduce an important early critique of nonmonotonic logic due to the
philosopher John Pollock. Pollock (1987) identifies two sources of non-
monotonicity in defeasible reasoning. An agent may believe p, because she
believes q and takes q to be a defeasible reason for p. Pollock distinguishes
two kinds of defeaters for this inference: a rebutting defeater is a defeasible
reason to believe ¬p, whereas an undercutting defeater is a reason to believe
¬q. Either kind of defeater may induce an agent to retract her belief in p.
Pollock’s point is that since nonmonotonic logics typically do not represent
the structure of an agent’s reasons, they often fail to elegantly handle cases
of undercutting defeat. We shall soon see several examples.

2.1.1 Principles for Nonmonotonic Logic

Let Λ be a formal language, and let Cn(·) be a deductive consequence
relation, as discussed in Section 1. There are in fact two closely related
approaches to the study of non-montonic consequence relations. The
finitary approach studies a relation between individual sentences p |∼
q. That approach is taken, for example, in the very influential Kraus,
Lehmann, and Magidor (1990). The infinitary approach studies a relation
Γ |∼ p between an arbitrary set of sentences on the left and individual

1 Gabbay (1985) was the first to suggest this abstract point of view.
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sentences on the right. That approach is taken in the canonical reference
work Makinson (1994) and cannot in general be simulated by the finitary
approach. For the most part we will follow Makinson (1994). However,
some results are known to hold only for the finitary settings. Furthermore,
the more general infinitary principles are sometimes better appreciated
by their finitary consequences. For that reason, we will sometimes switch
back and forth between the infinitary and the finitary approach. We write
C(Γ) for the set {p : Γ |∼ p}. shorthand for Γ ∪ {p} |∼ q.

If defeasible logics fail to satisfy Monotony, which principles ought they
satisfy? Are there some logical principles which ought to be validated by
all rational defeasible reasoning? Almost all consequence relations studied
in the literature satisfy the following principle.

Γ ⊆ C(Γ). (Inclusion)

In its single-premise formulation Inclusion merely says that p |∼ p, which
is surely unexceptionable. The following two principles are also widely
accepted in non-monotonic logic.

Γ ⊆ ∆ ⊆ C(Γ) implies C(∆) ⊆ C(Γ). (Cut)

Γ ⊆ ∆ ⊆ C(Γ) implies C(Γ) ⊆ C(∆). (Cautious Monotony)

As special cases, these two principles entail:

Γ |∼ p and Γ ∪ {p} |∼ q implies Γ |∼ q; (Cut)

Γ |∼ p and Γ |∼ q implies Γ ∪ {p} |∼ q. (Cautious Monotony)

Cut says that adding conclusions inferred from Γ to the set of premises
does not increase inferential power. Cautious Monotony says that it does
not decrease inferential power. If we think of the premises on the left of
|∼ as my set of “hard” evidence, and the set C(Γ) as a theory inductively
inferred on the basis of Γ, then Cautious Monotony is an expression of
hypothetico-deductivism: if I observe a consequence of my theory C(Γ),
I should not thereby retract any previous conclusions. Moreover, Cut
says that I should not add any new conclusions. Taken together the two
principles say that if you observe a consequence of your theory, you should
not change it:

Γ ⊆ ∆ ⊆ C(Γ) implies C(Γ) = C(∆). (Cumulativity)

Gabbay (1985) proposes that (finitary versions of) Inclusion, Cut and
Cautious Monotony are the minimal properties that every interesting non-
monotonic logic must satisfy. That remains the consensus view to this day.
It is easy to show that Inclusion and Cut jointly imply a principle familiar
from Section 1:
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C(Γ) = C(C(Γ)). (Idempotence)

There is also the question of how a non-monotonic consequence relation
C(·) should interact with a classical relation of deductive consequence
Cn(·). The following principle says that defeasible reasoning allows you
to make strictly more conclusions than classical deductive reasoning:

Cn(Γ) ⊆ C(Γ). (Supraclassicality)

That is perhaps unreasonable if we think of C(·) as modeling the defeasible
reasoning of some bounded agent. It begins to sound better if we think of
C(Γ) as modeling the ampliative conclusions that are justified on the basis
of Γ.

Makinson (1994) observes that any supraclassical C(·) that satisfies
Idempotence and Cumulativity also satisfies the following pair of princi-
ples.

Cn(C(Γ)) = C(Γ). (Left Absorption)

C(Γ) = C(Cn(Γ)). (Right Absorption)

Left Absorption says that C(Γ) is closed under deductive consequence.
Right Absorption says that the conclusions that are justified on the basis
of Γ depend only on the logical content of Γ, and not on its mode of
presentation. The conjunction of Right and Left Absorption is called Full
Absorption.

Makinson advocates for one more interaction principle:

C(Γ) ∩ C(∆) ⊆ C(Cn(Γ) ∩ Cn(∆)). (Distribution)

That condition is perhaps too complex to admit of an intuitive gloss. How-
ever, we can better understand its meaning from its finitary consequences.
Any supraclassical consequence relation satisfying Distribution and Full
Absorption also satisfies the following.

Γ ∪ {p} |∼ r and Γ ∪ {q} |∼ r implies Γ ∪ {p ∨ q} |∼ r. (Or)

Γ ∪ {p} |∼ q and Γ ∪ {¬p} |∼ q implies Γ |∼ q. (Case reasoning)

These two principles seem to be very compelling. Any genuine conse-
quence relation ought to enable reasoning by cases. If I would infer q
irrespective of what I learned about p, I should be able to infer q before the
matter of p has been decided. Similarly, if p follows defeasibly from both p
and q, it ought to follow from their disjunction. Any consequence relation
that satisfies Supraclassicality, Left Absorption and Case Reasoning must
also satisfy the following principle:

Γ ∪ {p} |∼ q implies Γ |∼ p→ q. (Conditionalization)



full & partial belief 447

To prove that entailment suppose that Γ ∪ {p} |∼ q. Since p → q is a
deductive consequence of q, it follows by Left Absorption that Γ ∪ {p} |∼
p → q. Furthermore, since p → q is a deductive consequence of ¬p it
follows by supraclassicality that Γ ∪ {¬p} |∼ p → q. By Case Reasoning,
Γ |∼ p→ q.

Conditionalization says that upon learning new evidence, you never
“jump to conclusions” that are not entailed by the deductive closure of
your old beliefs with the new evidence. That is not an obviously appealing
principle. An agent that starts out with Γ = Cn(∅) will either fail to
validate Conditionalization or never make any ampliative inferences at
all. Suppose that after observing 100 black ravens an agent validating
Conditionalization comes to believe that all ravens are black. Then, at the
outset of inquiry, she must have believed that either all ravens are black,
or she will see the first non-black raven among the first hundred. Such an
agent seems strangely opinionated about when the first counterexample
to the inductive generalization must appear.

For a more realistic example, consider the 1887 Michelson-Morely ex-
periment. After a null result failing to detect any significant difference
between the speed of light in the prevailing direction of the presumed
aether wind, and the speed at right angles to the wind, physicists turned
against the aether theory. If the physicists validated Conditionalization
then, before the experiments, they must have believed that either there is
no luminiferous aether, or the aether wind blows quickly enough to be
detected by their equipment. But why should they have been so confident
that the aether wind is not too slow to be detectable? Even if there is
nothing objectionable about an agent who validates Conditionalization,
there is something very anti-inductivist about the thesis that all justified
defeasible inferences on the basis of new evidence can be reconstructed
as deductive inferences from prior conclusions plus the new evidence.
Schurz (2011) makes a similar criticism, in a slightly different context:

Inductive generalizations as well as abductive conjectures ac-
company belief expansions by new observations, in science as
well as in common sense cognitions. After observing several
instances of a ‘constant conjunction,’ humans almost automat-
ically form the corresponding inductive generalization; and
after performing a new experimental result sufficiently many
times, experimental scientists proclaim the discovery of a new
empirical law . . . [Conditioning]-type expansion is not at all
creative but merely additive: it simply adds the new informa-
tion and forms the deductive closure, but never generates new
(non-logically entailed) hypotheses.
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Schurz objects that, according to Conditionalization, dispositions to form
inductive generalizations must be “programmed in” with material con-
ditionals at the outset of inquiry. Anyone sympathetic to this view must
reject either Supraclassicality, Left Absorption, or Case Reasoning. Finding
such surprising consequences of seemingly unproblematic principles is
one of the boons of studying non-monotonic logic.

We finish this section by introducing one more prominent and con-
troversial principles of non-monotonic logic. The position one takes on
this principle will determine how one feels about many of the theories
which we turn to in the following. Kraus et al. (1990) claim that any ra-
tional reasoner should validate the following strengthening of Cautious
Monotony.

Γ |∼ p and Γ ��|∼ ¬q entails Γ ∪ {q} |∼ p. (Rational Monotony)

Rational Monotony says that so long as new evidence q is logically compat-
ible with your prior beliefs C(Γ), you should not retract any beliefs from
C(Γ). Accepting both Rational Monotony and Conditionalization amounts
to saying that when confronted with new evidence that is logically con-
sistent with her beliefs, a rational agent responds by simply forming the
deductive closure of her existing beliefs with the new evidence. On that
view, deductive logic is the only necessary guide to reasoning, so long
as you do not run into contradiction. Stalnaker (1994) gives the following
well-known purported counterexample to Rational Monotony.

Suppose an agent initially believes the following about the three com-
posers Verdi, Bizet, and Satie.

(Iv) Verdi is Italian;

(Fb) Bizet is French;

(Fs) Satie is French.

Let p be the sentence that Verdi and Bizet are compatriots, i.e. (Fv ∧
Fb) ∨ (Iv ∧ Ib). Let q be the sentence that Bizet and Satie are compatriots.
Suppose that the agent receives the evidence p. As a result, she retracts
her belief in Iv∧ Fb concluding that either Verdi and Bizet are both French
or they are both Italian. She retains her belief that Satie is French. Notice
that after updating on p, she believes it is possible that Bizet and Satie are
compatriots, i.e. p ��|∼ ¬q. Now suppose that she receives the evidence q.
Since q is compatible with all her previous conclusions, Rational Monotony
requires her to conclude that all three composers are French. However, it
seems perfectly rational to suspend judgment and concludes that the three
are either all Italian, or all French.

Kelly and Lin (forthcoming) give the following counterexample to Ratio-
nal Monotony, based on Lehrer’s (1965) no-false-lemma variant of Gettier’s
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famous (1963) scenario. There are just two people in your office, named
Alice and Bob. You are interested in whether one of them owns a certain
Ford. Let p be the sentence that Alice owns the Ford. Let q be the sentence
that Bob has the Ford. You have inconclusive evidence that Alice owns
the Ford—you saw her driving one just like it. You have weaker evidence
that Bob owns the Ford—his brother owns a Ford dealership. Based on
that evidence Γ you conclude p ∨ q, i.e. that someone in the office owns
the Ford, but do not go so far as inferring p, or q. You ask Alice and she
tells you that the Ford she was driving was rented. That defeats your main
reason for p ∨ q, therefore you retract your belief that someone in the office
has a Ford. But since Γ ��|∼ ¬p, Rational Monotony requires you to conclude
that Bob owns the Ford. However, there does not seem to be anything
irrational about how you have reasoned. This seems to be an illustration
of Pollock’s (1987) point: the logic is going wrong because it is ignoring
the structure of the agent’s reasons.

We end this section on a terminological note. It is common in the
literature to use System P (Preferential) to refer to the following set of
single-premise principles, labeled so that the reader can identify their
infinitary analogues. The terminology is due to Kraus et al. (1990).

p |∼ p. (Reflexivity)

` p↔ q and p |∼ r implies q |∼ r. (Left equivalence)

` q→ r and p |∼ q implies p |∼ r. (Right weakening)

p |∼ q and p |∼ r implies p |∼ q ∧ r. (And)

p |∼ r and q |∼ r implies p ∨ q |∼ r. (Or)

p |∼ q and p |∼ r implies p ∧ q |∼ r. (Cautious monotony)

System R (Rational) arises from System P by adding a single-premise
version of Rational Monotony:

p |∼ r and p ��|∼ ¬q implies p ∧ q |∼ r. (Rational monotony)

2.1.2 Preferential Semantics

So far we have considered a non-monotonic consequence relation merely
as a relation between syntactic objects. We can rephrase properties of
non-monotonic logic “semantically,” i.e. in terms of the possible worlds in
which the sentences are true or false. In some cases, this allows us to give
a very perspicuous view on defeasible logic.

Recall from Section 1 that a deductive consequence relation satisfies
Soundness, i.e. that Γ ` p only if p is true in all the worlds in which
all sentences in Γ are true. As we have discussed, non-monotonic logics
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are ampliative, and therefore must violate Soundness. Shoham (1987)
inaugurated a semantics for non-monotonic logics in which Γ |∼ p only if
p is true in a “preferred” set of worlds in which Γ is true. These are usually
interpreted as the “most typical,” or “most normal” worlds in which all
sentences in Γ are true. If Γ is a set of sentences in Λ and V is a valuation
function, we write V(Γ) as shorthand for ∩q∈ΓV(q). See Section 1 if you
need a refresher on valuation functions. Kraus et al. (1990) first proved
most of the results of this section for single-premise consequence relations.
We follow Makinson (1994) in presenting their infinitary generalizations.

A preferential model is a triple 〈W, V,<〉 where W is a set of possible
worlds, V is a valuation function and < is an arbitrary relation on the
elements of W. The relation < is transitive iff x < y and y < z implies
x < z. The relation < is irreflexive iff for all w ∈ W it is not the case that
w < w. A transitive, irreflexive relation is called a strict order. We write
w ≤ v iff w < v or w = v. The strict order < is total iff for w, v ∈W either
w ≤ v or v ≤ w.

If Γ is a set of sentences, we say that w ∈ Min<(Γ) iff w ∈ V(Γ) and
there is no v ∈ V(Γ) such that v < w. In other words, w ∈ Min<(Γ) iff w
is a <-minimal element of V(Γ). Every preferential model gives rise to a
consequence relation by letting

Γ |∼< p iff Min<(Γ) ⊆ V(p),

i.e. Γ |∼< p iff p is true in all the minimal worlds in which all sentences in
Γ are true. Write C<(Γ) for the set {p : Γ |∼< p}.

We say that a preferential model is stoppered iff for every set of sentences
Γ, if w ∈ V(Γ) then there is v ≤ w such that v ∈ Min<(Γ). (Note that
Kraus et al., 1990, called stoppered models smooth models.) Makinson
(1994) proves the following.

Theorem 1 Suppose that M = 〈W, V,<〉 is a preferential model. Then C<(·)
satisfies Inclusion, Cut, Supraclassicality, and Distribution. If M is stoppered,
then C<(·) also satisfies Cautious Monotony.

Makinson (1994) also gives the following two partial converses. The latter
essentially reports a result from Kraus et al. (1990).

Theorem 2 If C(·) satisfies Inclusion, Cut, and Cautious Monotony, there is a
stoppered preferential model M = 〈W, V,<〉 such that C(·) = C<(·).

Theorem 3 If C(·) satisfies Inclusion, Cut, Cautious Monotony, Supraclas-
sicality, and Distribution, then there is a stoppered preferential model M =

〈W, V,<〉 such that for all finite ∆ ⊆ Λ, C(∆) = C<(∆). Moreover, M may be
constructed such that < is a strict order.
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Taken together, Theorem 1 and Theorem 3 say that, at least for finitary
consequences, the consequence relations generated by preferential models
are exactly the consequence relations satisfying Inclusion, Cut, Cautious
Monotonicity, Supraclassicality, and Distribution. In fact, one can always
think of these preferential models as generated by a strict (partial) order.
The question remains whether there are any natural conditions on pref-
erential models that ensure that Rational Monotony is also satisfied. It
turns out that Rational Monotony follows from the requirement that the
preference relation < is a total order.

Say that a preferential model M = 〈W, V,<〉 is modular iff for all
w, u, v ∈ W, if w < u ≈ v then w < v. Here u ≈ v means that u, v
are unordered, i.e. it is not the case that u < v and it is not the case that
v < u. If < is a strict order, modularity is equivalent to the intuitive prop-
erty of rankedness: there is a totally ordered set T and a function ρ : W → T
such that for all u, v ∈ W, u < v iff ρ(u) � ρ(v), where � is the total
ordering of T. Makinson proves the following.

Theorem 4 Suppose that M = 〈W, V,<〉 is a preferential model. If M is mod-
ular, then C<(·) satisfies Rational Monotony.

Kraus et al. (1990) prove the following partial converse.

Theorem 5 If C(·) finitarily satisfies Inclusion, Cut, Cautious Monotony,
Supraclassicality, Distribution, and Rational Monotony, then there is a ranked,
stoppered preferential model M = 〈W, V,<〉 such that for all finite ∆ ⊆ Λ,
C(∆) = C<(∆). Moreover, M may be constructed such that < is a strict order.

The essential difference between preferential models that satisfy Rational
Monotony and those that do not is that the former correspond to those
generated by a ranked partial order. This result is helpful to keep in mind
because in the following we will see several models of belief that can
be understood as arising from a total plausibility order, and some that
arise from a merely partial plausibility order. In light of Theorem 3 and
Theorem 5, we can expect the former to satisfy System R and the latter to
satisfy only the weaker System P.

2.2 AGM Belief Revision Theory

The theory of belief revision is concerned with how to update one’s beliefs
in light of new evidence, especially when new evidence is inconsistent
with prior beliefs. It is especially occupied with the following sort of
scenario, borrowed from Gärdenfors (1992). Suppose that you believe all
the following sentences:

(a) All European swans are white;
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(b) The bird in the pond is a swan;

(c) The bird in the pond comes from Sweden;

(d) Sweden is in Europe.

Now suppose that you were to learn the sentence e that the bird in the
pond is black. Clearly, e is inconsistent with your beliefs a, b, c, d. If you
want to incorporate the new information e and remain consistent, you
will have to retract some of your original beliefs. The problem of belief
revision is that deductive logic alone cannot tell you which of your beliefs
to give up—this has to be decided by some other means. Considering
a similar problem, Quine and Ullian (1970) enunciated the principle of
“conservatism,” counseling that our new beliefs “may have to conflict with
some of our previous beliefs; but the fewer the better.” In his (1990), Quine
dubs this the “maxim of minimal mutilation.” Inspired by these suggestive
principles, Alchourrón, Gärdenfors, and Makinson (1985) develop a highly
influential theory of belief revision, known thereafter as AGM theory, after
its three originators.

In AGM theory, beliefs held by an agent are represented by a set B
of sentences. The set B is called the belief state of the agent. This set is
usually assumed to be closed under logical consequence. Of course, this
is an unrealistic idealization, since it means that the agent believes all
logical consequences of her beliefs. Levi (1991) defends this idealization
by changing the interpretation of the set B—these are the sentences that
the agent is committed to believe, not those that she actually believes.
Although we may never live up to our commitments, Levi argues that we
are committed to the logical consequences of our beliefs. That may rescue
the principle, but only by changing the interpretation of the theory.

AGM theory studies three different types of belief change. Contraction
occurs when the belief state B is replaced by B ÷ p, a logically closed
subset of B no longer containing p. Expansion occurs when the belief state
B is replaced with B + p = Cn(B ∪ {p}), the result of simply adding p to
the set of beliefs and closing under logical consequence. Revision occurs
when the belief state B is replaced by B ∗ p, the result of adding p to B and
removing whatever is necessary to ensure that the resulting belief state
B ∗ p is logically consistent.

Contraction is the fundamental form of belief change studied by AGM.
There is no mystery in how to define expansion, and revision is usually
defined derivatively via the Levi identity (1977): B ∗ p = (B ÷ ¬p) + p.
Alchourrón et al. (1985) and Gärdenfors and Makinson (1988) proceed
axiomatically: they postulate several principles that every rational con-
traction operation must satisfy. Fundamental to AGM theory are several
representation theorems showing that certain intuitive constructions give
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rise to contraction operations satisfying the basic postulates and conversely,
that every operation satisfying the basic postulates can be seen as the out-
come of such a construction. See Lin (this volume) for an introduction to
these results.

AGM theory is unique in focusing on belief contraction. For someone
concerned with maintaining a database, contraction is a fairly natural
operation. Medical researchers might want to publish a data set, but make
sure that it cannot be used to identify their patients. Privacy regulations
may force data collectors to “forget” certain facts about you and, naturally,
they would want to do this as conservatively as possible. However, a
plausible argument holds that all forms of rational belief change occurring
“in the wild” involve learning new information, rather than conservatively
removing an old belief. All the other formalisms covered in the article
focus on this form of belief change. For this reason, we focus on the AGM
theory of revision and neglect contraction.

Before delving into some of the technical development, we mention
some important objections and alternatives to the AGM framework. As
we have mentioned, the belief state of an agent is represented by the
(deductively closed) set B of sentences the agent is committed to believe.
The structure of the agent’s reasons is not represented: you cannot tell of
any two p, q ∈ B whether one is a reason for the other. Gärdenfors (1992)
distinguishes between foundations theories, that keep track of which beliefs
justify which others, and coherence theories, which ignore the structure of
justification and focus instead on whether beliefs are consistent with one
another. Arguing for the coherence approach, Gärdenfors (1992) draws a
stark distinction between the two:

According to the foundations theory, belief revision should
consist, first, in giving up all beliefs that no longer have a satis-
factory justification and, second, in adding new beliefs that have
become justified. On the other hand, according to the coherence
theory, the objectives are, first, to maintain consistency in the
revised epistemic state, and, second, to make minimal changes
of the old state that guarantee overall coherence.

Implicit in this passage is the idea that foundations theory are fundamen-
tally out of sympathy with the principle of minimal mutilation. Elsewhere
(1988), Gärdenfors is more apologetic, suggesting that some hybrid theory
is possible and perhaps even preferable:

I admit that the postulates for contractions and revisions that
have been introduced here are quite simpleminded, but they
seem to capture what can be formulated for the meager struc-
ture of belief sets. In richer models of epistemic states, admit-
ting, for example, reasons to be formulated, the corresponding
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conservativity postulates must be formulated much more cau-
tiously (p. 67).

Previously, we have seen Pollock (1987) advocating for foundationalism. In
artificial intelligence, Doyle’s (1979) reason maintenance system is taken to
exemplify the foundations approach. Horty (2012) argues that default logic
aptly represents the structure of reasons. For a defense of foundationalism,
as well as a useful comparison of the two approaches, see Doyle (1992).

Another dissenting tradition advocates for belief bases instead of belief
states. A belief base is a set of sentences that is typically not closed
under logical consequence. Its elements represent “basic” beliefs that are
not derived from other beliefs. This allows us to distinguish between
sentences that are explicit beliefs, like “Shakespeare wrote Hamlet” and
never thought-of consequences like “Either Shakespeare wrote Hamlet or
Alan Turing was born on a Monday.” Revision and contraction are then
redefined to operate on belief bases, rather than belief sets. That allows for
increased expressive power, since belief bases which have the same logical
closure are not treated interchangeably. For an introduction to belief bases
see Hansson (2017). For a book-length treatment, see Hansson (1999).

Finally, one of the most common criticisms of AGM theory is that it does
not illuminate iterated belief change. In the following, we shall see that the
canonical revision operation takes as input an entrenchment ordering on a
belief state, but outputs a belief state without an entrenchment order. That
severely underdetermines the result of a subsequent revision. For more on
the problem of iterated belief revision, see Huber (2013a).

The treatment in this article is necessarily rather compressed. There are
several excellent survey articles on belief revision. See Hansson (2017),
Huber (2013a, 2013b), and Lin (this volume).

2.2.1 Revision

Alchourrón et al. (1985) propose the following postulates for rational belief
revision.

B ∗ p = Cn(B ∗ p). (Closure)

p ∈ B ∗ p. (Success)

B ∗ p ⊆ Cn(B ∪ {p}). (Inclusion)

If ¬p /∈ Cn(B), then B ⊆ B ∗ p. (Preservation)

B ∗ p is consistent if p is consistent. (Consistency)

If (p↔ q) ∈ Cn(∅), then B ∗ p = B ∗ q. (Extensionality)
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By now, Closure, Success, Consistency, and Extensionality should be
straightforward to interpret. These postulates impose synchronic con-
straints on B ∗ p. Preservation and Inclusion are the only norms that are
really about revision—they capture the diachronic spirit of AGM revision.
Inclusion says that revision by p should yield no more new beliefs than
expansion by p. In other words, any sentence q that you come to believe
after revising by p is a deductive consequence of p and your prior beliefs.
Consider the following principle:

If q ∈ B ∗ p, then (p→ q) ∈ B. (Conditionalization)

In Section 2.1.1, we considered an analogue of Conditionalization for
nonmonotonic logic. All the same objections apply equally well in the
context of belief revision. Recall from Section 1 that a deductive conse-
quence relation admits a deduction theorem iff ∆ ∪ {p} ` q implies that
∆ ` p → q. So long as a deduction theorem is provable for Cn(·), Inclu-
sion and Conditionalization are equivalent. To see this, suppose that the
revision operation ∗ satisfies Inclusion. Then, if q ∈ B ∗ p, it follows that
B ∪ {p} ` q. By the deduction theorem, B ` p → q. For the converse,
suppose that the revision operation ∗ satisfies Conditionalization. Then,
if q ∈ B ∗ p, it follows that p→ q ∈ B and q ∈ Cn(B ∪ {p}). If you found
any of the arguments against Conditionalization convincing, you ought to
be skeptical of Inclusion.

Preservation says that, so long as the new information p is logically con-
sistent with your prior beliefs, all of your prior beliefs survive revision by
p. In the setting of non-monotonic logic, we called this principle Rational
Monotony. All objections and counterexamples to Rational Monotony from
Section 2.1.1 apply equally well in belief revision. As we have seen, Preser-
vation rules out any kind of undercutting defeat of previously successful
defeasible inferences. Accepting both Preservation (Rational Monotonicity)
and Inclusion (Conditionalization) amounts to saying that when con-
fronted with new evidence that is logically consistent with her beliefs, a
rational agent responds by simply forming the deductive closure of her
existing beliefs with the new evidence. On that view, deductive logic is
the only necessary guide to reasoning, so long as you do not run into
contradiction.

Alchourrón et al. (1985) also propose the following supplementary
revision postulates, closely related to Inclusion and Preservation.

B ∗ (p ∧ q) ⊆ (B ∗ p) + q. (Conjunctive Inclusion)

If ¬q /∈ Cn(B ∗ p),
then (B ∗ p) + q ⊆ B ∗ (p ∧ q). (Conjunctive Preservation)
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It is possible to make the connection between belief revision and nonmono-
tonic logic precise. Given a belief set B and a revision operation ∗, we can
define a single-premise consequence relation by setting

p |∼ q iff q ∈ B ∗ p.

Similarly, given a single-premise consequence relation |∼ we can define

B = {p : > |∼ p} and B ∗ p = {q : p |∼ q}.

Then it is possible to prove the following correspondences between AGM
belief revision and the set of single-premise principles we called System R
in Section 2.1.1. It follows, by Theorem 5, that AGM revision can be repre-
sented in terms of a ranked, stoppered preferential model over possible
worlds.

Theorem 6 Suppose that ∗ is a revision operation for B satisfying all eight
revision postulates. Then, the nonmonotonic consequence relation given by p |∼ q
iff q ∈ B ∗ p satisfies all the principles of System R.

Theorem 7 Suppose that |∼ is a consequence relation that satisfies all the prin-
ciples of System R and such that p |∼ ⊥ only if ` ¬p. Then, the revision
operation ∗ defined by letting B = {p : > |∼ p} and B ∗ p = {q : p |∼ q}
satisfies all eight revision postulates.

2.2.2 Entrenchment

Gärdenfors and Makinson (1988) introduce the notion of an entrenchment
relation on sentences.

Even if all sentences in a [. . . ] set are accepted or considered
as facts [. . . ], this does not mean that all sentences are of equal
value for planning or problem-solving purposes. Certain [. . . ]
beliefs about the world are more important than others when
planning future actions, conducting scientific investigations,
or reasoning in general. We will say that some sentences [. . . ]
have a higher degree of epistemic entrenchment than others. The
degree of entrenchment will, intuitively, have a bearing on what
is abandoned [. . . ], and what is retained, when a contraction
or revision is carried out.

To model the degree of entrenchment, Gärdenfors and Makinson (1988)
introduce a relation ≤ holding between sentences of the language Λ. The
notation p ≤ q is pronounced “p is at most as entrenched as q.” Gärdenfors
and Makinson (1988) propose that the entrenchment relation ≤ satisfy the
following postulates.
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If p ≤ q and q ≤ r, then p ≤ r. (Transitivity)

If p ` q, then p ≤ q. (Dominance)

Either p ≤ (p ∧ q), or q ≤ (p ∧ q). (Conjunctiveness)

If B is consistent, then p /∈ B iff p ≤ q for all q. (Minimality)

If q ≤ p for all q, then p ∈ Cn(∅). (Maximality)

Note that, in light of Minimality, an entrenchment relation is defined for
a particular belief set B. It follows from the first three of these postulates
that an entrenchment order is total, i.e. for all p, q either p ≤ q or q ≤ p.

Given a belief set B and an entrenchment relation ≤, it is possible to
define a revision operation directly by setting:

B ∗ p = Cn({q ∈ Λ : ¬p < q} ∪ {p}). (C∗)

The idea behind this equation is that the agent revises by p by first clearing
from her belief set anything less entrenched than ¬p, (by dominance, this
includes everything entailing ¬p) adding p, and then closing under logical
consequence. This illustrates why AGM theory is not a theory of iterated
revision: the revision operation takes as input an entrenchment order and
belief state, but outputs only a belief state. That severely underdetermines
the results of subsequent revisions. Gärdenfors (1988) proves the following.

Theorem 8 If a relation ≤ satisfies the five entrenchment postulates, then the
revision function ∗ determined via (C∗) satisfies the six basic and the two sup-
plementary revision postulates.

Finally, given a belief set B, an entrenchment relation can be recovered
from a revision operation by setting:

p ≤ q iff p /∈ B ∗ ¬(p ∧ q) or ` q. (C∗≤)

The idea is that p is no more entrenched than q if p does not survive a
revision by ¬(p ∧ q) or if q is a tautology. Rott (2003) proves the following.

Theorem 9 If a revision operation ∗ satisfies the six basic and the two supple-
mentary contraction postulates, then the entrenchment relation determined via
(C∗≤) satisfies the five entrenchment postulates.

2.2.3 Sphere Semantics

So far we have thought of belief revision syntactically: a revision operation
∗ takes in a set B of syntactic objects and a sentence p and outputs another
set of sentences B ∗ p. Grove (1988) gives a perspicuous way to represent
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the revision postulates semantically, i.e. in terms of the possible worlds in
which the sentences are true or false.

As before, let W be a set of possible worlds and let V : Λ→ ℘(W) be
a valuation function.2 If Γ is a set of sentences in Λ, we write V(Γ) as
shorthand for ∩q∈ΓV(q). If E is a proposition, we write T(E) as shorthand
for {p ∈ Λ : E ⊆ V(p)}, i.e. the set of all sentences p such that E entails
V(p).

A set of propositions S is a system of spheres centered on V(B) ⊆ W iff
for all E, F ⊆W and all p ∈ Λ, the following conditions hold.

If E, F ∈ S , then E ⊆ F or F ⊆ E. (Nested)

V(B) ∈ S and if E ∈ S then V(B) ⊆ E. (Centered)

W ∈ S . (Maximum)

If p 0 ⊥, then there is E ∈ S such that
E ∩V(p) 6= ∅ and if F ∩V(p) 6= ∅ then E ⊆ F. (Well order)

In other words, a system of spheres centered on V(B) is a nested set
of propositions, all entailed by V(B), with the following property: if p
is a consistent sentence, then there is a logically strongest element of
S consistent with V(p). If p is a consistent sentence, let S(p) be E ∩
V(p), where E is the logically strongest element of S consistent with
V(p). Otherwise, let S(p) = ∅. In other words: S(p) is the set of worlds
compatible with V(p) that is “closest” to V(B) according to the sphere
system. Note that if V(p) ∩ V(B) 6= ∅, then S(p) = V(B) ∩ V(p). If
V(p) ∩ V(B) = ∅ we find the closest sphere compatible with V(p) and
intersect the two. Given a belief set B and a system of spheres S centered
on V(B) we can define a revision operator by setting:

B ∗ p = T(S(p)).

The idea is this: when you revise on a sentence p compatible with your
previous beliefs, then the strongest proposition you believe is V(p)∩V(B).
If p is incompatible with your beliefs, you fall back to E ∩ V(p), where
E is the p-compatible proposition closest to your old belief V(B). Thus,
the system of spheres S can be seen as a set of “fallback positions” for
updating on incompatible propositions. See Figure 1.

Grove (1988) proves the following.

Theorem 10 Let B be a belief set. For each system of spheres S centered on
V(B), there is an operation ∗ satisfying the six basic and the two supplementary
revision postulates such that B ∗ p = T(S(p)). Moreover, for every revision op-
eration ∗ satisfying the six basic and the two supplementary revision postulates,
there is a sphere system S centered on V(B) such that B ∗ p = T(S(p)).

2 See Section 1 if you need a refresher on valuation functions.
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V(B)

V(p)

V(B ∗ p)

Figure 1: A system of spheres centered on V(B). The shaded region is V(B ∗ p).

Finally, the sphere semantics gives a dramatic illustration of the critique
that AGM does not illuminate iterated belief change. A revision maps a
set of spheres S and a sentence p to a set of sentences T(S(p)). It does not
output a new set of spheres centered on the new belief state. That severely
underdetermines the result of future revisions.

2.3 The Paradox of the Preface

The models of full belief that we have seen so far require that beliefs be
consistent and closed under deductive consequence. While it is admitted
that this requirement is not psychologically realistic, or perhaps even
feasible for bounded agents, it is proffered as a normative principle that
we should strive to approximate. After all, consistency and closure are
necessary conditions for achieving the following two related ends: believing
only true sentences (consistency) and believing as many true sentences as
possible without risking error in any more possible worlds (closure).

Nevertheless, the Paradox of the Preface, due to Makinson (1965), chal-
lenges even the normativity of deductive consistency. The story goes like
this. A famous theorist has just finished her latest book. As is custom-
ary for such works, she includes a passage in the preface thanking her
colleagues and students for their help in editing and proofreading, but
accepting sole responsibility for the mistakes that inevitably remain. She
seems to be saying that, despite her best efforts, she believes that not
everything that she asserts in the book is true. Let s1, . . . , sn be the claims
she asserts in the book. Presumably, she believes each of the si or else she
would not have asserted them. Yet in the preface she claims to believe
¬(s1 ∧ . . . ∧ sn), the claim that at least one of the si is false. The theorist
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seems to be behaving perfectly rationally, yet on this reconstruction there
is no way that she can be both consistent and deductively closed.

It is tempting to say that inconsistency in the service of intellectual
humility is no sin. Yet this creates a further difficulty: surely some inconsis-
tencies are vicious and should be eliminated. Others, it seems, are virtuous
and ought to be tolerated. But how do we know which inconsistencies
are which? If we point out an inconsistency in someone’s beliefs, we tend
to think that they are under some pressure to resolve it. But why can’t
everyone respond to such a challenge by claiming that their inconsistency
is a virtue? The Preface Paradox seems to challenge the very normativity
of logical consistency.

There are several ways to respond to this challenge. The first, and
perhaps the most common route, is to claim that belief is fundamentally a
matter of degree. The theorist merely has a high degree of belief in each of
the statements of her book. And there is nothing surprising about having
a high degree of belief in each of the si but not in their conjunction. In fact,
if the structure of partial belief is probabilistic, this would emerge as a
simple consequence of the probability calculus: it is to be expected that the
probability of each of the si exceeds the probability of their conjunction,
so long as the probability of the si falls short of unity. This analysis also
entails something about the relationship between full and partial belief: it
is rationally admissible to fully believe statements that have a high, but not
maximal, degree of belief. These themes will be taken up in subsequent
sections.

A second set of responses to the paradox calls our attention to the variety
of cognitive attitudes that are involved in the story. For example, Cohen
(1992) attributes many confusions and apparent paradoxes to the erroneous
conflation of two related cognitive attitudes: belief and acceptance. Belief
in p, according to Cohen, is a disposition to feel it true that p, whenever
attending to issues raised by the proposition that p. This disposition may
or may not be reflected in speech and action, and is not under direct
volitional control. But to accept that p is to adopt a policy of deeming,
positing, or postulating that p—i.e. of including it among one’s premises
for deciding what to do or think in a particular context, whether or not
one feels it to be true. Acceptance is a volitional matter, and is sensitive to
our cognitive context.

Belief is sometimes not even a prima facie reason for acceptance: in scien-
tific contexts many of our most cherished beliefs are not accepted, as it is
our duty to subject them to criticism and not argue from them as premises.
Cohen claims that a person who accepts nothing that she believes is intel-
lectually paralyzed, but someone who accepts everything she believes is
recklessly uncritical. Furthermore, acceptance may sometimes promote be-
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lief, at least in the long run, but often has no effect: for example, a defense
lawyer may accept that her client is innocent, but believe otherwise.

Cohen claims that acceptance ought to be closed, at least under ac-
cepted deductive consequences. Consistency is also, presumably, a norm
of acceptance. Belief, however, is different:

you are not intellectually pledged by a set of beliefs, however
strong, to each deductive consequence of that set of beliefs,
even if you recognize it to be such. That is because belief that
p is a disposition to feel that p, and feelings that arise in you
[. . . ] through involuntary processes [. . . ] no more impose their
logical consequences on you than do the electoral campaign
posters that people stick on your walls without your consent.
(Cohen, 1992, p. 31)

Armed with the distinction between belief and acceptance, we can
attempt a redescription of the preface paradox. In the context of her
theoretical work, the theorist accepts s1, . . . , sn and is bound to maintain
consistency and accept their (accepted) deductive consequences. In fact, she
would be in dereliction of her duty as theorist if she accepted the preface
sentence in the body of the book. However, the context of the preface is
different: here it is customary to drop the professional exigencies of the
theorist and acknowledge broader features of the author’s cognitive life.
She has fulfilled her duty as theorist and done the utmost to accept only
those claims that are justified by her evidence and arguments. However,
some of these conclusions may not yet be attended with the inner glow
of belief. Perhaps, if the work meets with no devastating objections, she
may eventually cease to believe the humble claim in the preface. Thus
the distinction between belief and acceptance explains why we are not
alarmed by the sentence in the context of the preface, but we would be
shocked if we saw it used as a premise in the body of the text. For a similar
resolution of the paradox, see Chapter 5 of Stalnaker (1984).

It is easy to underestimate the consequences of accepting Cohen’s argu-
ments. For one, we would have to reinterpret all of the theories of rational
belief that we have discussed as theories of rational acceptance. In fact,
there may be no theory of rational belief, but only psychological tricks
and heuristics for coming to believe, similar to those Pascal recommends
for arriving at faith in Christ. Longstanding dogmas about the relation
between belief and knowledge would have to be revisited. Moreover, exces-
sive appeal to the distinction threatens the unity and cohesiveness of our
cognitive lives. For a discussion of these kinds of objections see Kvanvig
(2016). For an overview of the distinction between belief and acceptance,
see Weirich (2004).



462 konstantin genin

3 structures for partial belief

3.1 Bayesianism

Bayesianism, or subjective probability theory, is by far the dominant
paradigm for modeling partial belief. The literature on the subject is by
now very large and includes many approachable introductions. The sum-
mary provided here will, of necessity, be rather brief. For an article-length
introduction see Huber (2016), Easwaran (2011a, 2011b), or Weisberg (2011).
For a book-length introduction see Earman (1992) or Howson and Urbach
(2006). For an article-length introduction to Bayesian models of rational
action, see Briggs (2017) or Thoma (this volume). For an approachable
book-length introduction to the theory of rational choice see Resnik (1987).

The heart of the Bayesian theory is roughly the following:

1. There is a fundamental psychological attitude called degree of belief
(sometimes called confidence or credence) that can be represented by
numbers in the [0, 1] interval.

2. The degrees of belief of rational agents satisfy the axioms of proba-
bility theory.

3. The degrees of belief of rational agents are updated by some flavor of
probabilistic conditioning.

The first two principles are the synchronic requirements of Bayesian theory;
the third principle concerns diachronic updating behavior. Most Bayesians
would also agree to some version of the following principles, which link
subjective probabilities with deliberation and action:

4. Possible states of the world (sometimes outcomes) are assigned a
utility: a positive or negative real number that reflects the desirability
or undesirability of that outcome.

5. Rational agents perform only those actions that maximize expected
utility, which is calculated by weighing the utility of outcomes by
their subjective probability.

What makes Bayesianism so formidable is that, in addition to providing
an account of rational belief and its updating, it also provides an account
of rational action and deliberation. No other theory can claim a developed,
fine-grained account of all three of these aspects of belief. In the following
we will briefly spell out some of the technical details of the Bayesian
picture.
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3.1.1 Probabilism

In this section we flesh out the details of the synchronic component of the
Bayesian theory. For the purposes of this section we will take propositions
to be the objects of (partial) belief. It is also possible to take a syntactic
approach and assign degrees of belief to sentences in a formal language.
For the most part, nothing hinges on which approach we choose. For
arguments in favor of the syntactic approach, see Weisberg (2011).

As usual, let W be a set of possible worlds. Let F be a σ-field over W.3

A credence function p assigns a degree of belief to every proposition in
F . Probabilism requires that the credence function satisfies the axioms of
probability. For every E, F ∈ F :

p(E) is a positive, real number; (Positivity)

p(W) = 1; (Unitarity)

if E ∩ F = ∅, then p(E ∪ F) = p(E) + p(F). (Additivity)

From these principles it is possible to derive several illuminating theorems.
For example, the degree of belief assigned to the contradictory proposition
is equal to zero. Furthermore, if E entails F, then p(E) ≤ p(F). Finally, for
any proposition E ∈ F we have that 0 ≤ p(E) ≤ 1.

In the standard axiomatization of probability theory due to Kolmogorov
(1950), additivity is strengthened to Countable Additivity.

If E1, E2, . . . are mutually exclusive,
then p(

⋃∞
i=1 Ei) = ∑∞

i=1 p(Ei). (Countable Additivity)

This requirement is not as innocent as it looks: it rules out the possibility
that any agent is indifferent over a countably infinite set of mutually
exclusive possibilities. De Finetti (1970, 1972) famously argued that we
ought to reject countable additivity since it is conceivable that God could
pick out a natural number “at random” and with equal (zero) probability.
For another example, suppose you assign 50% credence to the proposition
¬B that not all ravens that will ever be observed are black. Let ¬Bi be
the proposition that the ith observed raven is the first non-black raven
to appear. Then ¬B =

⋃∞
i=1 ¬Bi. Countable additivity entails that for all

ε > 0 there is a finite n such that p(
⋃n

i=1 ¬Bi) = 1/2− ε. So you must be
nearly certain that if all ravens are not black, the first non-black raven will
appear among the first n ravens. The only way to assign equal probability
to all ¬Bi is to violate countable additivity by setting p(¬Bi) = 0 for all i.
This solution has its own drawbacks. On all standard models of Bayesian
update it will be impossible to become convinced that the ith raven is

3 Refer to Section 1 if you need to refresh yourself on the definition of a σ-field.
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indeed non-black, even if you are looking at a white one. For more on
countable additivity, see Chapter 13 in Kelly (1996).

Now that we have defined probabilism, it is natural to ask how to justify
it: why should a rational agent’s degrees of belief obey the probability
axioms? There are roughly two kinds of answers to this question current
in the Bayesian canon.

The traditional answer is that an agent that violates the axioms of
probability opens herself up to systems of bets that, although fair from the
agent’s perspective, guarantee a sure loss. Answers of this flavor are called
Dutch book arguments and they require positing some connection between
degrees of belief and fair betting quotients. Some epistemologists find
Dutch book arguments to be unconvincing either because they disavow any
tight connection between degrees of belief and betting quotients, or they
deny that any facts about something so pragmatic as betting could have
normative epistemic force. These epistemologists tend to prefer accuracy
arguments, which purport to show that any agent violating the probability
axioms will have beliefs which are less accurate, or “further from the truth,”
than agents that satisfy the axioms. We will briefly review the traditional
Dutch book-style arguments. For the original articulation of the accuracy
perspective see Joyce (1998). For an article-length overview of accuracy-
style arguments see Pettigrew (2016b). For a book-length treatment see
Pettigrew (2016a).

Dutch book arguments require specifying some connection between
degrees of belief and fair betting quotients. For de Finetti (1937) the
connection was definitional: an agent’s degree of belief in a proposition
A simply is her fair odds ratio for a bet that pays $1 if A is true and
nothing otherwise. If you are willing to pay at most $.50 for a bet that
pays $1 if A is true and nothing otherwise, then it must be that your
degree of confidence in A is 50%. It is easy to see what is wrong with this
kind of definition: there may be factors other than the subject’s degree of
belief which affect her fair betting quotient. She may be risk averse, or
risk-loving; she may abhor gambling, or love showing off. Ramsey (1931)
avoids some of these problems by pricing bets in utility, rather than money,
and appealing to the existence of an “ethically neutral” proposition that is
considered equally likely to be true and false. For more on the connection
between degrees of belief and betting ratios see Eriksson and Hájek (2007).

Supposing that a suitable connection between degrees of belief and fair
betting quotients exists, it is possible to construct a “Dutch book” against
an agent violating the axioms of probability. To get such an argument
going we suppose that if the agent’s degree of belief in A is p(A), then
she considers fair a bet that costs $p(A) ·Y and pays $Y if A is true and
$0 otherwise. Note that we allow Y to take positive and negative values.
This means that the agent is willing to assume the role of the bookie and
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sell a bet that “costs” −$p(A) · Y and “pays” −$Y if A is true and $0
otherwise. Now suppose that such an agent violates finite additivity. One
way this may happen is if for A, B such that A ∩ B = ∅, we have that
p(A ∪ B) > p(A) + p(B). Then, the agent considers fair

1. a bet that costs −$p(A) and pays −$1 if A is true and $0 otherwise;

2. a bet that costs −$p(B) and pays −$1 if B is true and $0 otherwise;

3. a bet that costs $p(A ∪ B) and pays $1 if A ∪ B is true and $0
otherwise.

There are three possible scenarios: either A and B are both false or exactly
one of them is true. The reader should confirm that in any of these
scenarios the agent is left with exactly $p(A) + $p(B)− $p(A∪ B) < 0. By
reversing which bets the agent buys and sells, we can construct a Dutch
book against an agent that violates additivity by having p(A∪ B) < p(A)+

p(B). Similar strategies work to construct Dutch books against agents that
violate Positivity, Unitarity, and Countable Additivity. Furthermore, it is
possible to show that if your degrees of belief validate the probability
axioms, then no Dutch book can be made against you (Kemeny, 1955). For
more on Dutch book arguments see Section 3.3 in Hájek (2012).

3.1.2 Updating by Conditioning

We have discussed the synchronic content of the Bayesian theory, but we
still need to talk about how degrees of belief are updated upon receiving
new information. There are two standard models of partial belief update:
strict conditionalization and Jeffrey conditionalization. Strict condition-
alization assumes that the information received acquires the maximal
degree of belief. Jeffrey conditionalization allows for the situation in which
no proposition is upgraded to full certainty when new information is
acquired.

For all propositions A, B ∈ F such that p(A) > 0, the conditional
probability of B given A is defined as:

p(B | A) :=
p(A ∩ B)

p(A)
.

Conditionalization by A restricts all possibilities to those compatible with
A and then renormalizes by the probability of A to ensure that unitarity
holds. By far the most standard modeling of partial belief update holds
that degrees of belief ought to be updated by conditionalization. In other
words, if pt is your credence function at time t and A is a proposition
expressing the total new information acquired by t′ > t, then pt′ ought to
equal pt(· | A), whenever pt(A) > 0.
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What if new information does not render any proposition certain, but
merely changes the subjective probability of some propositions? Jeffrey
(1983) proposes the following update rule. Suppose that pt is your credence
function at time t. Suppose that the total evidence that comes in by time
t′ updates your degrees of belief in partition {Ai}1≤i≤n (and in no finer
partition) setting each respectively to ai with ∑i ai = 1. Then your new
credence function pt′ ought to be ∑i p(· | Ai)ai.

Why should a rational agent update by strict or Jeffrey conditionaliza-
tion? Dutch-book style arguments for strict conditionalization are given in
Teller (1973) and Lewis (1999) and extended to Jeffrey conditionalization
in Armendt (1980). For more see Skyrms (2009). For an accuracy-style
argument in favor of strict conditionalization and against Jeffrey condi-
tionalization, see Leitgeb and Pettigrew (2010).

For our purposes it is important to point out that conditional probability
is always a lower bound for the probability of the material conditional. In
other words, for all E, H ∈ F ,

p(H | E) ≤ p(E→ H),

whenever p(E) > 0. We can see this as a quantitative version of the
qualitative principle of Conditionalization we discussed in Section 2.1.1:
however confident a Bayesian agent becomes in H after updating on E,
she must have been at least as confident that H is a material consequence
of E. Popper and Miller (1983) took this observation to be “completely
devastating to the inductive interpretation of the calculus of probability.”
For the history of the Popper-Miller debate see Chapter 4 in Earman (1992).
A similar property can be demonstrated for Jeffrey conditioning (Genin,
2017).

Both strict and Jeffrey conditionalization are defined in terms of con-
ditional probability. The probability of B conditional on A is standardly
defined as the ratio of the unconditional probabilities p(A ∩ B) and p(A).
Clearly, this ratio is undefined when p(A) = 0. Some theorists would
like conditional probability to be defined even when conditioning on
propositions of probability zero. The standard approach in mathematical
statistics, due to Kolmogorov (1950), is via the conditional expectation. On
that approach, conditional probability remains dependent on uncondi-
tional probability. An alternative approach, adopted by Popper (1955) and
Renyi (1955), takes conditional probability as a primitive, rather than a
derivative, notion. For a defense of the conditional expectation, see Gyenis,
Hofer-Szabó, and Rédei (2017). For an introduction to primitive conditional
probabilities, see Easwaran (this volume). For a critique of the standard
notion of conditional probability, see Hájek (2003).
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States

Good Rotten

Acts Outcomes

Break into Bowl 6-Egg Omelet No Omelet

+10 0

Break into Saucer 6-Egg Omelet, 5-Egg Omelet,

extra washing extra washing

+8 +4

Table 1: A payoff table for the morning chef

3.1.3 Deliberation and Action

One of the signal advantages of the Bayesian model of partial belief is that
it is ready-made to plug into a prominent model of practical deliberation.
Decision theory, or rational choice theory, is too large and sprawling a
subject to be effectively covered here, although it will be presented in
cursory outline. For an excellent introduction, see Briggs (2017) or Thoma
(this volume). For our purposes, it is enough to note that a well-developed
theory exists and that no comparable theory exists for alternative models
of belief.4

Suppose you would like to make a six egg omelet. You’ve broken 5 fresh
eggs into a mixing bowl. Rooting around your fridge, you find a loose
egg of uncertain provenance. If you are feeling lucky you can break the
suspect egg directly into the mixing bowl; if you are wary of the egg, you
might break it into a saucer first and incur more dishwashing.

There are four essential ingredients to this sort of decision-theoretic sit-
uation. There are outcomes, over which we have defined utilities measuring
the desirability of the outcome. In the case of the omelet the outcomes are
a ruined omelet or a 5–6 egg omelet, with or without extra washing. There
are states—usually unknown to and out of the control of the actor—which
influence the outcome of the decision. In our case the states are exhausted
by the possible states of the suspect egg: either good or rotten. Finally,
there are acts which are under the control of the decision maker. In our case
the acts include breaking the egg into the bowl or the saucer. Of course
there are other conceivable acts: you might throw the suspect egg away
and make do with a 5-egg omelet; you might even flip a coin to decide
what to do. We omit these for the sake of simplicity. These four elements
are usually summarized in a payoff table (see Table 1). To fit this into the

4 However, recent work such as Lin (2013) and Spohn (2017, 2019) may remedy that inade-
quacy in the case of qualitative belief.
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framework of partial belief we assume that the set of acts A1, A2, . . . , An

partition W. We also assume the set of states S1, S2, . . . , Sm partition W. We
assume that the credence function assigns a probability to every outcome.
We assume that acts and states are logically independent, so that no state
rules out the performance of any act. Finally, we assume that given a state
of the world Sj and an act Ai there is exactly one outcome Oij, which is
assigned a utility U(Oij). The ultimate counsel of rational choice theory is
that agents ought to perform only those acts that maximize expected utility.
The expected utility of an act is defined as:

EU(Ai) =
m

∑
j=1

pAi(Sj)U(Oij),

where pAi(Sj) is roughly how likely the agent considers Sj given that
she has performed act Ai. Difficulties about how this quantity should be
defined give rise to the schism between evidential and causal decision
theory (see Section 3.3 in Thoma, this volume). However, in many sit-
uations, including the dilemma of the omelet, the act chosen does not
affect the probabilities with which states obtain. This is called “act-state
independence” in the jargon of rational choice theory. In cases of act-state
independence there is broad consensus that pAi(Sj) should be equal to the
unconditional degree of belief p(Sj).

Central to the literature on decision theory are a number of representation
theorems showing that every agent with qualitative preferences satisfying
a set of rationality postulates can be represented as an expected utility
maximizer (von Neumann & Morgenstern, 1944; Savage, 1954). These
axioms are controversial, and are subject to intuitive counterexamples.
Allais (1953) and Ellsberg (1961) give examples in which seemingly rational
agents violate the rationality postulates and therefore cannot, even in
principle, be represented as expected utility maximizers. For more on this
subject, see Sections 2 and 3 in Briggs (2017).

3.1.4 Modifications and Alternatives

Dissatisfaction with various aspects of the Bayesian theory has spawned
a number of formal projects. Many epistemologists reject the notion that
rational agents must have precise credences in every proposition that they
can entertain; instead they claim that rational agents may have imprecise
credences representable by intervals of real numbers. For an introduction to
imprecise probability, see Mahtani (this volume). The theory of Dempster-
Shafer belief functions (Dempster, 1968; Shafer, 1976) rejects the tight
connection between degrees of belief and fair betting ratios. Fair betting
ratios ought indeed satisfy the axioms of probability, but degrees of belief
need not. Nevertheless, it should be possible to calculate fair betting ratios
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from degrees of belief when these are necessary. For this purpose, degrees
of belief may satisfy a weaker set of axioms than those of the probability
calculus. For an introduction to Dempster-Shafer belief functions see
Section 3.1 in Huber (2016).

Many epistemologists have held that degrees of belief are not so defi-
nitely comparable as suggested by the probabilistic analysis. Keynes (1921)
famously proposes that degrees of belief may enjoy only an ordinal struc-
ture, which admits of qualitative, but not quantitative, comparison. Keynes
even suggests that the strength of some pairs of partial beliefs cannot be
compared at all. Koopman (1940) and Fine (1973) pursue Keynes’ sugges-
tions, developing axiomatic theories of qualitative probability. See Konek
(this volume) for an introduction to qualitative probability comparisons.

3.2 Ranking Theory

Cohen (1977, 1980) distinguishes between two rival probabilistic traditions.
Pascalian probability finds its latest expression in contemporary Bayesian-
ism. But Cohen traces a rival tradition back to Francis Bacon. Roughly,
these two can be distinguished by the scale they select for the strength of
belief. On the Pascalian scale a degree of belief of zero in some proposition
implies maximal conviction in its negation. On the Baconian scale, a de-
gree of belief of zero implies no conviction in either the proposition or its
negation. Thus, the Pascalian scale runs from “disproof to proof” whereas
the Baconian runs from “no evidence, or non-proof to proof” (Cohen,
1980, p. 224). Cohen (1977) argues that despite the conspicuous successes
of Pascalian probability, the Baconian scale is more appropriate in other
settings, including legal proceedings.

Ranking theory, first developed in Spohn (1988), is a sophisticated contem-
porary theory of Baconian probability. For an article-length introduction
to ranking theory see Huber (2013; this volume). For an extensive book-
length treatment, with applications to many subjects in epistemology and
philosophy of science, see Spohn (2012). We mention some of its basic
features, as it provides a useful counterpoint to the models of belief we
have already discussed.

As before, let W be a set of possible worlds. Let F be an algebra over
W.5 A function β : F →N∪ {∞} from F into the set of natural numbers
N extended by ∞, is a positive ranking function on F just in case for any
A, B ∈ F :

β(∅) = 0; (Consistency)

β(W) = ∞; (Infinitivity)

5 Refer to Section 1 if you need to refresh yourself on the definition of an algebra
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β(A ∩ B) = min{β(A), β(B)}. (Minimitivity)

A positive ranking function expresses degrees of belief. If β(A) > 0, then
we may say that A is (fully) believed and ¬A is disbelieved. If β(A) = 0
then A is not believed and ¬A may not be believed either. Thus, ranking
theory can be seen as satisfying the “Lockean thesis,” the intuitive proposal
that a degree of belief above some threshold is necessary and sufficient for
full belief (see Section 5.2). Note however that nothing in ranking theory
requires us to say that the threshold is exactly zero: we could have chosen
any positive number n.

Let β be a positive ranking function and A ∈ F with β(¬A) < ∞. Then
for any B ∈ F the conditional positive rank of B given A is defined as

β(B | A) = β(¬A ∪ B)− β(¬A).

The function βA : B 7→ β(B | A) is called the conditionalization of β by A
and is itself a positive ranking function. This definition is used to articulate
an update rule for ranking theory: if β is your positive ranking function at
time t and between t and t′ you become certain of E ∈ F and no logically
stronger proposition, then βE should be your new ranking function at
time t′. Spohn (1988) also defines ranking-theoretic analogues of Jeffrey
conditioning.

It is clear from the definition of conditioning that, as in the Bayesian case,
the rank of the material conditional is a lower bound for the conditional
rank: β(A→ B) ≤ β(B |A). It also satisfies a version of Rational Monotony:
if β(¬A) = 0 and β(B) > 0, then β(B | A) > 0.6 Therefore, ranking-
theoretic update satisfies the “spirit” of AGM update. Note however, that
ranking theory has no trouble with iterated belief revision: a revision takes
as input a ranking function and an evidential proposition and outputs a
new ranking function.

Ranking theory lies somewhat awkwardly between a theory of full and
partial belief. On the one hand, all propositions of positive rank are fully
believed. On the other hand, the rank of a proposition measures something
about the strength of that belief. But how should we interpret these ranks?
Huber (this volume) investigates the relation between ranking-theoretic
degrees of belief, and AGM-style degrees of entrenchment. The degree of
entrenchment for a proposition A is defined as the number of independent
and reliable information sources testifying against A that it requires for the
agent to give up full belief in A. Degrees of entrenchment may be used to
measure ranking-theoretic degrees of belief; alternatively, it is possible to
identify ranking-theoretic degrees of belief with degrees of entrenchment.
Huber (manuscript) proves that if an agent defines her full beliefs from

6 Rational Monotony is not satisfied if we set the the threshold for full belief at some number
greater than zero (Raidl, forthcoming, footnote 26).
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an entrenchment function, her beliefs will be consistent and deductively
closed iff the entrenchment function is a ranking function.

One of the advantages of ranking theory over AGM is that it allows
reasons to be defined (Spohn, 2012). Say that A is a reason for B with respect
to the positive ranking function β iff β(B | A) > β(B | ¬A). Say that an
agent has A as a reason for B iff A is a reason for B according to her
positive ranking function β and β(A) > 0. Note that it is not possible to
make such a definition in the AGM theory since the conditional degree of
entrenchment is not defined. Thus ranking theory may provide an answer
to Pollock’s criticism of belief revision by allowing various kinds of defeat
of reasons to be represented (Spohn, 2012, Section 11.5).

4 eliminationisms

There are those who deny that there are any interesting principles bridging
full and partial belief. Theorists of this persuasion often want either to
eliminate one of these attitudes or reduce it to a special case of the other.
Jeffrey (1970) suggests that talk of full belief is vestigial and will be entirely
superseded by talk of partial belief and utility:

. . . nor am I disturbed by the fact that our ordinary notion of
belief is only vestigially present in the notion of degree of belief.
I am inclined to think Ramsey sucked the marrow out of the
ordinary notion, and used it to nourish a more adequate view.
But maybe there is more there, of value. I hope so. Show me; I
have not seen it at all clearly, but it may be there for all that (p.
172).

Theorists such as Kaplan (1996) also suggests that talk of full belief is
superfluous once the mechanisms of Bayesian decision theory are in place.
After all, only partial beliefs (or confidence in Kaplan’s terminology) and
utilities play any role in the Bayesian framework of rational deliberation,
whereas full belief need not be mentioned at all. Those committed to full
beliefs have the burden of showing what difference they make to our lives:

Making the case that talk of investing confidence leaves out
something important—something we have in mind when we
talk of belief—is going to require honest toil. One has to say
. . . exactly how an account of rational human activity will be
the poorer if it has no recourse to talk of belief. In short, one
has to meet the Bayesian Challenge. (p. 100)

Stalnaker (1984) is much more sympathetic to a qualitative notion of belief
(or acceptance) but acknowledges the force of the Bayesian Challenge.
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Bayesian decision theory gives a complete account of how prob-
ability values . . . ought to guide behavior . . . So what could be
the point of selecting an interval near the top of the probability
scale and conferring on the propositions whose probability falls
in that interval the honorific title “accepted”? Unless accep-
tance . . . makes a difference to how the agent behaves, or ought
to behave it is difficult to see how the concept of acceptance
can have the interest and importance for inquiry that it seems
to have. (p. 91)

It is true that there is no canonical qualitative analogue to the Bayesian
theory of practical deliberation. However, the fact that it is the theorist of
full belief that feels the challenge, and not vice versa, may be an accident of
history: if a qualitative theory of practical deliberation had been developed
first, the shoe would now be on the other foot. The situation would
be even more severe if qualitative decision making, which we seem to
implement as a matter of course, were less cognitively demanding than its
Bayesian counterpart. Of course, this anticipates a robust theory of rational
qualitative deliberation that is not immediately forthcoming. However,
recent work such as Lin (2013) and Spohn (2017, 2019) may remedy that
inadequacy. For example, Lin (2013) proves a Savage-style representation
theorem characterizing the relationship between full beliefs, desires over
possible outcomes, and preferences over acts. By developing a theory of
rational action in terms of qualitative belief, Lin demonstrates how one
might answer the Bayesian challenge.

On the other hand there are partisans of full belief that are deeply
skeptical about partial beliefs.7 Many of these object that partial beliefs
have no psychological reality and would be too difficult to reason with if
they did. Horgan (2017) goes so far as to say that typically “there is no
such psychological state as the agent’s credence in p” and that Bayesian
epistemology is “like alchemy and phlogiston theory: it is not about any
real phenomena, and thus it also is not about any genuine norms that
govern real phenomena” (p. 7). Harman (1986) argues that we have very
few explicit partial beliefs. A theory of reasoning, according to Harman,
can concern only explicit attitudes, since these are the only ones that can
figure in a reasoning process. Therefore, Bayesian epistemology, while
perhaps an account of dispositions to act, is not a guide to reasoning.
Nevertheless, partial beliefs may be implicit in our system of full beliefs in
that they can be reconstructed from our dispositions to revise them.

How should we account for the varying strengths of explicit be-
liefs? I am inclined to suppose that these varying strengths are

7 See Harman (1986), Pollock (2006), Moon (2017), and Horgan (2017). See also the “bad
cop” in Hájek and Lin (2017).



full & partial belief 473

implicit in a system of beliefs one accepts in a yes/no fashion.
My guess is that they are to be explained as a kind of epiphe-
nomenon resulting from the operation of rules of revision. For
example, it may be that P is believed more strongly than Q if it
would be harder to stop believing P than to stop believing Q,
perhaps because it would require more of a revision of one’s
view. . . (Harman, 1986, p. 22)

On this picture, almost all of our explicit beliefs are qualitative. Partial
beliefs are not graded belief attitudes toward propositions, but rather dis-
positions to revise our full beliefs. The correct theory of partial belief,
according to Harman, has more to do with entrenchment orders (see
Section 2.2.2) or ranking-theoretic degrees of belief (see Section 3.2) than
with probabilities. Other apparently partial belief attitudes are explained
as full beliefs about objective probabilities. So, in the case of a fair lottery
with ten thousand tickets, the agent does not believe to a high degree that
the nth ticket will not win, but rather fully believes that it is objectively
improbable that it will win.

Frankish (2009) objects that Harman’s view requires that an agent have
a full belief in any proposition that we have a degree of belief in: “And
this is surely wrong. I have some degree of confidence (less than 50%) in
the proposition that it will rain tomorrow, but I do not believe flat-out
that it will rain—not, at least, by the everyday standards for flat-out belief”
(p. 4). Harman might reply that Frankish merely has a full belief in the
objective probability of rain tomorrow. Frankish claims that this escape
route is closed to Harman because single events “do not have objective
probabilities,” but this matter is hardly settled.

Staffel (2013) gives an example in which a proposition with a higher
degree of belief is apparently less entrenched than one with a lower degree
of belief. Suppose that you will draw a sequence of two million marbles
from a big jar full of red and black marbles. You do not know what
proportion of the marbles are red. Consider the following cases.

Scenario 1. You have drawn twenty marbles, 19 black and one red. Your
degree of belief that the last marble you will draw is black is .95.

Scenario 2. You have drawn a million marbles, 900, 000 of which have
been black. Your degree of belief that the last marble you will draw
is black is 19/20 = .90.

Staffel argues that your degree of belief in the first case is higher than
in the second, but much more entrenched in the second than in the first.
Therefore, degree of belief cannot be reduced to degree of entrenchment.
Nevertheless, the same gambit is open to Harman in the case of the
marbles—he can claim that in both scenarios you merely have a full belief
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in a proposition about objective chance. See Staffel (2013) for a much more
extensive engagement with Harman (1986).

5 bridge principles for full and partial belief

Anyone who allows for the existence of both full and partial belief inherits
a thorny problem: how are full beliefs related to partial beliefs? That seem-
ingly innocent question leads to a treacherous search for bridge principles
connecting a rational agent’s partial beliefs with her full beliefs. Theo-
rists engaged in the search for bridge principles usually take for granted
some set of rationality principles governing full belief and its revision
e.g. AGM theory, or a rival system of non-monotonic reasoning. Theorists
usually also take for granted that partial belief ought to be representable
by probability functions obeying some flavor of Bayesian rationality. The
challenge is to propose additional rationality postulates governing how a
rational agent’s partial beliefs cohere with her full beliefs. In this section,
we will for the most part accept received wisdom and assume that ortho-
dox Bayesianism is the correct model of partial belief and its updating.
We will be more open-minded about the modeling of full belief and its
rational revision.

In this section, we will once again take propositions to be the objects of
belief. In the background, there will be a (usually finite) set W of possible
worlds. As before, the reader is invited to think of W as a set of coarse-
grained, mutually exclusive, possible ways the actual world might be.
The actual world is assumed to instantiate one of these coarse-grained
possibilities. We write B to denote the set of propositions that the agent
believes and use B(A) as shorthand for A ∈ B. We will also require some
notation for qualitative propositional belief change. For all E ⊆W, write
BE for the set of propositions the agent would believe upon learning E
and no stronger proposition. We will also write B(A | E) as shorthand for
A ∈ BE. By convention, B = BW . If F is a set of propositions, we let BF
be the set {BE : E ∈ F}. The set BF represents an agent’s dispositions to
update her qualitative beliefs given information from F .

The following normative constraint on the set of full beliefs B plays a
large role in what follows.

For all propositions A, B ⊆W: (Deductive Cogency)

1. B(W);

2. not B(∅);
3. if B(A) and A ⊆ B, then B(B);

4. if B(A) and B(B) then B(A ∩ B).
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The first two clauses say that the agent believes the true world to be among
the worlds in W and that she does not believe the empty set to contain the
true world. The third clause says that belief is closed under single-premise
entailment, i.e. if the agent believes A and A logically entails B, then she
believes B. The final clause says that the agent’s beliefs are closed under
conjunction, i.e. if she believes A and she believes B, then she believes
A ∩ B. Together, clauses 3 and 4 say that the agent’s beliefs are closed
under entailment by finitely many premises. When W is finite, the set B
must be finite as well, implying that Deductive Cogency is equivalent to
the following formulation:

B is consistent and B(B) iff ∩B ⊆ B. (Deductive Cogency)

In other words, Deductive Cogency means that there is a single, non-
empty proposition, which is the logically strongest proposition that the
agent believes, entailing all her other beliefs. When the two formulations
of Deductive Cogency come apart, we will always mean the latter one.
Deductive Cogency only mentions the set of full beliefs B, and is therefore
not a bridge principle at all. Bridge principles are expressed as constraints
holding for pairs 〈B, p〉.

All of the rationality norms that we have seen for updating qualitative
beliefs have propositional analogues. The following are propositional
analogues for the six basic AGM principles. Here E, F are arbitrary subsets
of W.

BE = Cn(BE). (Closure)

E ∈ BE. (Success)

BE ⊆ Cn(B ∪ {E}). (Inclusion)

If ¬E /∈ Cn(B) then B ⊆ BE. (Preservation)

BE is consistent if E 6= ∅. (Consistency)

If E ≡ F, then BE = BF. (Extensionality)

BE∩F ⊆ Cn(BE ∪ {F}). (Conjunctive inclusion)

If ¬F /∈ Cn(BE), then
Cn(BE ∪ {F}) ⊆ BE∩F. (Conjunctive preservation)

Supposing that for all E ⊆W, BE satisfies Deductive Cogency, the first six
postulates reduce to the following three, for arbitrary E ⊆W.

∩BE ⊆ E. (Success)

∩B ∩ E ⊆ ∩BE. (Inclusion)
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If ∩B * ¬E, then ∩BE ⊆ ∩B ∩ E. (Preservation)

Together, Inclusion and Preservation say that whenever information E is
consistent with current belief ∩B,

∩BE = ∩B ∩ E.

If F is a collection of propositions and for all E ∈ F , the belief sets B,BE

satisfy the AGM principles, we say that BF , the agent’s disposition to
update her qualitative beliefs given information from F , satisfies the basic
AGM principles.

We will use p(·) to denote the probability function representing the
agent’s partial beliefs. Of course, p(·) is defined on a σ-algebra of subsets
of W. In the usual case, when W is finite, we can take the ℘(W) to be
the relevant σ-algebra. To update partial belief, we adopt the standard
probabilistic modeling. For E ⊆ W such that p(E) > 0, p(· | E) is the
partial belief function resulting from learning E. We will sometimes use
pE as a shorthand for p(· | E). Almost always, partial belief is updated via
conditioning:

p(A | E) = p(A ∩ E)
p(E)

, whenever p(E) > 0.

Let F+
p be the set of propositions with positive probability according to p,

i.e {A ⊆W : p(A) > 0}.

5.1 Belief as Extremal Probability

The first bridge principle that suggests itself is that full belief is just the
maximum degree of partial belief. Expressed probabilistically, it says that
at all times a rational agent’s beliefs and partial beliefs can be represented
by a pair 〈B, p〉 satisfying:

B(A) iff p(A) = 1. (Extremal Probability)

Roorda (1995) calls this the received view of how full and partial belief
ought to interact. Gärdenfors (1986) is a representative of this view, as are
van Fraassen (1995) and Arló-Costa (1999), although the latter two accept
a slightly non-standard probabilistic modeling for partial belief. For fans
of Deductive Cogency, the following observations ought to count in favor
of the received view.

Theorem 11 If 〈B, p〉 satisfy extremal probability, then B is deductively cogent.

Gärdenfors (1986) proves the following.
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Theorem 12 Suppose that 〈BE, pE〉 satisfy extremal probability for all E ∈ F+
p .

Then BF+
p

satisfies the AGM postulates.

In other words: if an agent’s partial beliefs validate the probability axioms,
she updates by Bayesian conditioning and fully believes all and only those
propositions with extremal probability, her qualitative update behavior will
satisfy all the AGM postulates (at least whenever Bayesian conditioning
is defined). Readers who take the AGM revision postulates to be a sine
qua non of rational belief update will take this to be good news for the
received view.

Roorda (1995) makes three criticisms of the received view. Consider the
following three propositions.

1. Millard Fillmore was the 13th President of the United States;

2. Millard Fillmore was a U.S. President;

3. Millard Fillmore either was or was not a U.S. President.

Of course, I am not as confident that Fillmore was the 13th president as I
am in the truth of the tautology expressed in (3). Yet there does not seem
to be anything wrong with saying that I fully believe each of (1), (2), and
(3). However, if extremal probability is right, it is irrational to fully believe
each of (1), (2), and (3) and not assign them all the same degree of belief.

Roorda’s second objection appeals to the standard connection between
degrees of belief and practical decision making. Suppose I fully believe (1).
According to the standard interpretation of degrees of belief in terms of
betting quotients, I ought to be accept a bet that pays out a dollar if (1) is
true, and costs me a million dollars if (1) is false. In fact, if I truly assign
unit probability to (1), I ought to accept nearly any stakes whatsoever that
guarantee some positive payout if (1) is true. Yet it seems perfectly rational
to fully believe (1) and refrain from accepting such a bet. If we accept
Bayesian decision theory, extremal probability seems to commit me to all
sorts of weird and seemingly irrational betting behavior.

Roorda’s final challenge to extremal probability appeals to corrigibility,
according to which it is reasonable to believe that at least some of my
beliefs may need to be abandoned in light of new information. However, if
partial beliefs are updated via Bayesian conditioning, I can never cease to
believe any of my full beliefs since if p(A) = 1 it follows that p(A | E) = 1
for all E such that p(E) > 0. If we believe in Bayesian conditioning,
extremal probability seems to entail that I cannot revise any of my full
beliefs in light of new information.
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5.2 The Lockean Threshold

The natural response to the difficulties with the received view is to retreat
from full certainty. Perhaps full belief corresponds to partial belief above
some threshold falling short of certainty. Foley (1993) dubbed this view
the Lockean thesis, after some apparently similar remarks in Book IV of
Locke’s Essay Concerning Human Understanding. So far, the Lockean thesis
is actually ambiguous. There may be a single threshold that is rationally
mandated for all agents and in all circumstances. Alternatively, each agent
may have her own threshold that she applies in all circumstances—that
threshold may characterize how “bold” or “risk-seeking” the agent is
in forming qualitative beliefs. A yet weaker thesis holds that the thresh-
old may be contextually determined. We distinguish the strong, context-
independent Lockean thesis (SLT) from the weaker, context-dependent
thesis (WLT). The domain of the quantifier may be taken as the set of all
belief states 〈B, p〉 a particular agent may find herself in, or as the set of all
belief states whatsoever.

Strong Lockean Thesis (SLT). There is a threshold 1
2 < s < 1 such that

all rational 〈B, p〉 satisfy

B(A) iff p(A) ≥ s.

Weak Lockean Thesis (WLT). For every rational 〈B, p〉 there is a thresh-
old 1

2 < s < 1 such that

B(A) iff p(A) ≥ s.

Most discussions of the Lockean thesis have in mind the strong thesis.
More recent work, especially Leitgeb (2017), adopts the weaker thesis. The
strong thesis leaves the correct threshold unspecified. Of course for every
1
2 < s < 1, we can formulate a specific thesis SLTs in virtue of which the
strong thesis is true. For example, SLT.51 is a very permissive version of
the thesis, whereas SLT.95 and SLT.99 are more stringent. It is also possible
to further specify the weak thesis. For example, Leitgeb (2017) believes that
the contextually-determined threshold should be equal to the degree of
belief assigned to the strongest proposition that is fully believed. In light
of Deductive Cogency, that corresponds to the orthographically ungainly
WLTp(∩B).

The strong Lockean thesis gives rise to the well-known Lottery paradox,
due originally to Kyburg (1961, 1997). The lesson of the Lottery is that the
strong thesis is in tension with Deductive Cogency. Suppose that s is the
universally correct Lockean threshold. Now think of a fair lottery with
N tickets, where N is chosen large enough that 1− (1/N) ≥ s. Since the
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lottery is fair, it seems permissible to fully believe that some ticket is the
winner. It also seems reasonable to assign degree of belief 1/N to each
proposition of the form “The ith ticket is the winner.” According to the
Lockean thesis, such an agent ought to fully believe that the first ticket is
a loser, the second ticket is a loser, the third is a loser, etc. Since cogency
requires belief to be closed under conjunction, she ought to believe that all
the tickets are losers. But now she violates cogency by believing both that
every ticket is a loser and that some ticket is a winner. Since s was arbitrary,
we have shown that no matter how high we set the threshold, there is
some Lottery for which an agent must either violate the Lockean thesis
or violate Deductive Cogency. According to Kyburg, what the paradox
teaches is that we should give up on Deductive Cogency: full belief should
not necessarily be closed under conjunction. Many others take the lesson
of the Lottery to be that the strong Lockean thesis is untenable.

Several authors attempt to revise the strong Lockean thesis by placing
restrictions on when a high degree of belief warrants full belief. Broadly
speaking, they propose that a high degree of belief is sufficient to warrant
full belief unless some defeating condition holds. For example, Pollock
(1995) proposes that, although a degree of belief in P above some threshold
is a prima facie reason for belief, that reason is defeated whenever P is
a member of an inconsistent set of propositions each of which is also
believed to a degree exceeding the threshold. Ryan (1996) proposes that a
high degree of belief is sufficient for full belief unless the proposition is a
member of a set of propositions such that each member has a degree of
belief exceeding the threshold, but the probability of their conjunction is
below the threshold. Douven (2002) says that it is sufficient except when
the proposition is a member of a probabilistically self-undermining set. A set
S is probabilistically self undermining iff for all A ∈ S , p(A) > s and
p(A | B) ≤ s, where B =

⋂
(S \ {A}). It is clear that any of these proposals

would prohibit full belief that a particular lottery ticket will lose.
These proposals are all vitiated by the following sort of example due

to Korb (1992). Let A be any proposition with a degree of belief above
threshold but short of certainty. Let Li be the proposition that the ith

lottery ticket (of a large lottery with N tickets) will lose. Consider the
set S = {¬A ∪ Li | 1 ≤ i ≤ N}. Each member of S is above threshold,
since Li is above threshold. Furthermore, the set S ∪ {A} meets all three
defeating conditions. Therefore, these proposals prohibit full belief in any
proposition with degree of belief short of certainty. Douven and Williamson
(2006) generalize this sort of example to trivialize an entire class of similar
formal proposals.

Buchak (2014) argues that what partial beliefs count as full beliefs cannot
merely be a matter of the degree of partial belief, but must also depend
on the type of evidence it is based on. According to Buchak, this means
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there can be no merely formal answer to the question: what conditions
on partial belief are necessary and sufficient for full belief? The following
example, of a type going back to Thomson (1986), illustrates the point.
Your parked car was hit by a bus in the middle of the night. The bus could
belong either to the blue bus company or the red bus company. Consider
the following two scenarios.

Scenario 1. You know that the blue company operates 90% of the buses
in the area, and the red bus company operates only 10%. You have
degree of belief 0.9 that a blue bus is to blame.

Scenario 2. The red and blue companies operate an equal number of
buses. A 90% reliable eyewitness testifies that a blue bus hit your car.
You have degree of belief 0.9 that a blue bus is to blame.

Buchak (2014) argues that it is rational to have full belief that a blue bus
is to blame in the second scenario, but not in the first. You have only
statistical evidence in the first scenario, whereas in the second, a causal
chain of events connects your belief to the accident (see also Thomson, 1986,
Nelkin, 2000, and Schauer, 2003). These intuitions, Buchak observes, are
reflected in our legal practice: purely statistical evidence is not sufficient
to convict. If you find Buchak’s point convincing, you will be unsatisfied
with most of the proposed accounts for how full and partial belief ought
to correspond (Staffel, 2016).

Despite difficulties with buses and lotteries, the dynamics of qualitative
belief under the strong thesis are independently interesting to investigate.
For example, van Eijck and Renne (2014) axiomatize the logic of belief for
a Lockean with threshold 1

2 . Makinson and Hawthorne (2015) investigate
which principles of non-monotonic logic are validated by Lockean agents.
Before turning to proposed solutions to the Lottery paradox, we make
some observations about qualitative Lockean revision, inspired largely by
Shear and Fitelson (2018).

It is a theorem of the probability calculus that p(H | E) ≤ P(E→ H). So
if H is assigned a high degree of belief given E, the material conditional
E → H must have been assigned a degree of belief at least as high ex
ante. It is easy to see that as a probabilistic analogue of the principle of
Conditionalization from non-monotonic logic or, equivalently, the AGM
Inclusion principle. That observation has the following consequence: any
belief that the Lockean comes to have after conditioning, she could have
arrived at by adding the evidence to her prior beliefs and closing under
logical consequence. Therefore Lockean updating satisfies the AGM prin-
ciple of Inclusion. Furthermore, it follows immediately from definitions
that Lockean update satisfies Success and Extensionality.
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Theorem 13 Suppose that s ∈ ( 1
2 , 1). Let BE = {A : p(A | E) ≥ s} for all

E ∈ F+
p . Then BF+

p
satisfies Inclusion, Success, and Extensionality.

In Section 2.2.1, we argued that Inclusion and Preservation capture the
spirit of AGM revision. If Lockean revision also satisfied Preservation, we
would have a clean sweep of the AGM principles, with the exception of
Deductive Cogency.

However, that cannot hold in general. It is possible to construct examples
where p(¬E) < s, p(H) ≥ s, and yet p(H | E) < s. For Lockean agents
this means that it is possible to lose a belief, even when revising on a
proposition that is not disbelieved.

Recall the example of Alice, Bob, and the Ford from Section 2.1.1. Let
W = {a, b, c} corresponding to the worlds in which Alice owns the Ford,
Bob owns the Ford, and no one in the office owns the Ford. Suppose the
probability function

p(a) =
6
10

,

p(b) =
3
10

,

p(c) =
1
10

,

captures my partial beliefs. For Lockean thresholds in the interval (.75, .9],
my full beliefs are exhausted by B = {{a, b}, W}. Now suppose I were to
learn that Alice does not own the Ford. That is consistent with all beliefs
in B, but since p({a, b} | {b, c}) = 3

4 , it follows by the Lockean thesis that
{a, b} /∈ B{b,c}. So Lockeanism does not in general validate Preservation.
The good news, at least for those sympathetic to Pollock’s critique of
non-monotonic logic, is that the Lockean thesis allows for undercutting
defeat of previous beliefs.

However, Shear and Fitelson (2018) also have some good news for fans
of AGM and the Lockean thesis. Two quantities are in the golden ratio
φ if their ratio is the same as the ratio of their sum to the larger of the
two quantities, i.e. for a > b > 0, if a+b

a = a
b then a

b = φ. The golden
ratio is an irrational number approximately equal to 1.618. Its inverse φ−1

is approximately .618. Shear and Fitelson prove the following intriguing
result.

Theorem 14 Suppose that s ∈ ( 1
2 , φ−1]. Let BE = {A : p(A | E) ≥ s} for all

E ∈ F+
p . Let

D = {E ⊆W : E ∈ F+
p and BE is deductively cogent}.

Then BD satisfies the six basic AGM postulates.
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That shows that for relatively low thresholds, Lockean updating satisfies
all the AGM postulates—at least when we restrict to deductively cogent
belief sets.

Why has the golden ratio turned up here? That is relatively simple
to explain. The AGM Preservation postulate can be factored into the
following two principles.

If ¬E /∈ Cn(B) and E ∈ Cn(B) then B ⊆ BE. (Cautious Monotony)

If ¬E /∈ Cn(B) and E /∈ Cn(B) then B ⊆ BE. (Preservation B)

We have discussed Cautious Monotony in Section 2.1.1. It is widely ac-
cepted as a sine qua non of rational non-monotonic reasoning. Surprisingly,
there is no Lockean threshold that satisfies Cautious Monotony in general.8

However, if p(H | E) < s it must be that p(H ∩ E) < s · P(E) ≤ s, from
which it follows that any violation of Cautious Monotony must be a viola-
tion of deductive closure. Moreover, Lockean updating with a threshold in
( 1

2 , φ−1] satisfies Preservation B. That follows immediately from the fact
that for s ∈ ( 1

2 , φ−1], if p(E) < s and p(H | E) < s, then P(H → ¬E) ≥ s.
The proof of that fact hinges on a neat fact about the golden ratio: if s > 0,
then s ≤ φ−1 iff s2 ≤ 1− s.9

5.3 The Stability Theory of Belief

For many, sacrificing Deductive Cogency is simply too high a price to
pay for a bridge principle, even one so simple and intuitive as the strong
Lockean thesis. That occasions a search for bridge principles that can be
reconciled with Deductive Cogency. One proposal, due to Leitgeb (2013,
2014, 2015, 2017) and Arló-Costa and Pedersen (2012), holds that rational
full belief corresponds to a stably high degree of belief, i.e. a degree
of belief that remains high even after conditioning on new information.
Leitgeb calls this view the Humean thesis, due to Hume’s conception of
belief as an idea of superior vivacity, but also of superior steadiness.10

Leitgeb (2017) formalizes Hume’s definition, articulating the following
version of the thesis:

Humean Thesis (HT). For all rational pairs 〈B, p〉 there is s ≥ 1/2 such
that

B(A) iff ¬B /∈ B implies p(A | B) > s.

8 See Lemma 1 in Shear and Fitelson (2018).
9 Suppose that s ∈ ( 1

2 , φ−1] and P(E) < s and P(H | E) < s. Then, P(E)P(H | E) = P(H ∩
E) < s2 ≤ 1− s, and therefore 1− P(H ∩ E) = P(H → ¬E) ≥ s.

10 See Loeb (2002, 2010) for a detailed development of the stability theme in Hume’s concep-
tion of belief.
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In other words: every full belief must have stably high conditional degree of
belief, at least when conditioning on propositions which are not currently
disbelieved. Since full belief occurs on both sides of the biconditional,
it is evident that this is not a proposed reduction of full belief to partial
belief, but rather a constraint that every rational agent must satisfy. The
Humean thesis leaves the precise threshold s unspecified. Of course for
every 1

2 < s < 1, we can formulate a specific thesis HTs in virtue of which
the thesis is true. For example, HT.5 requires that every fully believed
proposition remains more likely than its negation when conditioning on
propositions not currently disbelieved.

Some form of stability is widely considered to be a necessary condition
for knowledge. Socrates propounds such a view in the Meno. Paxson and
Lehrer (1969) champion such a view in the epistemology literature post-
Gettier. However, stability is not usually mooted as a condition of belief.
Raidl and Skovgaard-Olsen (2017) claim that Leitgeb’s stability condition
is more appropriate in an analysis of knowledge and too stringent a
condition on belief. A defender of the Humean thesis might say that every
rational belief is possibly an instance of knowledge. Since knowledge is
necessarily stable, unstable beliefs are ipso facto not known.

Leitgeb demonstrates the following relationships between the Humean
thesis, Deductive Cogency, and the weak Lockean thesis.

Theorem 15 Suppose that 〈B, p〉 satisfy HT and ∅ /∈ B. Then, B is deduc-
tively cogent and 〈B, p〉 satisfy WLTp(∩B).

So if an agent satisfies the Humean thesis and does not “fully” believe the
contradictory proposition, her qualitative beliefs are deductively cogent
and furthermore, she satisfies the weak Lockean thesis, where the thresh-
old is set by the degree of belief assigned to ∩B, the logically strongest
proposition she believes. Leitgeb also proves the following partial converse.

Theorem 16 Suppose that B is deductive cogent and 〈B, p〉 satisfy WLTp(∩B).
Then, 〈B, p〉 satisfy HT

1
2 and ∅ /∈ B.

Together, these two theorems say that the Humean thesis (with threshold
1
2 ) is equivalent to Deductive Cogency and the weak Lockean thesis (with
threshold p(∩B)). Since it is always possible to satisfy HT

1
2 , Leitgeb gives

us an ingenious way to reconcile Deductive Cogency with a version of the
Lockean thesis.

Recall the example of the lottery. Let W = {w1, w2, . . . , wN}, where wi is
the world in which the ith ticket is the winner. No matter how many tickets
are in the lottery, a Humean agent cannot believe any ticket will lose.
Suppose for a contradiction that she believes W \ {w1}, the proposition
that the first ticket will lose. Now suppose she learns {w1, w2}, that all
but the first and second ticket will lose. This is compatible with her initial
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belief, but her updated degree of belief that the first ticket will lose must
be 1

2 . That contradicts the Humean thesis. So she cannot believe that any
ticket will lose. In this Lottery situation the agent cannot fully believe
any non-trivial proposition. This example also shows how sensitive the
Humean proposal is to the fine-graining of possibilities. If we coarsen W
into the set of possibilities W = {w1, w2}, where w1 is the world in which
the first ticket is the winner and w2 is “the” world in which some other
ticket is the winner, the agent can believe that the first ticket will lose
without running afoul of the Humean thesis.

Perhaps Buchak (2014) is right and no agent should have beliefs in
lottery propositions—these beliefs would necessarily be formed on the
basis of purely statistical evidence. Kelly and Lin (forthcoming) give
another scenario in which Humean agents seem radically skeptical, but in
situations which are evidentially unproblematic. Suppose the luckless Job
goes in for a physical. On the basis of a thorough examination, the doctor
forms the following dire opinion of his health: her degree of belief that
Job will survive exactly n months is 1

2n . Therefore, her degree of belief that
Job will not survive the year is 1

2 +
1
4 + · · ·+

1
212 > .999. Shockingly, the

Humean thesis prevents the doctor from forming any nontrivial beliefs.
Let ≤ n be the proposition that Job survives at most n months and let
≥ n be the proposition that he survives at least n months. Let B be the
strongest proposition that the doctor believes. Suppose for a contradiction
that B entails some least upper bound for the number of Job’s remaining
months, i.e for some n, B entails ≤ n and does not entail ≤ n′ for any
n′ < n. By construction, p(B| ≥ n) = p(n)/p(≥ n) = 1

2 for all n. But since
≥ n is compatible with B, the Humean thesis requires that p(B| ≥ n) > 1

2 .
Contradiction.

The example of the doctor suggests that the price of Humeanism is a
rather extreme form of skepticism: in many situations a Humean agent
will have no non-trivial full beliefs at all. That criticism is developed
extensively in Rott (2017) and Douven and Rott (2018). The doctor also
illustrates how the Humean proposal allows arbitrarily small perturbations
of partial beliefs to be reflected as huge differences in full beliefs. Suppose
the doctor is slightly more confident that Job will not survive a month, i.e.
her survival probabilities decrease as 1

2 + ε, 1
4 , 1

8 − ε, 1
16 , 1

32 , . . . . Now the
doctor can believe that Job will be dead in two months without running
afoul of the Humean thesis.

So far we have inquired only into the synchronic content of the Humean
proposal. What sort of principles of qualitative belief update does it under-
write? Leitgeb demonstrates an intimate relationship between the AGM
revision principles and the Humean thesis: every agent that satisfies the
AGM principles, as well as a weak version of the Lockean thesis, must also
satisfy the Humean thesis. So if you think that AGM theory is the correct
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theory of rational qualitative belief update (and you believe that a high
degree of partial belief is a necessary condition of full belief) you must also
accept the Humean thesis.

To present Leitgeb’s result we have to introduce a few technical concepts.
Say that a proposition A is p-stabler iff for all B ∈ F+

p such that A∩ B 6= ∅,
p(A | B) > r. An immediate consequence of this definition is that if A is
p-stabler and A is consistent with E ∈ F+

p , then A ∩ E is pE-stabler. Let

S r
p = {A : A is p-stabler}.

Leitgeb proves that for r ≥ 1/2, the set S r
p is a system of spheres in the

sense of Section 2.2.3. That is: there is some least element B of S r
p such

that all other elements constitute a nested, well-ordered sphere system
centered on B. Recall that S r

p(E) is defined to be D ∩ E, where D is the
closest sphere to B compatible with E. By the previous observation, S r

p(E)
is pE-stabler.

Leitgeb proves the following.

Theorem 17 The following are equivalent.

1. BF+
p

satisfies all AGM postulates and for all E ∈ F+
p , A ∈ BE only if

p(A | E) > r.

2. ∩BE = S r
p(E) ∈ S r

pE
.

We know from the result of Section 2.2.3 that for any AGM belief revision
operation, there is a corresponding system of Grove spheres. Leitgeb has
proven that any agent that validates the AGM postulates and the high-
probability requirement can be modeled by the system of spheres gener-
ated by the p-stabler propositions. For such an agent, all pairs 〈BE, pE〉
satisfy the Humean thesis with threshold r. So any agent that violates
the Humean thesis must either fail to satisfy the AGM postulates, or the
high-probability requirement. Note that the converse is not true: it is not
the case that that if all pairs 〈BE, pE〉 satisfy the Humean thesis, then BF+

p

must satisfy the AGM postulates. To prove this, suppose that 〈B, p〉 satisfy
the Humean thesis and ∩B ⊂ E for some E ∈ F+

p . If we let BE = {E},
then 〈BE, pE〉 satisfy the Humean thesis. However, such an agent patently
violates Rational and even Cautious Monotony.

5.4 The Tracking Theory

Lin and Kelly (2012) propose that qualitative belief update ought to track
partial belief update. On their picture, partial and full beliefs are main-
tained and updated by parallel cognitive systems. The first system, gov-
erned by the probabilistic norms of Bayesian coherence and conditioning,
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is precise, slow, and cognitively expensive. That system is engaged for
important deliberations requiring a lot of precision and occurring without
much time pressure e.g. retirement planning. The second, which in some
way maintains and updates full beliefs, is quicker and less cognitively
burdensome.11 That system is engaged in ordinary planning: grocery shop-
ping, or selecting a restaurant for a department event. What keeps these
two parallel systems in sync with each other?

Lin and Kelly study acceptance rules that specify a mechanism for transi-
tioning gracefully into the qualitative and out of the probabilistic system.
An acceptance rule α maps every partial belief state p to a unique qual-
itative belief state α(p) with which it coheres. For example, the strong
Lockean thesis determines an acceptance rule once we specify a threshold.
The Humean thesis, on the other hand, underdetermines an acceptance
rule, merely imposing constraints on acceptable pairs 〈B, p〉. An agent’s
qualitative updates track her probabilistic updates iff

α(p)E = α(pE),

whenever p(E) > 0. In other words: acceptance followed by qualitative
revision yields the same belief state as probabilistic revision followed by
acceptance.

Here is a way to understand the tracking requirement. Suppose that,
although an agent maintains a latent probabilistic belief state, most of her
cognitive life is spent reasoning with and updating qualitative beliefs. A
typical day will go by without having to engage the probabilistic system at
all. Suppose Monday is a typical day. Let 〈α(p), p〉 be the belief state she
wakes up with on Monday: her full and partial beliefs are in harmony. Let
E be the total information she acquired since waking up. Since qualitative
beliefs are updated on the fly, she goes to sleep with the qualitative belief
state α(p)E. Overnight, her probabilistic system does the difficult work
of Bayesian conditioning and computes the partial belief state pE, just in
case she runs into any sophisticated decision problems on Tuesday. Before
waking, she transitions out of her probabilistic system pE and into the
qualitative belief state α(pE). If she fails the tracking requirement, she
may wake up on Tuesday morning with a qualitative belief state that is
drastically different from the one she went to sleep with on Monday night.
If she tracks, then she will notice no difference at all. For such an agent, no
mechanism (other than memory) is required to bring her full and partial
beliefs back into harmony on Tuesday morning. Supposing that we enter
the probabilistic system by conditioning our previous partial belief state p
on all new information E, and exit by accepting α(pE), tracking ensures
that transitioning in and out of the probabilistic system does not induce

11 For an objection to the two systems view, see Staffel (2018).
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any drastic changes in qualitative beliefs. An agent that tracks will notice
no difference at all. An agent that does not track may find her full and
partial beliefs perpetually falling out of sync, requiring many expensive
acceptance operations to bring them back into harmony.

Tracking may be a desirable property, but are there any architectures that
exhibit it? Lin and Kelly (2012) answer this question affirmatively. Since
Bayesian conditioning is taken for granted, Lin and Kelly must specify two
things: a qualitative revision operation and an acceptance rule that jointly
track conditioning. We turn now to the details of their proposal. As usual,
let W be a set of worlds. A question Q is a partition of W into a countable
collection of mutually exhaustive propositions H1, H2, . . . , which are the
complete answers to Q. The partial belief function p is defined over the
algebra of propositions A generated by Q.

First we specify an acceptance rule. Lin and Kelly propose the odds
threshold rule. The degree of belief function p is used to determine a
plausibility order by setting

Hi ≺p Hj if and only if
p(Hi)

p(Hj)
> t,

where t is a constant greater than 1 and p(Hi), p(Hj) > 0. This determines
an acceptance rule by setting α(p) = B≺p . Since the odds threshold rule
determines a plausibility order ≺p and any plausibility order ≺ gives rise
to a deductively cogent belief state B≺, the Lottery paradox is avoided.
In other words: the bridge principle that any rational 〈B, p〉 are related
by B = α(p) ensures that B is deductively cogent. Furthermore, the odds
threshold rule allows non-trivial qualitative beliefs in situations where the
stability theory precludes them. Recall the case of the doctor. Consider the
odds threshold 210 − 1. Given this threshold, the hypothesis that Job will
survive exactly 1 month is strictly more plausible than the proposition that
he will survive at least n months for any n ≥ 10. This threshold yields the
full belief that Job will survive at most 10 months. However, in the case
of the Lottery the odds threshold rule precludes any non-trivial beliefs.12

See Rott (2017) and Douven and Rott (2018) for an extensive comparison
of the relative likelihood of forming non-trivial qualitative beliefs on the
odds-threshold and stability proposals.

It remains to specify the qualitative revision operation. Lin and Kelly
adopt an operation proposed by Shoham (1987). Let ≺ be a well-founded,
strict partial order over the answers to Q.13 This is interpreted as a plausi-
bility ordering, where Hi ≺ Hj means that Hi is strictly more plausible than

12 The content-dependent threshold rule proposed by Kelly and Lin (forthcoming) may allow
non-trivial beliefs in the Lottery situation.

13 A strict partial order is well-founded iff every subset of the order has a least element. This is
closely related to the stopperedness property discussed in Section 2.1.2.
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Hj. Every plausibility order ≺ gives rise to a belief state B≺ by letting
¬Hi ∈ B≺ iff there is some Hj strictly more plausible than Hi and closing
under logical consequence. In other words, ∩B≺ is the disjunction of the
minimal elements in the plausibility order. The plausibility order ≺ is
updated on evidence E by setting every answer incompatible with E to be
strictly less plausible than every answer compatible with E, and otherwise
leaving the order unchanged. Let ≺E denote the result of this update
operation. We use the updated plausibility order to define a belief revision
rule by setting BE = B≺E . Then, for all E, F ⊆W, BE is deductively cogent
and satisfies:

∩BE ⊆ E; (Success)

∩B ∩ E ⊆ ∩BE; (Inclusion)

if ∩B ⊆ E then ∩BE ⊆ ∩B. (Cautious monotony)

However, it does not necessarily satisfy Preservation. To see this suppose
that Q = {H1, H2, H3} and H1 ≺ H2 but H3 is not ordered with H1 or
H2. Then ∩B = H1 ∪ H3. However ∩B¬H1 = H2 ∪ H3 * ∩B even though
∩B ∩ ¬H1 6= ∅.

Lin and Kelly prove that Shoham revision and odds-threshold based
acceptance jointly track conditioning.

Theorem 18 Let ≺ equal ≺p and let BE = B≺E . Then B℘(W) satisfies Deduc-
tive Cogency, Success, Cautious Monotony, and Inclusion. Furthermore, BE =

α(p)E = α(pE) for all E ∈ F+
p .

In other words: odds-threshold acceptance followed by Shoham revision
yields the same belief state as Bayesian conditioning followed by odds-
threshold acceptance.14 Although the original plausibility ordering ≺p is
built from the probability function p, subsequent qualitative update pro-
ceeds without consulting the (conditioned) probabilities. That shows that
there are at least some architectures that effortlessly keep the probabilistic
and qualitative reasoning systems in harmony.

Fans of AGM will regret that Shoham revision does not satisfy AGM
Preservation (Rational Monotony). Lin and Kelly (2012) prove that no
“sensible” acceptance rule that tracks conditioning can satisfy Inclusion and
Preservation. According to Lin and Kelly, sensible acceptable rules are non-
skeptical, non-opinionated, consistent, and corner-monotonic. An acceptance
rule is non-skeptical iff for every answer Hi to Q there is a non-negligible

14 Kelly and Lin (forthcoming) recommend a modification of the odds-threshold rule pro-
posed in Lin and Kelly (2012).
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set of probability functions p such that Hi ∈ α(p).15 An acceptance rule is
non-opinionated iff there is a non-negligible set of probability functions p
where judgement is suspended, i.e. where ∩α(p) = W. An acceptance rule
is consistent iff for all p, α(p) is deductively cogent. The intuition behind
corner-monotony is that if Hi is accepted at p, then Hi should still be
accepted if Hi is made more probable. More precisely, an acceptance rule
is corner-monotone iff Hi ∈ α(p) implies that Hi ∈ α(p′) for all p′ such that

p′ = p(· | Hi) · q + p(· | ¬Hi) · (1− q),

and q > p(Hi). Lin and Kelly (2012) prove the following “no-go” theorem
for AGM revision.

Theorem 19 Suppose that BE = α(pE) for E ∈ F+
p . Then BF+

p
satisfies Inclu-

sion and Preservation only if α is not sensible.

5.5 Decision-Theoretic Accounts

All of the bridge principles we have seen so far have the following in
common: whether an agent’s full and partial beliefs cohere is a matter of
the full and partial beliefs alone. It is not necessary to mention preferences
or utilities in order to evaluate a belief state. There is another tradition,
originating in Hempel (1962) and receiving classical expression in Levi
(1967), that assimilates the problem of “deciding” what to believe to a
Bayesian decision-theoretic model. Crucially, these authors are not commit-
ted to a picture on which agents literally decide what to believe—rather
they claim that an agent’s beliefs are subject to the same kind of normative
evaluation as their practical decision-making. Contemporary contributions
to this tradition include Easwaran (2015), Pettigrew (2016c), and Dorst
(2017). Presented here is a somewhat simplified version of Levi’s (1967)
account taking propositions, rather than sentences, as the objects of belief.

As usual, let W be a set of possible worlds. The agent is taken to be
interested in answering a question Q, which is a partition of W into a
finite collection of mutually exhaustive answers {H1, H2, . . . Hn}. Levi
calls situations of this sort “efforts to replace agnosticism by true belief,”
echoing themes in Peirce (1877).

Doubt is an uneasy and dissatisfied state from which we strug-
gle to free ourselves and pass into the state of belief; while the

15 A set of probability functions is non-negligible iff it contains an open set in the topology
generated by the metric

||p− q|| =
√

∑
Hi∈Q

(p(Hi)− q(Hi))2.
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latter is a calm and satisfactory state which we do not wish to
avoid, or to change to a belief in anything else. On the contrary,
we cling tenaciously, not merely to believing, but to believing
just what we do believe.

The agent’s partial beliefs are represented by a probability function p that is
defined, at a minimum, over the algebra A generated by the question. Levi
recommends the following procedure to determine which propositions are
fully believed: disjoin all those elements of Q that have maximal expected
epistemic utility and then close under deductive consequence. The expected
epistemic utility of a hypothesis H ∈ A is defined as:

E(H) := p(H) ·U(H) + p(¬H) · u(H),

where U(H) is the epistemic utility of accepting H when it is true, and
u(H) is the utility of accepting H when it is false. How are u(H), U(H) to
be determined? Levi is guided by the following principles.

1. True answers have greater epistemic utility than false answers.

2. True answers that afford a high degree of relief from agnosticism
have greater epistemic utility than true answers that afford a low
degree of relief from agnosticism.

3. False answers that afford a high degree of relief from agnosticism
have greater epistemic utility than false answers that afford a low
degree of relief from agnosticism.

It is easy to object to these principles. The first principle establishes a
lexicographic preference for true beliefs. It is conceivable that, contra this
principle, an informative false belief that is approximately true should
have greater epistemic utility than an uninformative true belief. The first
principle precludes trading content against truthlikeness. It is also conceiv-
able that, contra the third principle, one would prefer to be wrong, but not
too opinionated, than wrong and opinionated. The only unexceptionable
principle seems to be the second.

To measure the degree of relief from agnosticism, a probability function
m(·) is defined over the elements of A. Crucially, m(·) does not measure
a degree of belief, but degree of uninformativeness. The degree of relief
from agnosticism afforded by H ∈ A, also referred to as the amount
of content in H, is defined to be the complement of uninformativeness:
cont(Hi) = m(¬Hi). Levi argues that all the elements of Q ought to
be assigned the same amount of content, i.e. m(Hi) = 1

n and therefore
cont(Hi) =

n−1
n for each Hi ∈ Q. The set of epistemic utility functions that

Levi recommends satisfy the following conditions:

U(H) = 1− q · cont(¬H),

u(H) = −q · cont(¬H),
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where 0 < q < 1. All such utility functions are guaranteed to satisfy Levi’s
three principles. The parameter q is interpreted as a “degree of caution,”
representing the premium placed on truth as opposed to relief from
agnosticism. When q = 1 the epistemic utility of suspending judgement,
U(W), is equal to zero. This is the situation in which the premium placed
on relief from doubt is the maximum. Levi proves that expected epistemic
utility E(H) is maximal iff p(H) > q · cont(¬H). Therefore, Levi’s ultimate
recommendation is that the agent believe all deductive consequences of⋂

{¬Hi ∈ Q : p(¬Hi) > 1− q · cont(¬Hi)}.

From this formulation it is possible to see Levi’s proposal as a question-
dependent version of the Lockean thesis where the appropriate threshold
is a function of content. However, Levi takes pains to make sure that
the result of this operation is deductively cogent and therefore avoids
Lottery-type paradoxes.

Contemporary contributions to the decision-theoretic tradition proceed
differently from Levi. Most recent work does not take epistemic utility to
be primarily a function of content. Most of these proposals do not refer
to a question in context. Many proposals, such as Easwaran (2015) and
Dorst (2017), are equivalent to a version of the Lockean thesis, where the
threshold is determined by the utility the agent assigns to true and false
beliefs. Since these are essentially Lockean proposals, they are subject to
Lottery-style paradoxes.
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D O X A S T I C L O G I C Michael Caie

There are at least three natural ways of interpreting the object of study
of doxastic logic. On one construal, doxastic logic studies certain general
features of the doxastic states of actual agents. On another construal, it
studies certain general features of idealized doxastic states. While on yet
another construal, doxastic logic provides a normative account of what
features an agent’s doxastic state ought to have on pain of irrationality.

The field of doxastic logic was initiated by Hintikka (1962), where tech-
niques from modal logic were employed to model doxastic and epistemic
states and to characterize certain valid principles governing such states.
The theory presented by Hintikka provides an account of certain syn-
chronic principles governing doxastic states. That theory, however, is silent
on the question of how the doxastic states of an agent over time are or
should be related. Later work, initiated by Alchourrón, Gärdenfors, and
Makinson (1985), sought to provide an account of how an agent will or
should revise her doxastic state in the light of new evidence. According to
the accounts developed out of Alchourrón et al., a characterization of an
agent’s doxastic state should include, in addition to the set of beliefs the
agent has, a characterization of the agent’s belief revision policy.

One of the characteristic features of the models developed by Hintikka
is that they provide a natural way of modeling the higher-order beliefs
of an agent, i.e., the agent’s beliefs about her own beliefs. The models
developed out of Alchourrón et al., however, don’t provide a natural way
of characterizing an agent’s higher-order beliefs about her belief revision
policy. More recent work in dynamic doxastic logic has attempted to
remedy this defect by providing a semantics for an object language that
includes not only a unary belief operator but also a binary belief revision
operator.

In Section 1, I’ll outline the theory developed by Hintikka and briefly
discuss how this theory looks given each of the above construals. In
Section 2, I’ll consider the theory of belief revision that developed out of
Alchourrón et al. In Section 3, I’ll discuss more recent work in dynamic
doxastic logic. And, finally, in Section 4, I’ll consider some paradoxes of
doxastic logic and the bearing that these have on some of the accounts
considered in Section 1–3.
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1 static doxastic logic

In Section 1.1, I’ll first provide a quick overview of the basic theory
developed by Hintikka (1962). In Section 1.2, I’ll then consider how these
doxastic models may be extended to characterize the doxastic states of
multiple agents and various collective doxastic properties. The presentation
of this material will work under the assumption that the theory serves to
characterize certain features of an idealized doxastic state. Having outlined
the basic theory, however, in Section 1.3, I’ll consider how the theory looks
under alternate interpretations.

1.1 Basic Doxastic Logic

Let L be a propositional language. We assume that L includes the Boolean
connectives ¬ and ∨, and in addition a unary operator Bα. The intuitive
gloss of Bα will be “Alpha believes that. . . ”. Other connectives may be
defined in the standard manner. Being a sentence of L is characterized as
follows.

◦ If φ is an atomic propositional sentence letter, then φ is a sentence.

◦ If φ and ψ are sentences, then so is φ ∨ ψ.

◦ If φ is a sentence, then so are ¬φ and Bαφ.

◦ Nothing else is a sentence.

A Kripke model for our language L is a tuple M = 〈W, Rα, J·K〉. W is
a set of points that we’ll call possible worlds. Rα is a binary relation on
W, i.e., Rα ⊆ W ×W, that we’ll call the accessibility relation. And J·K is
the interpretation function mapping propositional letters to sets of possible
worlds.

We can think of the accessibility relation Rα as serving to represent the
set of worlds that are doxastic possibilities for an agent α relative to some
world w. In particular, if w′ is such that 〈w, w′〉 ∈ Rα, then we can think
of w′ as being a possible world that is left open given all that the agent
believes at w.

The truth of a sentence φ at a world w in a Kripke model M (for short:
JφKw

m = 1) may be defined as follows.

◦ If φ is a propositional letter, then JφKw
m = 1 just in case w ∈ JφK.

◦ J¬φKw
m = 1 just in case JφKw

m 6= 1.

◦ Jφ ∨ ψKw
m = 1 just in case JφKw

m = 1 or JψKw
m = 1.
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◦ JBαφKw
m = 1 just in case JφKw′

m = 1, for every w′ such that wRαw′.

We let `x φ mean that that there is a sequence of formulas φ1, . . . , φ such
that each item in the sequence is either an axiom of the logical system X
or follows from items earlier in the sequence by one of the inference rules
of X. Then `k may be characterized as follows.

Axioms of K

(P) Axioms of propositional logic

(K) Bα(φ→ ψ)→ (Bαφ→ Bαψ).

Inference Rules of K

(MP)
(
`k φ

∧ `k φ→ ψ
)
⇒ `k ψ.

(N) `k φ⇒ `k Bαφ.

Let K be the class of Kripke models, and let |=K φ mean that, for every
Kripke model M, and every w ∈ W, JφKw

m = 1. Then two basic results in
modal logic are:1

Theorem 1. `k φ⇒ |=K φ.

Theorem 2. |=K φ⇒ `k φ.

Theorem 1 tells us that `k is sound with respect to the class of models K,
and Theorem 2 tells us that `k is complete with respect to this class of
models.

The first assumption that we’ll make is that the beliefs of an idealized
doxastic state may be represented by a Kripke model. Given the soundness
of `k, it follows from this assumption that:

(BN) if φ is a logical validity, then φ is believed by an idealized
doxastic agent;

(BK) an idealized doxastic agent believes all of the logical con-
sequences of her beliefs.

If, in addition, we assume that, for any model M ∈ K, there is some
idealized doxastic state that is represented by M, then the soundness
and completeness of `k entail that (BN) and (BK) provide a complete
characterization of those properties that are shared by every idealized
doxastic state.

We can characterize certain subsets of K by properties of Rα.

1 For proofs of these results see, e.g., Hughes and Cresswell (1996), Chellas (1980), or
Blackburn, de Rijke, and Venema (2001).
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Def. We say that Rα is serial just in case, for every w ∈W, there
is some w′ ∈W such that wRαw′

Def. We say that Rα is transitive just in case, for every
w, w′, w′′ ∈W, if wRαw′ and w′Rαw′′, then wRαw′′.

Def. We say that Rα is Euclidean just in case, for every
w, w′, w′′ ∈W, if wRαw′ and wRαw′′, then w′Rαw′′.

We’ll let KD be the subset of Kripke models whose accessibility relation
is serial, K4 the subset of Kripke models whose accessibility relation is
transitive, and K5 the subset of Kripke models whose accessibility relation
is Euclidean.

Assume that L has only propositional letters p and q. Then we can
represent a Kripke model for L by a diagram like Figure 1. In this model

w1 w2 w3

p, q p,¬q ¬p,¬q

Figure 1: Diagram of a Kripke model

Rα is reflexive and serial, but neither transitive nor Euclidean.
We can further consider the logical systems that arise when one adds

certain axioms to K. For example, as additional possible axioms, we have:

(D) Bαφ→ ¬Bα¬φ.

(4) Bαφ→ BαBαφ.

(5) ¬Bαφ→ Bα¬Bαφ

We’ll denote the result of adding some axiom X to K, KX. We have, then,
the following soundness and completeness results.

Theorem 3. `kd φ⇔ |=KD φ.

Theorem 4. `kd4 φ⇔ |=KD∩K4 φ.

Theorem 5. `kd45 φ⇔ |=KD∩K4∩K5 φ.

These results tell us the following. First, if we assume that each idealized
doxastic state can be modeled by some M ∈ KD, then we have:

(BD) an idealized doxastic agent’s beliefs will be consistent.

And, if we further assume that, for each M ∈ KD, there is some idealized
doxastic state that is represented by M, then it follows that (BN), (BK)
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and (BD) provide a complete characterization of those properties that are
shared by every idealized doxastic state.

Second, if we assume that, in addition, each idealized doxastic state can
be modeled by some M ∈ KD ∩K4, then we also have:

(B4) if an idealized doxastic agent believes φ, then she will
believe that she believes φ.

We’ll call this property positive transparency.
If we further assume that, for each M ∈ KD ∩K4, there is some idealized

doxastic state that is represented by M, then it follows that (BN), (BK), (BD)
and (B4) provide a complete characterization of those properties that are
shared by every idealized doxastic state.

Finally, if we assume that, in addition, each idealized doxastic state can
be modeled by some M ∈ KD ∩K4 ∩K5, then we also have:

(B5) if an idealized doxastic agent fails to believe φ, then she
will believe that she fails to believe φ.

We’ll call this property negative transparency.
If we further assume that, for each M ∈ KD ∩ K4 ∩ K5, there is some

idealized doxastic state that is represented by M, then it follows that (BN),
(BK), (BD), (B4), and (B5) provide a complete characterization of those
properties that are shared by every idealized doxastic state.

In the doxastic logic literature, it is typically assumed that every ideal-
ized doxastic state can be represented by some element of KD ∩K4 ∩K5,
and that each element of this set accurately represents some idealized dox-
astic state. Given this assumption, then, the logic governing the operator
Bα is the modal logic KD45.

Note that the following principle is not assumed to hold:

(T) Bαφ→ φ.

That is, we do not assume that our idealized doxastic states are error-free.
An ideal belief state, on this picture, need not be one that only includes
true beliefs.

Def. We say that Rα is reflexive just in case, for every w ∈ W,
wRαw.

The axiom (T) is guaranteed to hold in any Kripke model whose accessibil-
ity relation is reflexive. Importantly, then, we do not assume that a model
M representing an idealized doxastic state has a reflexive accessibility
relation.
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1.2 Group Beliefs

So far, our doxastic models have treated the doxastic state of only a single
agent. This restriction, however, can be easily relaxed. Instead of a single
operator Bα, let L now contain a series of operators Bα1 , Bα2 , . . . , Bαr . A
Kripke model for L will be a tuple 〈W, Rα1 , Rα2 . . . , Rαr , J·K〉, and truth-at-a-
point in such a model will be defined in the obvious way. As with the case
of our individual models, we can impose various restrictions for each Rαi

such as seriality, transitivity etc. We’ll let Kα be the set of Kripke models
for L. We’ll let Dα, Kα

4 , Kα
5 be, respectively, the set of Kripke models for L

such that each accessibility relation is serial, transitive, and Euclidean.
This type of model allows us to simultaneously represent the doxastic

states of multiple agents. Furthermore, it allows us to represent certain
collective properties of the doxastic states of groups that cannot be repre-
sented by a set of individual Kripke models for each agent in the group.2

Let’s consider how such features may be represented in this sort of model.
In particular, we will consider how in such models we can represent the
group doxastic properties of common belief and distributed belief.

1.2.1 Common Belief

What is it for φ be a matter of common belief amongst a group of agents?
The intuitive idea is that common belief is a matter of each agent in the
group believing φ, and each agent believing that each agent believes φ,
and each agent believing that each agent believes that each agent believes
φ. . . , and so on, ad infinitum.3 This sort of group doxastic property can be
represented in our models as follows.

Def. We will say that w and w′ are n-connected just in case
there is some series of worlds w1, . . . , wn+1 such that w = w1,
wn+1 = w′ and for each pair 〈wi, wi+1〉 there is some Rαj such
that wiRαj wi+1. We’ll write wRnw′ to indicate that w and w′ are
n-connected.

So, for example, the set of 1-connected worlds will just be those pairs
of worlds such that there is some j such that wRαj w

′, while the set of
2-connected worlds will just be those pairs of worlds that are connected
via the belief accessibility relation of at most two agents, etc.

2 See, e.g., Fagin, Halpern, and Vardi (1991), Halpern and Moses (1992), Halpern and Moses
(1984), and Halpern, Moses, and Vardi (1995) for important work on the doxastic and
epistemic properties of groups.

3 The concepts of common belief and common knowledge and the role that these play in
reasoning were introduced in Lewis (1969). See also Aumann (1976) for another influential
early treatment of these ideas. See Barwise (1988) for alternative analyses of the notions of
common belief and common knowledge.
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Let the schematic abbreviation Bαn φ be inductively characterized as
follows:

Def.

1. Bα1 φ =df Bα1 φ ∧ Bα2 φ ∧ . . . ∧ Bαr φ,

2. Bαn φ =df Bα1 Bαn−1 φ ∧ Bα2 Bαn−1 φ ∧ . . . ∧ Bαr Bαn−1 φ.

So Bα1 abbreviates the claim that each agent in the group believes φ.
While Bαn abbreviates the claim that each agent in the group believes that
everyone in the group believes φ to level n− 1. As a further definitional
abbreviation, we let:

Def. Mn
αφ =df Bα1 φ ∧ . . . ∧ Bαn φ.

We will read Mn
αφ as saying that there is mutual belief of degree n that φ

amongst α1, . . . , αr.
Given these definitions, it follows that the truth of Bαn φ and Mαn φ,

relative to a point w, in a model M, may be characterized as follows.

JBαn φKw = 1 just in case JφKw′ = 1, for every w′ such that wRnw′.

JMαn φKw = 1 just in case JφKw′ = 1, for every w′ such that there is
some 1 ≤ i ≤ n such that wRiw′.

So far we haven’t added any expressive power to our language. Each
operator Bαn and Mαn is merely an abbreviation for some formula already
in L. Suppose, however, that we wanted to say that φ is a matter of common
belief amongst α1, . . . , αr. The natural way to express this is to say that,
for each n, Mαn φ holds. Expressing common belief in this way, though,
would require quantificational devices or devices of infinite conjunction
that our language lacks. This doesn’t, however, mean that we can’t express
the property of common belief in a propositional modal language. To do
so, however, we need to add a new operator to our language.

Let L, then, be the language that includes, in addition to each of the
operators Bαi , an operator Cα. A Kripke model for our new language L
will still be a tuple M = 〈W, Rα1 , Rα2 . . . , Rαr , J·K〉. Given our relations Rαi ,
we can define the following relation on points in W:

Def. Let R+
1 =

⋃
n≥1 Rn.

R+
1 is the so-called transitive closure of R1.4 Given this definition, we have

that wR+
1 w′ just in case there is some n such that wRnw′. Thus wR+

1 w′

4 This is the smallest transitive relation containing R1. To see why this is a transitive relation,
assume that we have w1R+

1 w2 and w2R+
1 w3. Then we have that there is some n such that

w1Rnw2, i.e., w1 and w2 are n-connected. And we also have that there is some m such
that w2Rmw3, i.e., w2 and w3 are m-connected. But, given this, it follows that we have
w1Rn+mw3, i.e., w1 and w3 are (n + m)-connected.
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holds just in case there is some finite length path connecting w and w′ via
the accessibility relations Rαi .

Note that since R+
1 is definable in terms of the Rαi ∈ M, we do not need

to include this relation in M in order to appeal to it in characterizing the
truth of certain sentences in such a model.

We can now characterize the truth of a sentence Cαφ relative to a world
of evaluation in M as follows:

JCαφKw = 1 just in case JφKw′ = 1, for every w′ such that wR+
1 w′.

What are the logical properties governing the common belief operator
Cα? We can characterize the logic of this operator as follows. Let Kα be
the multi-modal logic characterized by each instance (N), and the relevant
instance of (K), for each operator Bαi . (Similarly for KDα, KD4α and KD45α.)
And let Kc

α (or KDc
α, KD4c

α and KD45c
α) be the axiomatic system we get by

adding to Kα (or KDα, KD4α and KD45α) the following axiom and rule of
inference:

(C1) Cαφ→ M1
α(φ ∧ Cαφ).

(R1) `kc
α

φ→ M1
α(ψ ∧ φ)⇒ `kc

α
φ→ Cαψ.

We, then, have the following soundness and completeness result:5

Theorem 6. `kc
α

φ⇔ |=Kα φ.

Similar results show that KDc
α is sound and complete with respect to Dα,

that KD4c
α is sound and complete with respect to Dα ∩Kα

4 , and that KD45c
α

is sound and complete with respect to Dα ∩Kα
4 ∩Kα

5 . The logic governing
Cα, then, is characterized by adding (C1) and (R1) to the axioms governing
the operators Bαi .

Now it’s clear that the structural properties of the accessibility relation
R+

1 will supervene on the structural properties of the accessibility relations
Rαi . Importantly, though, the structural properties of R+

1 may be distinct
from those of Rαi . In certain cases, R+

1 may have additional structural prop-
erties to those of Rαi , while in other cases, R+

1 may lack certain structural
properties had by each of the Rαi . Given such discrepancies, then, the
logic governing common belief may be distinct from the logic governing
individual belief. Let’s consider, briefly, some ways in which common
belief may inherit some of the logical properties governing individual
belief and some ways in which the logic governing common belief may
come apart from the logical properties governing individual belief.

First, note that the transitive closure of a serial relation is also serial.
If, then, each Rαi is serial, R+

1 will also be serial. And so, if the logic

5 See Halpern and Moses (1992) for a proof of this. Halpern and Moses (1992), in fact,
includes an additional axiom stating M1

αφ ↔ (Bα1 φ ∧ . . . ∧ Bα1 φ). This, however, is a
definitional truth and so is not strictly speaking required as an axiom.
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governing individual beliefs includes the principle (D), then so will the
logic governing common belief. Thus, if the individual agents that we are
representing are such that their beliefs are guaranteed to be consistent,
then so too will the common beliefs of this group.

We have, then:

(D) |=Dα Cαφ→ ¬Cα¬φ.

Next, note that, given its definition, R+
1 is guaranteed to be transitive. In

particular, it will satisfy this property whether or not all Rαi do. In this
manner, then, R+

1 may have a structural feature that some Rαi lack. Given
that R+

1 is transitive, we have then:

(4) |=Kα Cαφ→ CαCαφ.

Common belief, then, is guaranteed to be positively transparent, even if
individual beliefs are not.

Finally, note that while each Rαi being serial entails that R+
1 is serial,

it does not follow that if each Rαi is Euclidean then R+
1 will also be Eu-

clidean.6 Thus, even if the logic of individual belief entails that individual
belief is negatively transparent, it does not follow that common belief must
also be negatively transparent.

1.2.2 Distributed Belief

What is it for φ to be a matter of distributed belief? The intuitive idea is
that φ is a distributed belief amongst some group of agents just in case φ

is a consequence of what all of the agents believe.
To express this notion, we’ll introduce the operator Dα to our language L.

A model for L will still be a tuple M = 〈W, Rα1 , Rα2 . . . , Rαr , J·K〉. We define
the following relation amongst the members of W, given our relations Rαi .

Def. Let wRdw′ just in case for every Rαi , wRαi w
′.

Truth-at-a-world for a formula Dαφ, in a model M, can, then, be character-
ized as follows:

JDαφKw = 1 just in case JφKw′ = 1, for every w′ such that wRdw′.

We can characterize the logic of this operator as follows. Again let Kα be
the multi-modal logic characterized by each instance (N), and the relevant
instance of (K), for each operator Bαi . And let Kd

α be the axiomatic system
we get by adding to Kα the relevant instance of (K) for the operator Dα, as
well an axiom of the following form, for each αi:

(D1) Dαφ→ Bαi φ.

We, then, have the following soundness and completeness result:7

6 See Lismont and Mongin (1994), Colombetti (1993), and Bonanno and Nehring (2000) for
proofs and discussion of this result.

7 See Halpern and Moses (1992).
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Theorem 7. `kd
α

φ⇔ |=Kα φ.

Similarly, if we let K4α (K45α) be the the multi-modal logic characterized
by each instance (N), and the relevant instances of (K) and (4) (and (5)), for
each operator Bαi , and let K4d

α (K45d
α) be the axiomatic system we get by

adding to K4α (K45α) the relevant instances of (K) and (4) (and (5)) for the
operator Dα, then we can also show that K4d

α (K45α) is sound and complete
with respect to Kα

4 (Kα
4 ∩Kα

5).
It’s clear that the structural properties of Rd will supervene on the struc-

tural properties of the accessibility relations Rαi . While, though, Rd may
inherit certain structural properties from Rαi , other structural properties
of Rd may be distinct from those of Rαi .

First, note that if each Rαi is transitive, then Rd is transitive. Similarly, if
each Rαi is Euclidean, then Rd is Euclidean. It’s for this reason that if the
logic governing the Bαi includes the principles (4) or (5), so too will the
logic governing Dα.

Importantly, however, it doesn’t follow from the fact that each Rαi is
serial, that Rd is also serial. For it doesn’t follow from the fact that, for
each w, and each Rαi , there is w′ such that wRαi w

′, that for each w there is
some w′ such that wRdw′. For while, for some w, it may be the case that,
for each Rαi , there is some w′ such that wRαi w

′, this w′ need not be the
same in each case. Even, then, if the logic governing each Bαi includes the
principle (D), it doesn’t follow this will be a principle governing Dα. Even,
then, if each individual’s beliefs are consistent, the distributed beliefs of
the group need not be.

1.3 Some Remarks on the Interpretation of the Formalism

So far, we’ve been assuming that our doxastic models represent the doxas-
tic states of certain idealized agents. And, as we’ve noted, there is a standard
assumption in the literature that the logic governing such states is KD45.
It would, however, be a mistake, I think, to take there to be a substantive
question of whether or not the logic governing idealized doxastic states
really is KD45 or some other logic. Instead, I think it is much more natural
to think of these principles as simply codifying a certain idealization. On
this view, then, there are various types of idealized doxastic states that we
might investigate. For example, we might consider those doxastic states
that can be represented by some model in K. Doxastic states of this type
would be logically omniscient and closed under logical consequence, but
perhaps not consistent or perhaps not positively or negatively transpar-
ent. Or we might consider those doxastic states that can be represented
by some model in K ∩ D ∩ K4. Doxastic states of this type would be
logically omniscient, closed under logical consequence, consistent and
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positively transparent, but not negatively transparent. And so on. Now
different types of idealized doxastic states may be useful or illuminating
for different purposes, but it seems implausible to me that any one of
these idealizations stands out as being of significantly greater theoretical
importance than all of the others.

One might, however, endorse the bolder hypothesis that our doxastic
models are, in fact, intended to represent necessary features of any possi-
ble doxastic state. Given this view, the question of whether such models
are appropriate and, if so, which constraints should be endorsed, becomes
a substantive question. Some have, indeed, argued that the nature of dox-
astic states makes it the case that they may be represented by models in
K.8 Others have argued that the nature of doxastic states makes it the case
that principles such as (B4) and (B5) will be satisfied and so models in
K4 or K5 may serve to represent such states.9 These claims, however, are
quite controversial, and it would take us too far afield now to assess their
plausibility.10 Suffice it to say, there are certain accounts of the nature of
doxastic states according to which such states may in fact be accurately
represented by the sorts of models we’ve been considering, while, accord-
ing to other accounts, certain doxastic states—indeed the types of doxastic
states that actual agents tend to have—cannot be accurately represented
by the sorts of models that we’ve been considering.

A third way of interpreting our doxastic models, which should be
distinguished from the first interpretation, has it that the role of this class
of models is to codify certain general principles that a rational agent’s
doxastic state ought to satisfy. Here we might profitably consider, as an
analogous view, the Bayesian account of credal rationality. According
to a subjective Bayesian, the class of probability functions defined over
some algebra A represents the class of rationally permissible credal states
defined over A. Those features, then, that are common to all such functions
represent rational requirements on any credal state defined over such an
algebra. Similarly, one might hold that the class of models K (or the class
K∩D∩K4 etc.) represent the class of rationally permissible doxastic states.
Those features, then, that are common to this class, i.e., the valid formulas

8 See e.g., Stalnaker (1984), Lewis (1974), and Lewis (1999). Both Stalnaker and Lewis,
however, recognize that there must be a sense in which agents may have contradictory
beliefs or fail to have beliefs that are closed under logical consequence. Lewis (2000) argues
that we may think of an agent’s doxastic state as consisting of various fragments, where
each fragment may be represented by a possible worlds model. An agent, then, may have
inconsistent beliefs by having fragments that disagree, and the agent may have beliefs that
fail to be logically closed by believing, say, φ relative to one fragment and φ→ ψ relative
to another, but not believing ψ relative to any fragment.

9 See, for example, Shoemaker (1996a, 1996b) for arguments that, at least in certain cases,
positive introspection should hold as a constitutive matter.

10 The arguments in Williamson (2000), for example, put serious pressure on the idea that
the transparency principles (B4) and (B5) will hold for actual agents.
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given the class of models, represent, on this view, rational requirements
on any doxastic state.

Now this view may seem to be a mere notational variant on the first
interpretation. However, concluding this would, I think, be a mistake.
What an actual agent ought to believe and what an idealized agent would
believe are not the same thing. Here’s a somewhat facile, but I think
sufficiently instructive example that illustrates this point. An idealized
agent would, plausibly, believe that they are idealized. However, a rational
agent, who is not an idealized agent, should not be rationally required to
believe that they are idealized. Thus, a representation of what an idealized
doxastic state would look like is not, thereby, a representation of what
doxastic features a rational agent ought to have.

The view that our doxastic models serve to codify rational requirements
on doxastic states, again, makes it a substantive question which class of
Kripke models, if any, we should take as the appropriate class for formu-
lating our doxastic logic. One may, for example, maintain that doxastic
states ought to be such that they’re consistent and closed under logical
entailment, but deny that doxastic states ought to be transparent on pain
of irrationality. Once again, the issues here are subtle and we will simply
content ourselves with flagging the issues, without making any attempt to
resolve them.

Having noted these three possible roles that our doxastic models may
play, it is worth highlighting that different classes of models might, in
fact, play different roles. So, for example, one might maintain that the
class K is the smallest class that serves to characterize how a rational
agent’s doxastic state ought to be. But one might still find it profitable to
investigate what features are exhibited by the sorts of idealized doxastic
states characterized by, say, K ∩D ∩K4.

In what follows, I will often continue to speak as if the Kripke models,
as well as other models we’ll introduce, are meant to represent idealized
doxastic states. However, in certain cases a normative or descriptive in-
terpretation may seem more natural and so I will sometimes talk as if
the models in question are meant to describe such facts. In each case,
though, it is worth bearing in mind the alternative interpretations that are
available.

2 belief revision

So far we’ve seen how to represent certain features of idealized doxastic
states. In particular, we’ve seen how to represent the beliefs of an idealized
doxastic agent, including beliefs about that agent’s beliefs, as well as beliefs
about other agents’ beliefs. The models that we’ve looked at, however, say
nothing about how idealized doxastic states should change given new
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information. In this section we’ll look at an influential account of belief
revision called AGM.11

The basic theory of AGM consists of a set of formal postulates that serve
to codify rational constraints on belief revision, expansion and contraction.
In addition to such formal postulates, however, various authors have
provided models of how functions meeting these constraints may be
determined. We’ll begin, in Section 2.1, by considering the basic postulates
of AGM. In Section 2.2, we’ll then consider some possible connections
between rational belief revision, expansion and contraction. In Section 2.3,
we’ll consider some models for belief revision and contraction. And, finally,
in Section 2.4 we’ll look at some additional postulates that have been
proposed to handle the phenomenon of iterated belief revision.

2.1 AGM: The Basic Postulates

Let L be a set of sentences closed under the standard Boolean operators,
and let Γ ⊆ L be a set of such sentences. We’ll denote by Cl(Γ) the logical
closure of Γ. In standard presentations of this theory, it is assumed that
rational agents have belief states that can be (at least partially) modeled
by logically closed sets of sentences. In this section, we will follow this
practice as well. Note that this marks a departure from our treatments
of belief states in the previous section, where such states were modeled
as sets of possible worlds. We’ll let B be a possible belief set, i.e, a set of
sentences such that B = Cl(B). We denote the set of belief sets B.

We’ll first consider the AGM postulates governing rational belief expan-
sion. We let + : B ×L → B be a function mapping pairs of belief sets and
sentences to belief sets. We’ll let B+

φ be the result of applying the function
+ to the belief set B and sentence φ. According to AGM, rational belief
expansions must satisfy the following constraints.

(B+
1 ) φ ∈ B+

φ .

(B+
2 ) B ⊆ B+

φ .

(B+
3 ) If φ ∈ B, then B = B+

φ .

(B+
4 ) If A ⊆ B, then A+

φ ⊆ B+
φ .

(B+
5 ) For any operation # satisfying B+

1 –B+
4 , B+

φ ⊆ B#
φ.

We can think of expansion as an operation that increases the agents
belief set B to accommodate belief in φ. Then (B+

1 ) tells us that, given this

11 This account developed out of Alchourrón et al. (1985). For a comprehensive survey see
Gärdenfors (1988). See also Huber (this volume) for a helpful treatment of this and other
related material.
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operation, φ will be a part of the resultant belief set. While (B+
2 ) tells us

that everything that was believed prior to the operation is believed after
the operation. Also (B+

3 ) tells us that, if φ is already believed, given B,
then the expansion operation is trivial. Additionally (B+

4 ) tells us that the
expansion operation is monotone, i.e., that it preserves the subset relation.
And, finally, (B+

5 ) tells us that, in a specific sense, expansion is the most
conservative operation with the preceding characteristics.

It can be shown that (B+
1 )–(B+

5 ) uniquely pin down the expansion opera-
tor. Thus:

Theorem 8. A function + satisfies (B+
1 )–(B+

5 ) just in case B+
φ =

Cl(B ∪ {φ}).12

Next, we consider belief revision. We let ∗ : B × L → B be a function
mapping pairs of belief sets and sentences to belief sets. According to
AGM, rational belief revisions must satisfy the following constraints.

(B∗1) φ ∈ B∗φ.

(B∗2) B∗φ ⊆ B+
φ .

(B∗3) If ¬φ 6∈ B, then B+
φ ⊆ B∗φ.

(B∗4) B∗φ = L just in case |= ¬φ.

(B∗5) If |= φ↔ ψ, then B∗φ = B∗ψ.

(B∗6) B∗φ∧ψ ⊆ (B∗φ)
+
ψ .

(B∗7) If ¬ψ 6∈ B∗φ, then (B∗φ)
+
ψ ⊆ B∗φ∧ψ.

Like expansion, we can think of revision as an operation that changes an
agent’s belief set B to accommodate belief in φ. Unlike expansion, though,
in belief revision certain beliefs may be discarded to accommodate φ.

Constraint (B∗1) tells us that, given this operation, φ will be a part of
the resultant belief set. While (B∗2) tells us that everything that is believed
given belief revision will be believed given belief expansion. Also (B∗3)
tells us that the reverse is also true, and so expansion and revision deliver
the same output, when φ is logically compatible with B. And (B∗4) tell us
that that the result of belief revision will be a consistent belief set just in
case φ is itself logically consistent. Constraint (B∗5) tells us that logically
equivalent sentences induce the same revision operation on a belief set.
And (B∗6) tells us that everything that is believed after revising a belief set
given a conjunction φ ∧ ψ, will be believed after first revising the same
belief set given φ and then expanding the resultant belief set given ψ.

12 See Gärdenfors (1988).
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Finally, (B∗7) tell us that the reverse is true, and so revising given φ and
then expanding given ψ delivers the same output as revising given φ ∧ ψ,
when ψ is consistent with the result of revision given φ.

Unlike with the constraints on +, these constraints do not suffice to
uniquely determine the function ∗. Instead, there is a non-empty, non-
singleton, set of functions that satisfy (B∗1)–(B∗7).

Finally, we consider belief contraction. We let − : B × L → B be a
function mapping pairs of belief sets and sentences to belief sets. According
to AGM, rational belief contractions must satisfy the following constraints.

(B−1 ) B−φ ⊆ B.

(B−2 ) If φ 6∈ B, then B−φ = B.

(B−3 ) If 6|= φ, then φ 6∈ B−φ .

(B−4 ) If φ ∈ B, then B ⊆ (B−φ )
+
φ .

(B−5 ) If |= φ↔ ψ, then B−φ = B−ψ .

(B−6 ) B−φ ∩ B−ψ ⊆ B−φ∧ψ.

(B−7 ) If φ 6∈ B−φ∧ψ, then B−φ∧ψ ⊆ B−φ .

We can think of contraction as an operation that changes an agent’s
belief set B to accommodate the removal of a belief φ.

Constraint (B−1 ) tells us that belief contraction does not introduce any
new beliefs. While (B−2 ) tells us that if the agent does not already believe φ,
then the result of contracting by φ leaves the agent’s belief set unchanged.
Then (B−3 ) tells us that if φ is not a logical truth, then φ will not be in
any belief set that is contracted by φ. And (B−4 ) tells us that if a belief
set B contains φ, then the result of contracting this belief set by φ and
then expanding the resulting set by φ will contain everything that is in
B. Next (B−5 ) tells us that logically equivalent sentences induce the same
contraction operation on a belief set. And (B−6 ) tells us that every belief
that remains when a belief set is contracted by φ and by ψ will remain
when the belief set is contracted by φ ∧ ψ. Finally, (B−7 ) tells us that if φ is
not in the belief set that results from contracting a belief set B by φ ∧ ψ,
then everything that results from contracting B by φ ∧ ψ will be in the set
that result from contracting B by φ.

As with the constraints on ∗, these constraints do not uniquely determine
the function −. Again, there is a non-empty, non-singleton set of functions
that satisfy each of (B−1 )–(B−7 ).
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2.2 Relations Between Operations

Given these rational constraints on contraction, revision and expansion,
it is natural to ask what connections there might be between these three
operations. In this section, we’ll consider some possible options.

So far we’ve been talking as if agents adopt distinct policies of rational
belief revision, contraction and expansion. Following Levi (1977), however,
one might maintain that agents only really adopt policies of contraction
and expansion, and that a policy of revision is determined by the latter
two policies in the following manner.

Constitutive Levi Identity. B∗φ =df (B−¬φ)
+
φ .

If the claim that the adoption of a rational revision policy simply consists
in the adoption of rational contraction and expansion policies is to be at all
plausible, it must be the case that, given the putative analysis, it is ensured
that the resulting revision policy will indeed be rational given that the
contraction and expansion policies are. The following result shows that,
given the Constitutive Levi Identity, this is so.

Theorem 9. If − satisfies (B−1 )–(B−3 ) and (B−5 )–(B−7 ), and +

satisfies (B+
1 )–(B+

5 ), then, given the Constitutive Levi Identity,
∗ satisfies (B∗1)–(B∗7).13

Now even if one wants to reject the claim that the adoption of a belief re-
vision policy simply consists in the adoption of expansion and contraction
policies, one should, I think, nonetheless hold that there are important
rational constraints governing which policies of belief revision, expansion
and contraction an agent may simultaneously adopt. In particular, whether
one thinks that rational belief revision should be analyzed in terms of ra-
tional belief contraction and expansion, one should, I think, endorse the
following normative constraint.

Normative Levi Identity. If ∗ is an agent’s revision policy,
− her contraction policy, and + her expansion policy, then the
agent ought to be such that B∗φ = (B−¬φ)

+
φ .

Two points are worth mentioning here.
First, the Normative Levi Identity does, indeed, impose a substantive

constraint in addition to those imposed by (B+
1 )–(B+

5 ), (B∗1)–(B∗7), and (B−1 )–
(B−7 ). For there are functions +, ∗ and − that satisfy (B+

1 )–(B+
5 ), (B∗1)–(B∗7),

and (B−1 )–(B−7 ), respectively, but that fail to jointly satisfy the condition
that B∗φ = (B−¬φ)

+
φ .14

13 See Gärdenfors (1988), ch. 3.6.
14 This follows from the fact that there is a unique function + satisfying conditions (B+

1 )–(B+
5 ),

together with the fact that there are multiple functions ∗ and − satisfying (B∗1)–(B∗7), and
(B−1 )–(B−7 ) respectively.
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Second, Theorem 9 guarantees that the constraints imposed by the
Normative Levi Identity are, indeed, consistent with the constraints
imposed by (B+

1 )–(B+
5 ), (B−1 )–(B−7 ), and (B∗1)–(B∗7). For there are functions −

and + that satisfy the constraints imposed by (B−1 )–(B−7 ), and (B+
1 )–(B+

5 ),
and it follows from this fact, together with Theorem 9 that, given such
functions, there is a function ∗ that satisfies the constraints imposed by
(B∗1)–(B∗7), and, in addition, is such that B∗φ = (B−¬φ)

+
φ .

Another option, following Harper (1976), is to maintain that agents only
really adopt policies of revision and expansion. In particular, one may
maintain that an agent’s policy of contraction is determined by her policy
of revision as follows.

Constitutive Harper Identity. B−φ =df B ∩ B∗¬φ.

If the claim that the adoption of a rational contraction policy simply
consists in the adoption of a rational revision policy is to be at all plausible,
it must the case that, given the putative analysis, it is ensured that the
resulting contraction policy will indeed be rational given that the revision
policy is. The following result shows that, given the Constitutive Harper

Identity, this is so.

Theorem 10. If ∗ satisfies (B∗1)–(B∗7), then, given the Constitu-
tive Harper Identity, − satisfies (B−1 )–(B−7 ).15

Now, again, even if one wants to reject the claim that the adoption of
a belief contraction policy simply consists in the adoption of a revision
policy, one should, I think, still hold that there are important rational
constraints governing which contraction and revisions policies an agent
may simultaneously adopt. In particular, whether one thinks that rational
belief contraction should be analyzed in terms of rational belief revision,
one should, I think, endorse the following normative constraint:

Normative Harper Identity. If ∗ is an agent’s belief revision
policy, and − her belief contraction policy, then the agent ought
to be such that B−φ = B ∩ B∗¬φ.

Two points are, again, worth mentioning here.
First, the Normative Harper Identity provides a substantive constraint

in addition to (B∗1)–(B∗7) and (B−1 )–(B−7 ). For there are functions ∗ and −
that satisfy the latter constraints but for which the identity B−φ = B ∩ B∗¬φ

fails to hold.16

Second, Theorem 10 guarantees that the constraint imposed by the
Normative Harper Identity is consistent with the constraints imposed

15 See Gärdenfors (1988) ch. 3.6.
16 This follows from the fact that there are multiple functions ∗ and − satisfying (B∗1)–(B∗7),

and (B−1 )–(B−7 ) respectively.
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by (B∗1)–(B∗7) and (B−1 )–(B−7 ). For there is some function ∗ satisfying (B∗1)–
(B∗7), and so, given Theorem 10, it follows that there is some other function
− satisfying (B−1 )–(B−7 ), such that B−φ = B ∩ B∗¬φ.

2.3 AGM: Models

Constraints (B−1 )–(B−7 ) determine a class of rational contraction functions,
while (B∗1)–(B∗7) determine a class of rational revision functions. There
are, however, other ways of characterizing the classes determined by
(B−1 )–(B−7 ) and (B∗1)–(B∗7). In particular, we can provide models of possible
features of an agent’s doxastic state that might serve to determine which
rational revision or contraction policy she adopts, and we can show that,
given certain rational constraints on such features, the classes of rationally
permissible revision or contraction functions are the same classes as those
determined by (B−1 )–(B−7 ) and (B∗1)–(B∗7).

2.3.1 Sphere Systems

We first consider a model of how an agent’s doxastic state might serve
to determine a rational revision policy.17 In rough outline, we may think
of an agent’s doxastic state, in addition to determining a belief set, as
also determining, for each possible belief set B, an ordering of plausibility
amongst various maximal consistent descriptions of how the world might
be. Given a doxastic state with such structure, we may think of the agent as
adopting a revision policy such that, given a belief set B and a sentence φ,
the resulting revised belief set is just the intersection of the most plausible
maximal consistent descriptions of how the world might be that contain φ.

A little more pedantically: Let W be the set of maximal consistent
subsets of L. Following the literature, we’ll refer to these as possible worlds.
It is, however, worth keeping in mind that, as sets of of sentences, these
differ from the possible worlds considered in the previous section. For any
belief set B, we let JBK = {w ∈ W : B ⊆ w}. And for any P ⊆ W , we let
BP = ∩{w : w ∈ P}.

Let S be a set of subsets ofW . We call S a system of spheres centered on B
just in case S satisfies the following conditions.

Ordering. For every S, S′ ∈ S, either S ⊆ S′ or S′ ⊆ S.

Centering. JBK ∈ S, and for every S ∈ S, JBK ⊆ S.

Universality. W ∈ S.

Limit Assumption. Let φ be a sentence. If there is some S ∈ S
such that S ∩ JφK 6= ∅, then there is some S ∈ S such that (i)

17 See Grove (1988) for the initial development of this model. The model is, in certain respects,
notably similar to the semantic theory for counterfactuals developed in Lewis (1973).
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S ∩ JφK 6= ∅, and (ii) for every S′ ∈ S such that S′ ∩ JφK 6= ∅,
S ⊆ S′.

Ordering tells us that the members of S can be totally ordered by
the subset relation. Centering tells us that the set of worlds that are
compatible with the belief set B is a member of S that is minimal with
respect to the subset ordering on S. Universality tells us that the set of
all worlds is itself a member of S. And, finally, the Limit Assumption tells
us that for any sentence φ if the set of S ∈ S such that φ is true at some
world in S is non-empty, then this set has a least element relative to the
subset ordering on S.

If 6|= ¬φ, then we let Sφ be the smallest sphere intersecting φ. Given
Universality and the Limit Assumption, such a sphere is guaranteed to
exist. And if |= ¬φ, then we let Sφ =W . We let CS(φ) = JφK∩ Sφ.

Let S be a function that maps each B ∈ B to a system of spheres
centered on B. Call this a sphere function. We denote the sphere system
determined by a sphere function S , for some belief set B, by SB. Finally,
let f : B × L → B be a function such that there is some sphere function
S such that for every B ∈ B and φ ∈ L, f (B, φ) = ∩CSB(φ). We call this a
sphere revision function.

We can think of a sphere revision function, determined by some sphere
function S , as mapping a belief state B and a sentence φ to the belief state
that is determined by the worlds at which φ holds that, according to S ,
are closest to B.

More precisely, we can think of a sphere revision function, determined
by some sphere function S , as operating in the following manner. Given a
belief set B and a sentence φ, we first look at the sphere system centered
on B determined by S . Next we find the smallest sphere that is compatible
with φ, and consider the set of worlds within this sphere at which φ

holds. The sphere revision function, then, returns as a belief set the set of
sentences that are true at every world within this set.

The following theorem shows that the adoption of a rational revision
function can always be modeled in terms of the adoption of a sphere revi-
sion function determined by some sphere function S , and that, conversely,
the adoption of a sphere revision function determined by some sphere
function S will always correspond to the adoption of a rational revision
function.

Theorem 11. Function f is a sphere revision function just in
case f satisfies (B∗1)–(B∗7).18

We can support the claim that a system of spheres may be thought of as
encoding a relation of doxastic plausibility as follows. Call a relation ≤
overW with the following properties, a B-plausibility ordering.

18 See Grove (1988).
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Connectivity. For every w, w′ ∈ W , either w ≤ w′ or w′ ≤ w.

Transitivity. If w ≤ w′ and w′ ≤ w′′, then w ≤ w′′.

φ-Minimality. If JφK 6= ∅, then {w ∈ JφK : w ≤ w′ for all w′ ∈
JφK} 6= ∅.

B-Minimality. w ≤ w′ for all w′ ∈ W just in case w ∈ JBK.

Given a B-plausibility ordering ≤, let Sw = {w′ ∈ W : w′ ≤ w}. We let
S≤ = {Sw : w ∈ W}. It can be shown that:

Theorem 12. For any B-plausibility ordering ≤, S≤ is a system
of spheres centered on B, and for any system of spheres S
centered on B, there is a unique B-plausibility ordering ≤, such
that S = S≤.19

A system of spheres, thus, encodes an ordering over possible worlds,
and it is this plausibility ordering, that, according to this model, serves
to determine how a rational agent will revise her belief set B given some
sentence φ.

Given Theorem 10, we can also use this model to provide a model
of how an agent might adopt a rational contraction function. Given the
adoption of a sphere revision function determined by some S , the agent
would adopt a policy of contracting a belief set B, given some sentence φ,
so that her new belief set is given by the set of sentences that are true in all
and only the worlds in CS(¬φ) ∪ JBK. That is, such an agent will contract
her belief set by φ by adding to the set of worlds representing this set,
the most plausible ¬φ worlds. Such a policy will be guaranteed to satisfy
(B−1 )–(B−7 ).

2.3.2 Epistemic Entrenchment

Next, we consider a model of how an agent’s doxastic state might serve
to determine a rational belief contraction policy.20 In rough outline, we
may think of an agent’s doxastic state, in addition to determining a belief
set, as also determining, for each belief set B, a binary relation on the
set of sentences of L that encodes information about how epistemically
entrenched such sentences are, given the belief set B. While the notion of
epistemic entrenchment is best thought of as being functionally defined
via its role in the following account of belief contraction, one can think
of an epistemic entrenchment ordering, roughly, as corresponding to an
ordering representing how committed an agent is to retaining certain
beliefs, given that they have a belief set B.

19 See Gärdenfors (1988).
20 See Gärdenfors and Makinson (1988) for this type of model.
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Given a doxastic state that determines an entrenchment ordering for
each belief set B, we may think of the agent as adopting a contraction
policy such that, given a belief set B and a sentence φ, the agent restricts
B to the subset of elements ψ such that either ψ is a theorem or ψ ∨ φ is
more epistemically entrenched than φ.

A little more pedantically: let ≤ be a binary relation over L. We let
φ < ψ =df φ ≤ ψ ∧ ψ 6≤ ψ. We call ≤ a B-entrenchment relation just in case
it satisfies the following postulates.

E1. If φ ≤ ψ and ψ ≤ ξ, then φ ≤ ξ.

E2. If φ |= ψ, then φ ≤ ψ.

E3. For all φ, ψ, either φ ≤ φ ∧ ψ or ψ ≤ φ ∧ ψ.

E4. If B 6= L, then φ ∈ B just in case φ ≤ ψ, for all ψ.

E5. If ψ ≤ φ, for all ψ, then |= φ.

Let �: B → P(L×L) be a function that maps each B ∈ B to a binary
relation over L. We denote each such relation by �B. If each �B is a
B-entrenchment relation, we’ll call � an entrenchment function. Let C� :
B ×L → B be a function such that C≤(B, φ) = {ψ : ψ ∈ B and either φ <

φ ∨ ψ or |= ψ}. Let f : B × L → B be a function such that there is
some entrenchment function � such that for every B ∈ B and φ ∈ L,
f (B, φ) = C≤(B, φ). We call this an entrenchment contraction function.

The following theorem shows that the adoption of a rational contraction
function can always be modeled in terms of the adoption of an entrench-
ment contraction function determined by some entrenchment function
�, and that, conversely, the adoption of an entrenchment contraction
function determined by some some entrenchment function � will always
correspond to the adoption of a rational contraction function.

Theorem 13. Function f is an entrenchment contraction func-
tion just in case f satisfies (B−1 )–(B−7 ).21

Given Theorem 9, we can also use this model to provide a model
of how an agent might adopt a rational revision function. Given the
adoption of an entrenchment contraction function determined by some
�, the agent would adopt the policy of revising a belief set B given φ,
by first contracting B to the subset of elements ψ ∈ B such that either
ψ is a theorem or ψ ∨ ¬φ is more epistemically entrenched that ¬φ, and
then expanding the resulting set by φ. Such a policy will be guaranteed to
satisfy (B∗1)–(B∗7).

21 See Gärdenfors and Makinson (1988).
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2.4 Iterated Belief Revision

If an agent has adopted a revision policy ∗ satisfying (B∗1)–(B∗7), then not
only is it determined how the agent should revise her current belief set B,
given some information φ, but it is also determined how the agent should
revise this new belief set, given additional information ψ. For a revision
policy satisfying (B∗1)–(B∗7) determines how any belief set should be revised
given any piece of information. It has, however, been suggested that the
AGM postulates provide implausible results when we consider which
patterns of iterated belief revision they count as rationally permissible and
rationally mandated.22 In response to these putative problems, various
emendations of, or additions to, the AGM postulates have been suggested.
In this section, we’ll consider some putative problems with iterated belief
revision that arise for AGM and look at a few solutions that have been
suggested.

2.4.1 Problems with Iterated Belief Revision in AGM

There are two types of problems that the AGM revision postulates have
been thought to have with iterated belief revision. On the one hand,
the AGM revision postulates have been thought to be too permissive,
vindicating as rational certain patterns of iterated belief revision that would
seem to be irrational. On the other hand, the AGM revision postulates
have been thought to be too restrictive, ruling out as irrational certain
patterns of iterated belief revision that would seem to be rational. Let me
say a bit more about each of these worries in turn.

The first problem stems from the fact that (B∗1)–(B∗7) put very few con-
straints on iterated belief revision. To see this, let b be some particular
belief set. We’ll, then, let (b∗1)–(b∗7) be the postulates that result from (B∗1)–
(B∗7) by saturating the variable B ranging over elements of B with the
particular element b ∈ B. Then (b∗1)–(b∗7) provide constraints on a function
b∗ : L → B mapping sentences to belief sets. In particular, they provide
constraints on functions that tell us how the belief set b should be revised
given new information. Call such a function a b-revision function.

Def. For any function f : B × L → B, let f b be the function
such that < lx, by > ∈ f b ↔ < b, lx, by > ∈ f .

Def. For any function f : B × L → B, and any function
g : L → B, let f /gb : B × L → B be the function such that if
bx 6= b, then < bx, ly, bz > ∈ f ↔ < bx, ly, bz > ∈ f /gb, while
< b, ly, bz > ∈ f /gb ↔ < ly, bz >∈ g.

22 See, for example, Boutilier (1996), Darwiche and Pearl (1997), and Stalnaker (2009).
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We can think of f b as the b-revision function determined by the revision
function f . And we can think of f /gb as the revision function that results
from swapping gb for the b-revision function determined by f . We, then,
have the following results.

◦ For any f satisfying (B∗1)–(B∗7) and any b ∈ B, f b will satisfy (b∗1)–(b∗7).

◦ For any g satisfying (b∗1)–(b∗7), and any f satisfying (B∗1)–(B∗7), f /gb
will also satisfy (B∗1)–(B∗7).

What this shows is that functions satisfying (B∗1)–(B∗7) can be thought of
as the result of freely choosing, for each b ∈ B, some function satisfying
(b∗1)–(b∗7). Thus (B∗1)–(B∗7) allow us to mix-and-match b-revision functions
as we like.

This degree of freedom, however, has problematic consequences. For a
b-revision function f : L → B can be seen as encoding conditional beliefs.
We’ll say that the conditional belief φ|ψ is accepted by f just in case
φ ∈ f (ψ). The fact that (B∗1)–(B∗7) allow for arbitrary mixing and matching
of b-revision functions, shows that (B∗1)–(B∗7) impose almost no constraints
on which conditional beliefs an agent should maintain or give up when
changing her belief set in light of some new information.

Here’s an example that illustrates the problem.23

Flying Bird. You initially believe of some animal in the distance
that it’s neither a bird, ¬B, nor can it fly, ¬F. You, however, have
the conditional belief that it can fly, given that it’s a bird, F|B.
That is, you are disposed to come to believe that the animal
can fly, were you to learn that it’s a bird. Now you learn that
the animal can indeed fly, and as a result you give up the
conditional belief F|B, and form the conditional belief ¬F|B.

This sort of transition will seem to many to be irrational. Learning that
the consequent of a conditional belief is true would seem to provide no
evidence against that conditional belief. However, this transition will be
sanctioned as rationally permissible given (B∗1)–(B∗7). Examples such as this
have convinced a number of authors that further constraints, in addition to
(B∗1)–(B∗7), are required to adequately constrain rational revision functions.

To see why one might think that (B∗1)–(B∗7) are not only too permissive
but also too restrictive, note that if an agent adopts a revision policy
satisfying (B∗1)–(B∗7), then which belief set she should have, given some
information φ, is a function of her current belief set. This, however, has the
following consequence. Given the adoption of a revision policy satisfying
(B∗1)–(B∗7), an agent who starts out with a belief set B and who then receives

23 This type of example and others may be found in Darwiche and Pearl (1997).
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a series of information ψ1, ψ2, . . . , ψ3 that she uses to successively revise
her beliefs and who, as a result, winds up, again, with belief set B, is
rationally required to revise this belief set given some information φ in
exactly the same manner as she would have revised this belief set, given
φ, prior to receiving the series of information ψ1, ψ2, . . . , ψ3. One might,
however, think that a series of information that would ultimately leave
an agent’s belief set unchanged could rationally lead to a change in the
agent’s conditional beliefs.24 This sort of change, however, is ruled out as
irrational by the AGM postulates.

2.4.2 Iterated Belief Revision Functions

We’ll first consider an amendment to the AGM account of rational re-
vision that is meant to address the first problem. We’ll, then, consider
an alternative amendment that addresses both the first and the second
problem.

In response to worries about the excessive permissiveness of AGM,
Boutilier (1996) proposes a much more restricted account of rational belief
revision. Perhaps the simplest way to present the account is by appeal to
Grove’s model in which a revision policy is represented by a set of total
pre-orders over the space of possible worlds.

Let � be a function mapping each B to a B-plausibility ordering �B. As
we noted earlier, each function satisfying (B∗1)–(B∗7) may be represented
by some such function �. For each B, let C(B, φ) = {w : φ ∈ w and w �B

w′, for each w′ such that φ ∈ w′}. Boutilier (1996) suggests that in order
for � to represent a rational revision function, in addition to each �B

being a B-plausibility ordering, it must also satisfy the following.

Boutilier’s Constraint. �C(B,φ) must be such that for all
w, w′ 6∈ C(B, φ), w �C(B,φ) w′ just in case w �B w′.

The idea here is that a rational agent, in revising her beliefs in response to
some information φ, should adjust her plausibility ordering over worlds
in such a way that the most plausible φ-worlds are ranked highest in her
new plausibility ordering but otherwise leaves the plausibility ordering
amongst worlds untouched. An agent who adjusts her belief state in this
manner will effectively make the minimal adjustments to her conditional
beliefs as is necessary in order to accommodate φ.

It is easy enough to see that the constraints that Boutilier (1996) suggests
rule out as irrational the problematic case of revision in Flying Bird.
It has been argued, however, that Boutilier’s account of belief revision
demands that too many conditional beliefs be preserved, and that this has
undesirable consequences about when an agent may be rationally required

24 For worries in this vicinity see Levi (1988) and Darwiche and Pearl (1997).
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to give up certain beliefs. Darwiche and Pearl (1997) give the following
example.

Sequential Red Bird. You are initially uncertain about
whether a certain animal is a red, R, or is a bird, B. You then
get information that the animal is a bird, B. Then you get
information, from a different source, that the animal is red, R.
However, further consultation with an expert indicates that,
in fact, the first piece of evidence was wrong and, in fact, the
animal is not a bird, ¬B. As a result, you wind up believing
that the animal is not a bird, ¬B, but that the animal is red, R.

Intuitively, this process of revision would seem to be perfectly rational.
The constraints on revision proposed by Boutilier (1996), however, deem
this process of revision irrational. To see this, consider the following model.
Let w1 = R ∧ B, w2 = ¬R ∧ B, w3 = R ∧ ¬B and w4 = ¬R ∧ ¬B. At t1,
your plausibility ordering is such that:

(t1) w1 = w2 = w3 = w4.

Upon getting the information B, at t2 you minimally adjust your ordering,
in accord with the Boutillier model, so that:

(t2) w1 = w2 < w3 = w4.

Then, at t3, upon getting the information R, you again minimally adjust
your ordering so that:

(t3) w1 < w2 < w3 = w4.

Finally, upon getting the information ¬B, you once again minimally adjust
your plausibility ordering, so that at t4 we have:

(t4) w3 = w4 < w1 < w2.

And so, what we find is that, upon making these minimal adjustments,
you will fail to believe R, since this is a proposition that is false at some
world that is amongst the most plausible according to your plausibility
ordering at t4.

The problem may be diagnosed as follows. When you start out uncertain
about R and B, you lack the conditional belief R|¬B. For, in your state at
the time, you would not come to believe that the animal is red if you were
to learn that the animal is not a bird. On the Boutillier model, however,
when you get information φ, you should minimally adjust your conditional
beliefs, i.e., you should only change your conditional beliefs insofar as
such a change is forced on you by taking what were previously the most
plausible φ-worlds to now be the most plausible worlds tout court. Since
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coming to believe B and then R does not force one to accept the conditional
belief R|¬B, the Boutillier model requires that you continue to lack the
conditional belief R|¬B. And so, when you come to believe ¬B, since you
lack the appropriate conditional belief that would sanction your continuing
to believe R, you must give up this belief.

The point that would seem to clearly emerge from this type of example
is that if we want to allow that an agent may rationally preserve certain
beliefs that she forms over time, we need to allow the agent to adjust her
conditional beliefs in certain non-minimal ways that are precluded given
the Boutillier model.

In response to the problems of iterated revision faced, on the one hand,
by Alchourrón et al. (1985), and, on the other hand, by Boutilier (1996),
Darwiche and Pearl (1997) offer an alternative account of iterated revision.
Their account is intended to offer stricter constraints on iterated belief
revision than those imposed by Alchourrón et al. (1985), while allowing
for certain permissible variations in how an agent’s conditional beliefs may
be updated over time that are ruled out by Boutilier (1996). In addition,
their theory is designed to accommodate the second worry about iterated
belief revision for AGM considered in Section 2.4.1.

According to Darwiche and Pearl (1997), belief revision should not be
thought of, fundamentally, in terms mapping one belief set to another.
Instead, belief revision should be thought of as mapping one belief state
to another, where a belief state here is something that determines a belief
set but, in addition, encodes information about the agent’s conditional
beliefs. We can model such a state as a plausibility ordering over the set of
possible worlds.25

Let G be the set of belief states. For each G ∈ G, we’ll let Bel(G) be the
belief set determined by G. Let ◦ : G × L → G, be a function mapping
pairs of belief states and sentences to belief states. Paralleling the AGM
postulates, Darwiche and Pearl suggest the following constraints for such
a function.

(G◦1) φ ∈ Bel(G◦φ).

(G◦2) Bel(G◦φ) ⊆ Bel(G)+φ .

(G◦3) If ¬φ 6∈ Bel(G), then Bel(G)+φ ⊆ Bel(G◦φ).

(G◦4) Bel(B◦φ) = L just in case |= ¬φ.

(G◦5) If |= φ↔ ψ, then G◦φ = G◦ψ.

25 We can, of course, think of the acceptance of a belief revision function on the AGM picture
as adopting a policy for mapping one belief state to another. However, importantly, on the
AGM account all that matters for this mapping is what the belief set looks like.
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(G◦6) Bel(G◦φ∧ψ) ⊆ Bel(G◦φ)
+
ψ .

(G◦7) If ¬ψ 6∈ Bel(G◦φ), then Bel(G◦φ)
+
ψ ⊆ Bel(G◦φ∧ψ).

In addition, however, Darwiche and Pearl also propose the following
constraints.

(G◦8) If φ |= ψ, then Bel((G◦ψ)
◦
φ) = Bel(G◦φ).

(G◦9) If φ |= ¬ψ, then Bel((G◦ψ)
◦
φ) = Bel(G◦φ).

(G◦10) If Bel(G◦φ) |= ψ, then Bel((G◦ψ)
◦
φ) |= ψ.

(G◦11) If Bel(G◦φ) 6|= ¬ψ, then Bel((G◦ψ)
◦
φ) 6|= ¬ψ.

Darwiche and Pearl (1997) then show how revision functions satisfying
these constraints may be modeled. Let � now be a function that maps
each belief state G to a total pre-order on the set of possible worlds �G.
(Again we’ll think of possible worlds as maximal consistent sets of L.) We
let w1 ≺G w2 =df w1 �G w2 and w2 6�G w1.

Def. We say that � is a faithful assignment just in case:

(i) if Bel(G) ⊆ w1 and Bel(G) ⊆ w2, then w1 �G w2 and
w2 �G w1;

(ii) Bel(G) ⊆ w1, Bel(G) 6⊆ w2, then w1 ≺G w2.

Let f : G × L → G. We again let BP = ∩{w : w ∈ P}, given a set of
worlds P. And for each G ∈ G, and each � we let C�(G, φ) = {w : φ ∈
w and w �G w′, for each w′ such that φ ∈ w′}. Darwiche and Pearl (1997)
show:

Theorem 14. Function f satisfies (G◦1)–(G◦7) just in case there
exists a faithful assignment � such that Bel(G f

φ) = BC�(G,φ).

In addition, Darwiche and Pearl (1997) show:

Theorem 15. If f satisfies (G◦1)–(G◦7), then f satisfies (G◦8)–(G◦11)
just in case f and any corresponding faithful assignment �
such that Bel(G f

φ) = BC�(G,φ) satisfy:

(iii) if φ ∈ w1 and φ ∈ w2, then w1 �G w2 if and only if
w1 �G f

φ
w2;

(iv) if ¬φ ∈ w1 and ¬φ ∈ w2, then w1 �G w2 if and only if
w1 �G f

φ
w2;

(v) if φ ∈ w1 and ¬φ ∈ w2, then if w1 ≺G w2, then w1 ≺G f
φ

w2;

(vi) if φ ∈ w1 and ¬φ ∈ w2, then if w1 �G w2, then w1 �G f
φ

w2.
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Given Theorem 14 and Theorem 15, we can think of an agent’s belief
state as being representable by a total pre-order over the space of possible
worlds, while the agent’s rational revision policy may be represented as
a function mapping a pair of such a pre-order and a sentence to another
pre-order. A rational revision policy will be representable by a function, ◦,
that maps each such pre-order, G, and each sentence, φ, to a pre-order G◦φ,
such that:

◦ the minimal worlds in G◦φ are the minimal φ-worlds in G;

◦ the ordering amongst the φ-worlds in G◦φ is exactly the ordering of
the φ-worlds in G;

◦ the ordering amongst the ¬φ-worlds in G◦φ is exactly the ordering of
the ¬φ-worlds in G;

◦ any strict or weak preference for a φ-world w1 over a ¬φ-world w2

in G is preserved in G◦φ.

Note, however, that the Darwiche and Pearl’s account does not require
that strict or weak preferences for ¬φ-worlds over φ-worlds, given G, be
preserved in G◦φ. More specifically, unlike on the Boutillier model, the
Darwiche and Pearl account allows that a φ-world w1, which is non-
minimal in G and which may not be strictly preferable to some ¬φ-world
w2 may be strictly preferable to w2 relative to G◦φ. And this allows Darwiche
and Pearl to deal with the problematic case Sequential Red Bird.

Again let w1 = R ∧ B, w2 = ¬R ∧ B, w3 = R ∧ ¬B and w4 = ¬R ∧ ¬B.
At t1, your plausibility ordering is such that:

(t′1) w1 = w2 = w3 = w4.

And, again, given the Darwiche and Pearl model, upon getting the infor-
mation B, at t2 you will adjust your ordering so that:

(t′2) w1 = w2 < w3 = w4.

At t3, however, upon getting the information R, the Darwiche and Pearl
model allows you to adjust your ordering such that:

(t′3) w1 < w2 < w3 < w4.

Compare this to the ordering that is required by the Boutillier model:
w1 < w2 < w3 = w4. The key difference here is that, upon getting the
information R, Boutilier (1996) requires that you only promote the most
plausible R-world. Darwiche and Pearl (1997), however, allows that each of
the R-worlds may be promoted. And, given the ordering w1 < w2 < w3 <

w4, upon getting the information ¬B at t4 you will adjust your ordering
so that:
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(t′4) w3 < w4 < w1 < w2.

And so what we find is that at the end of this process you will believe ¬B
and you will believe R.

The postulates proposed in Darwiche and Pearl (1997), however, are not
without problems. In particular, (G◦9) would seem to be subject to potential
counterexamples. Thus consider the following case:26

Conjunctive Red Bird. You are initially uncertain about
whether a certain animal is a red, R, or is a bird, B. Moreover
you start out assuming that information about whether or
not the animal is a bird, gives you no information about the
animal’s color. In particular, you do not have the conditional
belief R|¬B. You then get information that the animal is a
red bird, R ∧ B. However, further consultation with an expert
indicates that, in fact, the animal is not a bird, ¬B. As a result,
you wind up believing that the animal is not a bird, ¬B, but
that the animal is red, R.

Intuitively this would seem to be a rational progression of belief revision.
This progression, however, is ruled out as irrational given (G◦9). To see this,
note that since ¬B is incompatible with R ∧ B, (G◦9) requires that the result
of your revising, given ¬B, the belief state you have after incorporating
R∧ B, be the same as the belief state that would have resulted had you first
gotten the information ¬B. But since you start out lacking the conditional
belief R|¬B, (G◦9), then, precludes your continuing to believe R once you
accept ¬B.

The problem here would seem to be that upon getting some information,
say R ∧ B, it may be rational for one to take various parts of that informa-
tion to be independent of others in the sense that one takes it that one part
is true, conditional on some other part turning out to be false. But (G◦9)
precludes assuming this sort of independence. It’s hard to see, however,
why such assumptions of independence should be rationally precluded.

3 dynamic doxastic logic

The models developed in Section 1 allowed us to represent an agent’s
beliefs, including various higher-order beliefs about the agent’s own beliefs.
Those models, however, failed to represent important features of an agent’s
doxastic state. In particular, they failed to provide any representation of an
agent’s conditional beliefs. The AGM models, on the other hand, allowed
us to capture this feature of an agent’s doxastic state. However, the AGM

26 See, e.g., Stalnaker (2009) for this type of example.
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models failed to provide any representation of an agent’s higher-order
beliefs.

In this section, we’ll begin by presenting models, in the style of Hintikka,
that allow us to represent both an agent’s unconditional beliefs and her
conditional beliefs, and also allow us to represent various higher-order
conditional and unconditional beliefs. We’ll, then, consider how to add
to the language dynamic operators that serve to express how an agent’s
beliefs, both conditional and unconditional, would be revised in light of
new information.

3.1 Doxastic Plausibility Models

Let L be a propositional language including the standard Boolean connec-
tives. In addition, we’ll assume that L contains a binary operator Bα(·, ·).
As a notational simplification, we will write the second argument as a
superscript, so that Bα(φ, ψ) =df Bψ

α φ. The intuitive gloss of Bψ
α φ will be

“Alpha believes φ, conditional on ψ.”
A plausibility model for L is a tuple M = 〈W,≤, J·K〉. W, as before, is a

set of worlds, and J·K is the interpretation function mapping propositional
letters to sets of possible worlds. ≤ is a ternary relation on W. We write
this as: w1 ≤w w2. The intuitive gloss on this is that, relative to Alpha’s
plausibility ordering in w, w1 is at least as plausible as w2. We assume that,
for each w, ≤w is connected, transitive and satisfies φ-minimality. For ease
of reference, we list these conditions again.

Connectivity. For every w′, w′′ ∈ W , either w′ ≤w w′′ or
w′′ ≤w w′.

Transitivity. If w′ ≤w w′′ and w′′ ≤w w′′′, then w′ ≤w w′′′.

φ-Minimality. For each Q ⊆ W such that Q 6= ∅, {w′ ∈ Q :
w′ ≤w w′′, for all w′′ ∈ Q} 6= ∅.

The truth of a sentence φ at a world w in a plausibility model M may
be defined inductively in the standard manner. Here we simply give the
condition for Bψ

α (φ).

Def. JφKm =df {w : JφKw
m = 1}.

Def. For each Q ⊆ W, we let Min≤w(Q) =df {w′ ∈ Q : w′ ≤w

w′′, for all w′′ ∈ Q}

We then say:

JBψ
α φKw

m = 1 just in case Min≤w(JψKm) ⊆ JφKm.

We’ll take the notion of unconditional belief to be defined in terms of
conditional belief as follows:
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Def. Bαφ = B>α φ.

Our models here, of course, look quite a lot like the Grove models from
Section 2.3.1. There are, however, some differences that are worth high-
lighting. One, not terribly important, difference is that, in these models,
we once again take possible worlds to be primitive entities, instead of max-
imally consistent sets of sentences. Another, more significant, difference is
that our doxastic plausibility models, unlike the Grove models, are defined
for a language with an iterable operator that expresses conditional belief.
Our models, then, are able to represent the conditional and unconditional
beliefs of an agent who has conditional and unconditional beliefs about
her own conditional and unconditional beliefs.

We can provide an axiomatic theory for our language L that is sound and
complete with respect to the class of plausibility models so characterized.
We’ll call this theory C.

Axioms of C

(C1) Bφ
α φ.

(C2) (Bφ
α ψ ∧ Bψ

α φ)→ (Bφ
α ξ ↔ Bψ

α ξ).

(C3) (Bφ∨ψ
α φ) ∨ (Bφ∨ψ

α ψ) ∨ (Bφ∨ψ
α ξ ↔ (Bφ

α ξ ∧ Bψ
α ξ)).

Inference Rules of C

(TI) If (φ1 ∧ . . . ∧ φn) → ψ is a tautology, then `c φ1 ∧
. . . ∧ φn ⇒ `c ψ.27

(DWC) If `c (φ1 ∧ . . . ∧ φn) → ψ then `c (Bξ
αφ1 ∧ . . . ∧

Bξ
αφn)→ Bξ

αψ.

Axiom (C1) tells us that, for every φ, Alpha believes φ conditional on
φ. Axiom (C2) tells us that if Alpha believes ψ conditional on φ, and φ

conditional on ψ, then, for any ξ, Alpha believes ξ conditional on φ just
in case they believe ξ conditional on ψ. Axiom (C3) tells us that Alpha is
such that, conditional on φ ∨ ψ, either they believe φ, or they believe ψ,
or, for every ξ, they believe ξ just in case they believe ξ conditional on φ

and conditional on ψ. Rule (TI) tells us that the system C is closed under
logical entailment. And, finally, (DWC) tells us that Alpha’s conditional
beliefs are closed under entailment given C.

Let P be the set of plausibility models satisfying the constraints we’ve
laid down. We, then, have the following result.

Theorem 16. `c φ⇔ |=P φ.28

27 It is assumed, for both rules, that if n = 0, then (φ1 ∧ . . . ∧ φn) = >, and so the conditional
(φ1 ∧ . . . ∧ φn)→ ψ is equivalent to ψ.

28 For a proof of this result see Lewis (1971). Lewis’ proof concerns the logic of conditionals,
but the same proof applies when we replace the conditional φ > ψ with Bφ

α (ψ).
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As with the case of our earlier Kripke models, we can characterize
subsets of P by imposing constraints on the plausibility relation ≤.

Def. We say that ≤ is minimally homogeneous just in case for
every w, every z ∈ Min≤w(W) is such that ≤w=≤z. Def. We
say that ≤ is minimally weakly homogeneous just in case for every
w, every z ∈ Min≤w(W) is such that if w1 6<w w2 then w1 6<z

w2.

Let PH be the members of P such that ≤ is minimally homogeneous.
And let PWH be the members of P such that ≤ is minimally weakly homo-
geneous. Now consider the following positive and negative introspection
principles.

(C4) Bφ
α (ψ)→ Bα(Bφ

α (ψ)).

(C5) ¬Bφ
α (ψ)→ Bα(¬Bφ

α (ψ)).

Principle (C4) tells us that if Alpha believes ψ conditional on φ, then Alpha
believes that they believe ψ conditional on φ. And (C5) tells us that if
Alpha does not believe ψ conditional on φ, then Alpha believes that they
do not believe ψ conditional on φ.

We can show:

Theorem 17. Principle (C5) is valid relative to the class PWH.

To see why this result holds, note that for there to be conditional beliefs
in z that are not in w there need to be strict preferences amongst worlds
in z that are not strict preferences in w. That is, if two worlds differ
only in that certain strict preferences, w1 <w w2, relative to w, are weak
preferences, w1 ≤z w2 and w2 ≤z w1, relative to z, then while there will
be certain conditional beliefs had at w that will not be had at z there
will be no additional conditional beliefs at z. Thus, if, in accordance with
the condition of minimal weak homogeneity, each of the most plausible
worlds z, relative to w, imposes no strict preferences that are not imposed
in w, then any conditional belief that Alpha fails to have in w, will also
be such that Alpha fails to have it in z. And so, if ≤ is minimally weakly
homogeneous, then, for any w, if Alpha fails to believe some φ conditional
on ψ, then she will also fail to believe φ conditional on ψ relative to the
most plausible worlds, given w, and so Alpha, at w, will believe that she
fails to believe φ conditional on ψ.

We can also show the following.

Theorem 18. Principles (C4) and (C5) are valid relative to the
class PH.
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This result should be obvious, since any two worlds w and z, such that
≤w=≤z, will agree about all conditional belief facts. It’s worth, however,
pointing out that there is no weaker condition on ≤ that will ensure the
validity of (C4). The reason for this is that if two worlds w and z are such
that ≤w 6=≤z, then there will be some possible assignment such that the
conditional beliefs relative to w will differ from those at z. To see this,
assume that we have w1 ≤w w2 and w1 6≤z w2, and so w2 <z w1. Let φ and
ψ be atomic sentences such that I(φ) = {w1, w2} and I(ψ) = {w2}. Then,
given our assumptions about ≤, relative to these assignments, we will have
JBφ

α ψKz
m = 1 and JBφ

α ψKw
m = 0. Thus, minimal homogeneity is the weakest

condition on ≤ that will ensure that, for every w, every conditional belief
in w is a conditional belief in each of the minimal worlds (relative to w).

Our plausibility models can clearly be generalized to the multi-agent set-
ting. And in such models, various conditional generalizations of the group
doxastic properties of common and distributed belief can be represented.
We won’t, however, consider such models here. Instead, we’ll move on to
consider how certain dynamic operators, representing facts about how an
agent’s conditional beliefs would be revised given new information, may
be added to our language.

3.2 Dynamic Operators

Let us add to our language L the following binary operator [∗α]. The rough
intuitive reading of [∗αφ]ψ will be “ψ holds after Alpha revises its belief
state given information φ.” A model for our augmented language will
still be a tuple M = 〈W,≤, J·K〉, with ≤ subject to the same constraints.
In order to characterize truth-at-a-world for formulas of the form [∗αφ]ψ,
however, we first need to characterize an operation on the set of models P .

For illustrative purposes, we’ll assume that rational belief revision for
idealized agents works in the manner described in Boutilier (1996). That is,
given an agent with a plausibility ordering over the space of worlds, such
an agent will revise their belief state, given information φ, by minimally
adjusting their plausibility ordering so that the order remains the same
except that the most plausible φ worlds are now the most plausible worlds
tout court.

Def. For each w ∈ W and Q ⊆ W, let C(≤w, Q) = {z ∈ W :
z ∈ Q and for all x ∈ Q, z ≤w x}.
Def. For each w ∈W let ≤∗qw be the binary relation on W such
that (i) for every z ∈ C(≤w, Q) and every x ∈W, z ≤∗qw x, and
(ii) for every x, z ∈W − C(≤w, Q) z ≤∗qw x iff z ≤w x.29

29 Note that given that ≤w is transitive, connected and satisfies φ-minimality, so too will ≤∗qw .
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We can now characterize the truth of a sentence [∗αφ]ψ at a world w in a
model M = 〈W,≤, J·K〉. We say:

J[∗αφ]ψKw
m = 1 iff JψKw

m′ = 1, where M′ = 〈W,≤′, J·K〉 is such that for
each z ∈W ≤′z=≤

∗JφK
z .

Operators such as Bα in our earlier Kripke models, or Bφ
α in our current

plausibility models, function by shifting the world of evaluation. Operator
[∗αφ] is, however, quite different in nature. Instead of shifting the world
parameter of evaluation, [∗αφ] shifts the model of evaluation. We’ll call
operators that have the semantic function of shifting models of evaluation
in this manner dynamic operators.

It has been shown, in van Bentham (2007), that if we add to C the
following so-called reduction axioms, we get an axiomatic system that is
sound and complete relative to the class of models P given this semantics.

(C6) [∗αφ]ψ for each atomic ψ.

(C7) [∗αφ]¬ψ↔ ¬[∗αφ]ψ.

(C8) [∗αφ]ψ ∧ ξ ↔ [∗αφ]ψ ∧ [∗αφ]ξ.

(C9) [∗αφ]Bψ
α (ξ)↔ [(Bφ

α¬[∗αφ]ψ) ∧ (B[∗αφ](ψ)
α [∗αφ]ξ)] ∨

[(¬Bφ
α¬[∗αφ]ψ) ∧ (Bφ∧[∗αφ]ψ

α [∗αφ]ξ)].

Axiom (C6) tells us that atomic statements will not change their truth-value
when Alpha revises its belief state given information φ. Axiom (C7) tells us
¬ψ will hold when Alpha revises its belief state given information φ just in
case ψ does not hold when Alpha revises its belief state given information
φ. Axiom (C8) tells us that a conjunction will hold when Alpha revises
its belief state given information φ just in case both of the conjuncts hold.
These latter conditions are all fairly intuitive. Unfortunately, axiom (C9)
is much more unwieldy and lacks a simple intuitive gloss. This principle
tells us that at least one of the following two conditions must obtain.

(i) Alpha believes ξ, conditional on ψ, when Alpha revises its belief
state given information φ just in case, (a) conditional on φ, Alpha
believes that it’s not the case that if they revise their belief state
given φ, then ψ will hold, and (b) conditional on ψ holding, if Alpha
revises its belief state given φ, then Alpha believes that if they revise
their belief state given φ, then ξ holds.

(ii) (a) It is not the case that, conditional on φ, Alpha believes that it’s
not the case that, if Alpha revises their beliefs given φ, then ψ, and
(b) Alpha believes, conditional on the conjunction of φ and the claim
that if Alpha revises their beliefs given φ, then ψ will hold, that if
Alpha revises their beliefs given φ, then ξ will hold.
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One thing that these reduction axioms highlight is that the addition of [∗α]
to our language L in fact adds no real expressive power. For the reduction
axioms show that any formula involving such an operator is equivalent to
some formula that doesn’t contain this operator. The equivalent [∗α]-free
formulas may, however, be extremely complex. The introduction of [∗α],
then, provides a way of expressing, in a concise manner, claims that might
otherwise lack a simple expression.

I said earlier that the rough gloss on [∗αφ]ψ will be “ψ holds after Alpha
revises its belief state given information φ.” However, the semantics for
[∗α] encodes certain idealizing assumptions about what happens when an
agent revises her beliefs given new information. In particular, the semantics
we’ve outlined entails that if φ is an atomic sentence, then, when an agent
gets new information φ, not only will the agent come to believe φ, but
the agent will believe that they believe φ, and believe that they believe
that they believe φ, and so on. Let Bn

α abbreviate n iterations of Bα. Then,
if φ is atomic, we have that, for any n, J[∗αφ]Bn

α φKw
m = 1, for all worlds w

and models M. New information, at least when it concerns some atomic
proposition, will, on this model, be transparent to an agent.

The reason that such formulas are valid, given our semantics, is that an
evaluation of the truth of [∗αφ]ψ in a model M at a world w, requires us
to assess ψ at w relative to a model M′ which differs from M in that the
best φ-worlds relative to ≤w are the best worlds relative to each ≤z. On
this semantic theory, [∗αφ] effects a global shift on the plausibility ordering.
In order to avoid the assumption that new information will not only be
believed, but also believed to be believed etc., one would need to take
the operator [∗αφ] to simply shift the the model M to a model M′ whose
plausibility ordering only differs relative to the world of evaluation w. We
won’t, however, look at these alternative semantic treatments here.

We’ve seen, then, how we can introduce a dynamic operator into our
language that, in a certain sense, corresponds to the belief revision policy
of Boutilier (1996). As noted earlier, though, any belief revision policy
satisfying the AGM postulates can be thought of as a function mapping a
belief state encoding conditional beliefs to another such state. Given any
such policy f , then, we can introduce a dynamic operator [ f ]. A formula
of the form [ f φ]ψ will be true in a model M at a world w just in case ψ is
true in a model M′ at w, where M′ is the model which shifts each ≤z to
f (≤z).

The application of dynamic operators in doxastic and epistemic logic is
a rapidly developing area of study. In addition to expressing the sorts of
revision that AGM was concerned with, dynamic operators can also be
used to express other sorts of doxastic and epistemic changes, such as the
doxastic results of so-called public announcements, which make certain
pieces of information common knowledge amongst a group of agents.
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The literature here is vast and growing, and a thorough survey is beyond
the scope of this work. Our goal here has, instead, been to simply give
a sense of how such dynamic operators function. The following, though,
provides a small sample of work in this tradition: Baltag, Moss, and Solecki
(1998), Segerberg (1998), Segerberg (2001), van Ditmarsche (2005), Baltag
and Smets (2006a), Baltag and Smets (2006b), Rott (2006), Leitgeb and
Segerberg (2007), van Bentham (2007), van Ditmarsche, van der Hoek, and
Kooi (2008), Beltag and Smets (2008), van Bentham (2011) Girard and Rott
(2014).

4 doxastic paradoxes

In this final section, we’ll look at two doxastic paradoxes and consider, on
the one hand, how some of the tools developed in the previous sections
may be brought to bear to analyze these cases, and, on the other hand,
how such paradoxes may serve to call into question certain assumptions
made earlier about the principles governing the doxastic states of idealized
agents.

4.1 Moore’s Paradox

As Moore (1942) famously noted, there is something decidedly odd about
the sentence ‘φ and I don’t believe φ’. What is puzzling about the case is
that, while claiming that φ and I don’t believe φ would seem, in some way,
to be incoherent, the claim itself is perfectly consistent. There is nothing
that prevents it from being true that φ and I don’t believe φ.

Hintikka (1962) argued that the oddity of Moore paradoxical sentences
such as φ ∧ ¬Bαφ can be explained by the fact that such claims are unbe-
lievable for agents whose doxastic states meet certain constraints. Thus,
let us assume that Alpha is an agent whose doxastic state is consistent,
closed under logical consequence, and satisfies positive introspection.
Given these assumptions, we can show that the following can never be
true Bα(φ ∧ ¬Bαφ). For assume that it is. Then since Alpha’s doxastic state
is closed under logical consequence we have Bαφ and Bα¬Bαφ. And, since
Alpha’s doxastic state satisfies positive introspection, we have BαBαφ. But,
then, contrary to our assumption, Alpha’s doxastic state is inconsistent.

Besides being unbelievable for certain agents, Moore paradoxical sen-
tences have other odd features. Let us assume that our agent Alpha’s
idealized doxastic state is consistent, logically closed, and satisfies positive
and negative introspection. Then such an agent’s doxastic state may be rep-
resented by a KD45 model. More specifically, we can represent the agent’s
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doxastic state, as well as other facts about the world, by a particular point
w in a some KD45 model M = 〈W, Rα, J·K〉.

Now given an idealized agent such as Alpha, whose doxastic state may
be represented by a particular point w in a some KD45 model M, we can
represent the change in such an agent’s doxastic state that results from
getting some true information φ by the point w in a model Mφ. In particular,
let Wφ = W ∩ JφKm, Rφ

α = Rα ∩Wφ ×Wφ, and J·Kφ = J·K ∩Wφ. Then the
model representing Alpha’s doxastic state, after Alpha has received some
true information φ will be Mφ = 〈Wφ, Rφ

α , J·Kφ〉. We can think of Mφ as the
model that results when one removes from M all of the worlds in which φ

is false and then minimally adjusts the accessibility relation and valuation
function.

Interestingly, there are certain sentences φ that, while true relative to
w and M, may be false relative to w and Mφ. Indeed, there are certain
sentences φ that are guaranteed to be false relative to w and Mφ. Call
such sentences self-refuting. If φ is an atomic sentence, then the Moore
paradoxical sentence φ ∧ ¬Bαφ is a paradigmatic case of a self-refuting
sentence.

Let M be a KD45 model and w such that Jφ ∧ ¬BαφKw
m = 1. Let M′ =

Mφ∧¬Bαφ. Then it’s guaranteed that Jφ∧¬BαφKw
m′ = 0. For, since any world

in M in which φ is false makes φ ∧ ¬Bαφ false, each ¬φ-world in M will
be removed from M′. But, then, since φ is atomic, it follows that φ must be
true for every world in M′. But this guarantees that we have JBαφKw

m′ = 1
and so Jφ∧¬BαφKw

m′ = 0. Indeed, we can see that this reasoning establishes
that, for each w′ ∈W ′, Jφ ∧ ¬BαφKw′

m′ = 0.
Moore paradoxical sentences, then, are not only unbelievable for certain

idealized agents, they are also such that if they are true and learned to be
so by such an agent then they become false.30 While Moore paradoxical
sentences may be true, their truth is, in a particular manner, unstable.

The fact that a Moore paradoxical sentence φ ∧ ¬Bαφ fails to hold for
each point in the model Mφ∧¬Bαφ is relevant for the assessment of certain
principles of belief revision. For recall that, in AGM, it is assumed that
φ ∈ B∗φ. That is, upon revising their belief set by φ, an ideal agent will
believe φ. This, of course, seems prima facie quite plausible, but Moore
paradoxical sentences would seem to provide a counterexample to this
claim. For, given that one’s doxastic state upon learning φ ∧ ¬Bαφ is
represented by Mφ∧¬Bαφ, we’ve seen that, upon revising one’s belief set
given φ ∧ ¬Bαφ, this sentence will not be believed.

Now there are a few ways of responding to this worry.
First, one could grant that this is a counter-example to (B∗1) formulated

as an unrestricted principle governing belief revision. However, one could

30 Holliday and Icard (2010) show that, in a certain sense, for introspective agents all self-
refuting formulas are Moore paradoxical in character.
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claim that this principle, properly understood, should only apply to sen-
tences that don’t contain any belief operators. And, indeed, we can show
that any sentence φ that doesn’t contain such operators will be guaranteed
to hold at any point w in Mφ, if it held at w in M.31 And, furthermore,
as we earlier noted, the languages that the proponents of AGM initially
considered simply had no resources for talking about particular agent’s
beliefs or revision policies.

Another response, though, would be to argue that, properly construed,
belief revision should concern propositions. The correct principle in the
vicinity, then, is that if one learns some proposition φ, then one’s revised
belief state, in light of this, should include that proposition. One may
argue, then, that if we think of the objects of belief as propositions and
so revision policies as concerning which propositions one should believe,
given new information, the problem for (B∗1), so construed, disappears. For
while Moore paradoxical sentences are self-refuting, Moore-paradoxical
propositions are not.32 For a Moore-paradoxical proposition will be time-
indexed. But, if one learns between t1 and t2, that φ held at t1 but one did
not believe φ, this claim will remain true and may be consistently believed
at t2.

The AGM account of belief revision was formulated on the assumption
that the objects of belief are sentences. Moorean phenomena, however,
make it apparent that, if one wants to maintain one of the most basic
principles of the theory, then the correct formulation of this theory should,
instead, take the objects of belief to be propositions.

4.2 The Burge-Buridan Paradox

So far we’ve assumed that an idealized agent will have beliefs that are
consistent, logically omniscient, closed under logical consequence, and that
satisfy positive introspection. A close cousin of Moore’s paradox, however,
would seem to show that these constraints cannot be jointly satisfied if
the expressive power of the language over which our doxastic models are
defined is enriched in a certain manner.

31 Indeed the class of formulas with this property is larger than the class of formulas lacking
any belief operators. See Holliday and Icard (2010). So there is room to enlarge the scope
of this principle to certain sentences containing belief operators.

32 To be clear, by ‘proposition’ I mean an eternal proposition, i.e., something that determines
a function from worlds to truth-values. The present points don’t hold if one thinks that
the objects of belief are temporal propositions, i.e., things that only serve to determine a
function from world, time pairs to truth-values.
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We’ll call sentences such as the following Burge-Buridan sentences: “I
don’t believe that this sentence is true.”33 If we consider an agent who
can entertain the proposition expressed by a sentence such as this, we can
show, given plausible auxiliary assumptions, that this agent cannot satisfy
all of the constraints we’ve imposed on idealized doxastic states.

So far, we have been working with propositional languages. To treat the
Burge-Buridan sentence in a formal setting, however, we need to add to
our language L a single predicate T(·), as well as a single term β. The
intuitive interpretation of T(β) will be that the sentence referred to by β is
true. Being a sentence of our predicate language L may be defined in the
standard manner.

We will stipulate that in our language L the term β refers to the sentence
¬BαT(β). As an instance of the T-schema, then, we have:

(T) T(β)↔ ¬BαT(β)

Given a conception of logic on which the valid principles governing
truth count as logical truths, it is quite plausible that (T) will count as
a logical truth.34 Assume, then, that our idealized agent Alpha satisfies
logical omniscience. Then, we have Bα(T(β) ↔ ¬BαT(β)). Now we can
show that Alpha’s doxastic state cannot also be consistent, logically closed
and satisfy positive transparency. Our proof will proceed by cases. First,
assume ¬BαT(β). Then, it follows by closure that BαT(β) which, of course,
contradicts our assumption. Next, assume BαT(β). Then, by closure we
have Bα¬BαT(β). But, by positive introspection, we also have BαBαT(β).
And so Alpha fails to have a consistent doxastic state.

Although Alpha cannot have a doxastic state that is consistent, logically
omniscient, logically closed and positively transparent, there is no problem,
in principle, with Alpha having a doxastic state that satisfies only the first
three constraints. To do so, we provide a model in which these properties
will be satisfied.

A doxastic model for L is a tuple M = 〈W, Rα, D, J·K〉. W and Rα are the
same as in our earlier propositional doxastic models, while D is a set of
objects, and J·K is a function which assigns, to propositional letters, subsets
of W, to singular terms, elements of D, and, to unary predicates, functions
mapping elements of w to subsets of D. Truth in such a model is defined
in the obvious way.

33 This type of sentence was first discussed in the modern literature in Burge (1978), who
attributes the paradox it raises to Buridan. For other discussion see, e.g., Burge (1984),
Conee (1987), Sorensen (1988), Caie (2011), and Caie (2012).

34 Note that this instance of the T-schema is compatible with classical logic. This is established
by the model given below. Even, then, if one thinks that cases such as the Liar paradox
should lead us to reject certain instances of the T-schema as invalid, we don’t have similar
reason to reject this instance of the T-schema.
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w1 w2

T(β),¬BαT(β) ¬T(β), BαT(β)

Figure 2: Modeling the Burge-Buridan sentence

Now, let W = {w1, w2, }, let Rα = {〈w1, w2〉, 〈w2, w1〉} and let JTK =

{〈w1, {β}〉, 〈w2, ∅〉}. Then we have JT(β)Kw1
m = J¬BαT(β)Kw1

m = 1 and
J¬T(β)Kw2

m = JBαT(β)Kw2
m = 1. We may picture this model as in Figure 2.

In the model under consideration, JβK = ¬BαT(β). This corresponds
to our stipulation that the sentence of L, ¬BαT(β), will be the denota-
tion of the term β. Moreover, for each world w, JT(β)Kw

m = 1 just in case
J¬BαT(β)Kw

m = 1. This corresponds to the assumption that the T-schema
for β is believed by Alpha to hold. Alpha moreover will believe all propo-
sitional logical truths, as well as any other logical truth that follows from
the assumption that the T-schema holds. Since the relation Rα is serial, it
follows that Alpha’s doxastic state is consistent. And, as with any possi-
ble worlds doxastic model, Alpha’s beliefs will be closed under logical
consequence.

Thus, while idealized agents can be consistent, logically omniscient, and
have beliefs that are closed under logical consequence, they cannot always
be, in addition, positively transparent.

Now, there are certain ways around this result. For example, if we
weaken our background logic governing the Boolean connectives, then we
can show that the Burge-Buridan sentences do not preclude an idealized
agent from satisfying positive and negative transparency, in addition to
consistency, omniscience, and logical closure.35 However, in order for this
to be a non-ad hoc move, the weakening of the background logic would
need to be sufficiently independently motivated. And whether this is so is
a controversial matter.

We’ve considered two classes of sentences, the Moore-paradoxical and
the Burge-Buridan sentences. It’s worth noting, however, that the latter
class is really a subclass of the former. In general, a Moore-paradoxical
sentence is one that has the following form φ ∧ ¬Bφ. A Burge-Buridan
sentence, on the other hand, has the form ¬BT(β), where β refers to that
very sentence. On the surface, of course, this does not seem to have the
form of a Moore-paradoxical sentence. However, given the plausible as-
sumption that T(β) and ¬BT(β) are logically equivalent, then we get that
¬BT(β) is, in fact, equivalent to T(β) ∧ ¬BT(β). Thus a Burge-Buridan
sentence, while not having the overt form of a Moore-paradoxical sen-
tence, is equivalent to a Moore-paradoxical sentence. This sub-class of the

35 See Caie (2012) for a proof of this.
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Moore-paradoxical sentences, however, have striking consequences that
other members of the class of Moore-paradoxical sentences lack. For it’s
only with these degenerate cases of Moore-paradoxicality that we find
that transparency assumptions come into conflict with other plausible
principles governing idealized doxastic states.
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C O N D I T I O N A L S R. A. Briggs

Conditionals are sentences that propose a scenario (which may or may
not be the actual scenario), then go on to say something about what
would happen in that scenario.1 In English, they are typically expressed
by ‘if. . . then. . . ’ statements. Examples of conditionals include:

1. If the Axiom of Choice is true, then every set can be well ordered.

2. You will probably get lung cancer if you smoke.

3. If the syrup forms a soft ball when you drop it into cold water, then
it is between 112 and 115 degrees Celsius.

4. If kangaroos had no tails, they would topple over.

5. When I’m queen, you will be sorry.

In general, a conditional is formed from two smaller statements: an
antecedent (the supposition that typically comes directly after ‘if’) and a
consequent (the statement that typically comes later in the sentence, and
is sometimes preceded by ‘then’). In the above examples, the antecedents
are:

1. The Axiom of Choice is true.

2. You smoke.

3. The syrup forms a soft ball when you drop it into cold water.

4. Kangaroos had no tails. (Or perhaps: Kangaroos have no tails.)

5. I’m queen.

while the consequents are:

1. Every set can be well ordered.

2. You will probably get lung cancer. (Or perhaps: You will get lung
cancer.)

3. The syrup is between 112 and 115 degrees Celsius.

4. Kangaroos would topple over. (Or perhaps: Kangaroos topple over.)

5. You will be sorry.
1 I take this framing, which emphasizes the contents of conditionals rather than their

grammatical form, from (von Fintel, 2011).
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1 why care about conditionals?

Conditionals are useful for a variety of everyday tasks, including decision
making, prediction, explanation, and imagination.

When making a decision, you should aim to choose an act such that, if
you (were to) perform it, a good outcome is (or would be) likely to result.
Decision theory codifies this intuition in formal terms, and often makes
explicit use of conditionals (Gibbard & Harper, 1981; Vinci, 1988; Bradley,
2000; Cantwell, 2013).

Conditionals are also useful for deriving predictions and explanations
from theoretical models. If I am not sure which model of climate change
to accept, I can use conditionals to reason about how much the earth’s
temperature will increase if each of the models under consideration is true.
To check whether a model explains the data I have already observed, I can
use conditionals to check whether, if a given model is true, my data should
be expected. (For a defense of conditionals in scientific explanation, see
Woodward, 2004; for a defense of conditionals in historical explanation,
see Reiss, 2009, and Nolan, 2013.)

Children’s pretend play is both developmentally important, and closely
related to reasoning with conditionals. Amsel and Smalley (2000), Dias and
Harris (1990), Gopnik (2009), Harris (2000), Lillard (2001), and K. Walton
(1990) argue that children’s pretense (for example, pretending a banana
is a telephone), involves constructing an alternative scenario to what is
known or believed to be true, and then reasoning about what would
happen in that scenario. While children can express their thoughts about
pretend scenarios without the explicit use of conditionals, conditionals
are particularly well suited to expressing these thoughts. Weisberg and
Gopnik (2013) argue that the ability to reason about non-actual scenarios
is crucial to learning from and planning for the actual world, since it
enables children to generate and compare a range of alternative models of
reality. Krzyzanowska (2013) argues that the mechanism that lets children
evaluate conditionals is the same as the one that lets them attribute false
beliefs to others.

In addition to playing a crucial role in everyday reasoning and cognitive
development, conditionals do work in philosophical analyses of a variety of
concepts. Any philosophical idea that relies on the notion of dependence is
ripe for a conditional analysis: to say that one thing e depends on a second
thing c is arguably to say that if c is one way, then e is some corresponding
way, and if c is a different way, then e is a correspondingly different
way. Conditionals famously appear in analyses of causation (see Menzies,
2014, and Collins, Hall, and Paul, 2004, for overviews), dispositions (Prior,
Pargetter, & Jackson, 1982; Choi, 2006, 2009), knowledge (Nozick, 1981;
Sosa, 1999), and freedom (Moore, 1912; Ayer, 1954).
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Finally, conditionals figure in several common patterns of reasoning, to
which we now turn.

2 common patterns of reasoning

The following argument forms look compelling in ordinary, natural-
language arguments (though we will see that all of them have putative
counterexamples). Different formal theories of conditionals yield different
verdicts about which are valid.

2.1 Modus Ponens

Modus ponens is the inference form:

1. If A, then C.

2. A.

∴ C.

Modus ponens is one of the most central—arguably the most central—of
the inference forms involving conditionals. Bobzien (2002) traces its roots
back to Aristotle’s hypothetical syllogisms, and through the logic of the
Peripatetics and antiquity. Gillon (2011) notes that modus ponens was a
common inference pattern in Pre-Classical Indian philosophy, and quotes
a representative argument in which the third-century Buddhist logician
Moggaliputta Tissa explicitly notes the inconsistency of simultaneously
believing ‘if A, then C’, ‘A’, and ‘not C’. Ryle (1950) even advances a theory
of conditionals based entirely on their ability to license modus ponens: an
utterance of ‘if A then C’ is an ‘inference ticket’ that allows one to move
from the premise A to the conclusion C.

Despite its perennial popularity, there are apparent counterexamples
to modus ponens. One sort (McGee, 1985) involves nested conditionals.
Suppose you see a fisherman with something caught in his net. You are
almost sure it is a fish, but the next likeliest option is that it is a frog. McGee
argues that you should accept the premises of the following argument, but
not the conclusion (since, if the animal has lungs, then it is not a fish but a
frog).

1. If that is a fish, then if it has lungs, it’s a lungfish.

2. That is a fish.

∴ If it has lungs, it’s a lungfish.

Another type of apparent counterexample (Kolodny & MacFarlane,
2010; Darwall, 1983) involves ‘ought’s or ‘should’s. Consider this variant
of Darwall’s example.
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1. If you want to hurt my feelings, you should make fun of the way
my ears stick out.

2. You want to hurt my feelings.

∴ Therefore, you should make fun of the way my ears stick out.

Even if you do want to hurt my feelings, you shouldn’t make fun of the
way my ears stick out, because it’s wrong to hurt my feelings. Dowell
(2011), and Lauer and Condoravdi (2014) object to the Darwall example
(and other, related examples) on the grounds that they equivocate on
different meanings of ‘should’.

Yet another type of apparent counterexample to modus ponens, dis-
cussed by D. Walton (2001), involves defeasible inferences, like the famous
Tweety Bird example from cognitive science (Brewka, 1991).

1. If Tweety is a bird, then Tweety flies.

2. Tweety is a bird.

∴ Tweety flies.

The first premise of the Tweety bird argument says that there is a defeasible
connection between being a bird and flying—one that can be overridden
by extra information, e.g., that Tweety is a penguin. Thus, the premises
are true, and the conclusion false, in the case where Tweety is a penguin.

2.2 Modus Tollens

Modus tollens is the inference form:
1. If A, then C.

2. Not C.

∴ Not A.

Modus ponens and modus tollens seem to have originated together (see
Bobzien, 2002, and Gillon, 2011), and are closely related. Both inferences
posit a three-way inconsistency between ‘if A, then C’, ‘A’ and ‘not C’.
Affirm two of these inconsistent claims, and you’ll have to deny the third.

Yalcin (2012a) presents a putative counterexample to modus tollens.
Consider an urn that contains 100 marbles—some red, some blue, some
big, and some small—in the following proportions.

blue red

big 10 30

small 50 10

A marble is chosen at random and placed under a cup; no other informa-
tion about the situation is available.
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In Yalcin’s scenario, it is reasonable to accept the premises, but not the
conclusion, of this instance of modus tollens.

1. If the marble is big then it’s likely red.

2. The marble is not likely red.

∴ The marble is not big.

2.3 Conditional Proof

Conditional proof (sometimes called the deduction theorem in formal logic)
lets us establish conditional conclusions without relying on any conditional
assumptions. Suppose that an argument from the premises X and A to
the conclusion C is valid. Then conditional proof lets us conclude that the
argument from X to ‘if A, then C’ is valid. (Unlike modus ponens and
modus tollens, which let us reason from the truth of some propositions to
the truth of another proposition, conditional proof lets us reason from the
validity of one argument to the validity of another.)

Stalnaker (1975) gives an argument that can easily be worked into a
counterexample to conditional proof (though he does not present it that
way). The following argument is valid, since in classical logic, anything
follows from a contradiction:

1. The butler did it.

2. The butler didn’t do it.

∴ The gardener did it.

But the following argument is not valid:

1. The butler did it.

∴ If the butler didn’t do it, then the gardener did it.

Although conditional proof in its full generality looks implausible, a
restricted version is more appealing: if A all by itself entails C, then ‘if A,
then C’ is a truth of logic. (Koons (2014) makes a similar suggestion about
conditional proof in nonmonotonic logic.)

2.4 Transitivity, Contraposition, and Strengthening the Antecedent

Transitivity is the inference form:

1. If A, then B.

2. If B, then C.

∴ If A, then C.

Contraposition is:
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1. If A, then C.

∴ If not C, then not A.

And strengthening the antecedent is:

1. If A, then C.

∴ If A and B, then C.

All three inference forms seem to fail for ordinary conditionals in En-
glish. For transitivity, we have the following counterexample (Stalnaker,
1968, p. 106):

1. If J. Edgar Hoover had been born a Russian, then he would have
been a communist.

2. If J. Edgar Hoover had been a communist, then he would have
been a traitor.

∴ If J. Edgar Hoover had been born a Russian, then he would have
been a traitor.

For contraposition, we have the following counterexample (adapted from
Adams, 1988):

1. If it rains, then it does not rain hard.

∴ If it rains hard, then it does not rain.

And for strengthening the antecedent, we have the following counterex-
ample (Stalnaker, 1968, p. 106):

1. If this match were struck, then it would light.

∴ Therefore, if this match had been soaked in water overnight and it
were struck, then it would light.

Not everyone accepts these putative counterexamples as genuine. Bro-
gaard and Salerno (2008) argue that the meaning of a conditional depends
partly on a contextually determined set of relevant possible worlds. They
claim that the putative counterexamples involve a context shift between
the premises and the conclusion, but in any fixed context, the arguments
are valid.

Von Fintel (2001), Gillies (2007), and Williams (2008) cite linguistic evi-
dence in support of the context shift hypotheses: changing the order of
the premises and conclusions in the counterexample arguments changes
whether they seem true or false. Counterexamples to antecedent strength-
ening are closely related to so-called Sobel sequences (named for Sobel 1970).
A Sobel sequence consists of two sentences of the following form (Gillies,
2007).

(a) If Sophie had gone to the New York Mets Parade, she would have
seen Pedro Martínez.
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(b) But if Sophie had gone to the New York Mets Parade and gotten
stuck behind a tall person, she would not have seen Pedro Martínez.

It seems perfectly reasonable to assert (a) followed by (b). But once some-
one has asserted (b), an assertion of (a) seems inappropriate—after all, if
Sophie had gone to the parade, who’s to say she would not have gotten
stuck behind a tall person?

Fintel, Gillies, and Williams claim that Sobel sequences involve a context
shift: once someone asserts (b), the context changes to make (a) false, but
(a) and (b) are never true in the same context. Moss (2012) proposes an
alternative explanation: once (b) has been asserted, (a) might be true, but
is no longer known, since asserting (b) changes the standards a belief must
meet in order to count as knowledge.

2.5 Simplification of Disjunctive Antecedents

Simplification of disjunctive antecedents (‘simplification’ for short; Nute,
1975) is the argument form:

1. If A or B, then C.

∴ If A, then C.

Simplification seems appealing on its face: surely, to say that the bus will
be late if it rains or snows is to say that the bus will be late if it rains, and
the bus will be late if it snows.

However, one can easily generate counterexamples by substituting the
same sentence for B and C. Suppose I have enough money to visit either
Disneyland or Graceland, but not enough to visit both. Then the premise
of the following argument is true, while its conclusion is false.

1. If I visit Disneyland or I visit Graceland, then I’ll visit Graceland.

∴ If I visit Disneyland, then I’ll visit Graceland.

Counterexamples to strengthening the antecedent can be used to gener-
ate counterexamples to simplification (Fine, 1975). Suppose we have both
of the following:

1. If A, then C.

2. Not: if A and B, then C.

A is logically equivalent to [(A and B) or (A and not B)], so by 1, we have:

3. If [(A and B) or (A and not B)], then C.

But by simplification, the truth of 3 would have to entail the falsity of 2.
So there is a three-way tension between the validity of simplification,

the invalidity of strengthening the antecedent, and the substitution of
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logical equivalents. All three ways out of the puzzle are represented
in the literature: Loewer (1976) and Mckay and Inwagen (1977) reject
simplification; defenders of strict conditional accounts (Section 4.1) accept
strengthening the antecedent; and Nute (1975) and Alonso-Ovalle (2009)
reject substitution.

3 the indicative/counterfactual distinction

Conditionals in English can be divided into two categories, exemplified by
the following pair of sentences (Adams, 1970):

(DD). If Oswald did not shoot Kennedy, then someone else did.

(HW). If Oswald had not shot Kennedy, then someone else would have.

Although (dd) and (hw) are built up from the same antecedent and
consequent, they mean different things. (dd) would be acceptable to most
people familiar with US history: Kennedy was shot, so someone must have
shot him—if not Oswald, then someone else. But (hw) is more contro-
versial; it is accepted by conspiracy theorists, but rejected by those who
believe that Oswald acted alone. Sentences like (dd) are called indicative;
sentences like (hw) are called counterfactual (or sometimes subjunctive).

It’s not clear how to classify conditionals whose antecedents concern
the future. Consider the following sentence, as uttered by a conspirator
before the Kennedy assassination.

(DW). If Oswald does not shoot Kennedy, then someone else will.

Dudman (1983, 1984) and Bennett (1988) argue that future-tensed condi-
tionals like (dw) belong with counterfactuals like (hw); Bennett (2003,
2001; yes the same Bennett!) argues that they belong with indicatives
like (dd); Edgington (1995) argues that there exist distinct categories of
future-tensed indicatives and future-tensed counterfactuals.

Philosophers also disagree about the precise relationship between indica-
tives and counterfactuals. Some favor what Bennett (2003) calls ‘Y-shaped
analyses’, which first explain what is common to indicatives and counter-
factuals, and then bifurcate to explain how this common core can produce
two different kinds of conditionals. Others (notably Gibbard, 1981, and
Bennett, 2003) argue that we need completely separate theories of in-
dicatives and counterfactuals—that there is no interesting core shared by
both.

In what follows, I will write ‘A � C’ to indicate a counterfactual
conditional; ‘A → C’ to abbreviate an indicative conditional; and ‘if A,
then C’ where I wish to remain neutral. I turn now to a popular class of
theories, typically aimed at explaining counterfactual conditionals, but
sometimes extended to cover indicatives.
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4 selection functions

One way to give a theory of conditionals is to spell out their truth conditions,
i.e., the circumstances under which they are true. Formally, philosophers
represent the truth conditions of a sentence as a function from possible
worlds (i.e., ways the world might be) to truth values. Fully specifying
the truth conditions for every conditional would be too tall an order: to
understand the truth conditions for ‘if ontogeny recapitulates phylogeny,
then snakes develop vestigial legs’, we would have to understand the truth
conditions of ‘ontogeny recapitulates phylogeny’ and ‘snakes develop ves-
tigial legs’, and that job falls outside the scope of a theory of conditionals.
So theories of conditionals adopt a more modest aim: to give a recipe for
deriving the truth conditions for ‘if A, then C’ from the truth conditions
of (arbitrary) A and C.

The concept of a selection function (Stalnaker, 1968) provides a way of
assigning truth conditions to a conditional based on the truth conditions
of its antecedent and consequent. The basic idea is that, to evaluate ‘if A,
then C’, we should first consider a set of selected possible worlds where A
is true. (Henceforth, I will use ‘A-worlds’ as shorthand for ‘worlds where
A is true’.) Intuitively, the selected worlds represent ways the actual world
might be if A were true. We then check whether, at all the selected worlds,
C is true. If so, then the counterfactual conditional ‘if A, then C’ is true at
the actual world; otherwise, it is false at the actual world.

More formally, we can model this process in terms of a selection function
f that maps ordered pairs consisting of a possible world and a proposition
onto sets of possible worlds. ‘If A, then C’ is true at a possible world
w if and only if C is true at every world in f (A, w). Different ways of
interpreting the selection function yield different theories of conditionals.

4.1 Strict Conditionals

One natural way to interpret the selection function is to check all possible
A-worlds, and say that ‘if A, then C’ is true at world w just in case C is
true at all of them. (Since what is possible may depend on what is actual,
the truth value of the conditional may vary from world to world.) This
approach yields the strict conditional interpretation of the selection function,
first developed by C. Lewis (1918). The strict conditional approach classifies
transitivity, contraposition, and antecedent-strengthening as valid—which
its opponents claim is a mistake (see D. Lewis, 1973a, pp. 4–12).

The strict conditional interpretation also gives questionable results about
which counterfactuals are true. If I were to leap out of the second-story
window of my office, I would hurt myself—but the strict conditional
account says this is not so. There are possible worlds where I leap out the
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second-story window and remain unharmed: some where there is a safety
net underneath the window, some where I am thoroughly ensconced
in protective bubble wrap, some where my body is much less fragile
than ordinary human bodies, some where the Earth’s gravitational field
is weak. . . but none of them is the sort of world that would result, if
I were to leap out the second-story window. Hájek (manuscript) sums
up the problem this way: on the strict conditional interpretation, most
counterfactuals are false.2

4.2 Closest Worlds

An alternative to the strict conditional approach, typically used for coun-
terfactuals, defines the selection function in terms of similarity among
possible worlds. For every world w, we can rank worlds from most similar
to w (‘closest’) to least similar (‘farthest away’). D. Lewis (1973a) holds that
every such ranking is a total preorder: two worlds can be equally similar to
w, but they must be comparable, so that either they are equally similar or
one is more similar than the other. (Stalnaker, 1968, discusses the special
case of the logic where no two worlds are equally close to a given world;
Pollock, 1976, discusses a generalization where worlds may be incompara-
ble in terms of closeness.) A� C is true at w just in case C is true at all
the A-worlds that are most similar to w.

Formally, the closest-worlds interpretation can be modeled using a
system of ‘spheres’—sets of worlds such that every world in the set is
closer to w than every world outside it (D. Lewis, 1973a). Then f (A, w) is
the intersection of the set of A-worlds with the smallest sphere containing
at least one A-world.3

Unlike the strict conditional interpretation, the closest-worlds interpreta-
tion of the selection function can explain why transitivity, contraposition,
and antecedent-strengthening seem invalid. On the closest-worlds inter-
pretation, they are invalid, and we can use diagrams (adapted from D.
Lewis, 1973a) to illustrate why.

To see why transitivity is invalid, consider a system of spheres model
centered on a particular world w, depicted in Figure 1a. (Worlds are points
in the diagram, and spheres are concentric circles.) The A-worlds are
the points inside the shape labeled A, the B-worlds are the points inside

2 Hájek argues that the problem extends beyond strict conditional accounts; it also affects
the closest-worlds account in Section 4.2. K. S. Lewis (2015) argues that we can save the
closest-worlds account by ignoring worlds that are deemed irrelevant by a contextually-
determined standard of relevance.

3 Some technical difficulties arise when there is no smallest sphere containing at least
one A-world, but only a limitless sequence of ever-smaller spheres; see D. Lewis (1973b,
pp. 424–425); Stalnaker (1981, pp. 96–99); Warmbrod (1982); and Díez (2015) for discussion.
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the shape labeled B, and the C-worlds are the points inside the shape
labeled C. All the closest A-worlds to w are B-worlds, and all the closest
B-worlds are C-worlds; yet none of the closest A-worlds are C-worlds.
Figure 1b shows a counterexample to contraposition, and Figure 1c shows
a counterexample to antecedent strengthening.

Defenders of the closest-worlds theory have the burden of spelling out
what ‘closeness’ amounts to. D. Lewis (1973a) claims that closeness is
based on similarity among worlds: to say that one world is closer to w
than another is to say that the first world is more similar to w than the
second. But Fine (1975) presents an example where greater similarity does
not make for greater closeness. (I have taken a few liberties with the details
of the example.)

On September 26, 1983, at the height of the Cold War, a Soviet early-
warning system went off, falsely reporting that missiles had been launched
at Russia from the US (Aksenov, 2013). The officer who saw the alarm,
Stanislav Petrov, did not report it to his superiors, and so Russia did not
launch missiles in retaliation. The following conditional seems true:

PETROV. If Petrov had informed his superiors at the time of the false
alarm, then there would have been a nuclear war.

After all, Petrov’s superiors were poised to launch the missiles in the event
of an attack, and it seems that the phone lines and missile system were in
working order. The only missing ingredient was the report from Petrov.

But among the worlds where Petrov informs his superiors at the time
of the false alarm, those where the Soviet missile launch is prevented
by a happy accident—incompetence by Petrov’s superiors, or a broken
telephone, or a malfunction of the Soviet missile system—are more similar
to the actual world than those where the launch goes through. Worlds
where the missile launch is prevented by a happy accident agree with the
actual world about the total number of nuclear wars in the 20th Century—
surely a more important dimension of similarity than the functioning or
malfunctioning of one measly telephone line.4

4.3 Past Predominance

To handle the petrov example, a natural thought goes, we need an account
of the selection function that treats the past differently from the future.
When Petrov made his choice, the missile launch system was already in

4 Defenders of the closest-worlds interpretation reply that we should understand ‘similarity’
so that agreeing about the total number of nuclear wars in the 20th Century does not make
for greater similarity than agreeing about the functioning or malfunctioning of one measly
telephone line; see D. Lewis (1979) and Arregui (2009).
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Figure 1: Counterexamples to transitivity, contraposition, and strengthening the
antecedent in the closest-worlds framework
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t1
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Figure 2: A model of branching time

working order—but it was not yet determined whether there would be a
war.

Thomason and Gupta (1980) propose an account of the selection function
that takes seriously the past-future asymmetry. They model the universe
using branching time, where each moment has only one possible past,
but multiple possible futures. (Cross, 1990, shows that the assumption of
branching time is dispensable; past predominance can also be modeled
using ordinary possible worlds.) Figure 2 depicts such a model. The
nodes t1, t2, . . . , t9 are moments. Paths through the tree—in this example,
{t1, t2, t4, t7}, {t1, t2, t5, t8}, and {t1, t3, t6, t9}—are called histories.

We can think of each possible world as containing information about
which moment is present, as well as information about which history is
actual. (On this way of understanding the model, even when the present
moment has more than one possible future, there is a fact of the matter
about which future will occur.)

Thomason and Gupta adopt a past predominance principle, which says
that if a world is in f (A, w), then it must diverge from w as late as
possible—there can be no other A-world whose history overlaps w for a
longer span than f (A, w).5

The past predominance view can explain the petrov example. Con-
sider the following interpretation of our diagram: the actual history is
{t1, t2, t4, t7}. At t1, it is not yet settled whether the early warning system
goes off. The early warning system goes off t2, and Petrov must decide
what to do. (At t3, which belongs to an alternative history, there is never
any alarm.) At t4, Petrov decides not to notify his superiors, and so at
t7, there is no nuclear war. (At t5, which belongs to another alternative
history, Petrov decides to notify his superiors, and a nuclear war ensues at
t8.)

Now consider the conditional petrov, as uttered at t7. Its antecedent is
false at the actual world, which has the history {t1, t2, t4, t7}. The closest

5 For technical reasons, Thomason and Gupta also assume that f (A, w) is a singleton set,
and posit that each world contains a choice function, which specifies not just what the future
will be like, but what the future would have been like had the past gone differently. I pass
over the details.
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worlds where its antecedent is true must have the history {t1, t2, t5, t8},
which diverges from the actual world’s history at the last possible moment
yet still makes the antecedent true. Since the actual present moment is t7,
it seems reasonable to select t8 as the present moment at all the closest
worlds. Since there is a nuclear war at t8, the consequent of petrov is true
at all the the closest worlds; hence petrov is true at the actual world.

4.4 Causal Models

A class of examples called Morgenbesser cases (Slote, 1978, 27n) suggest that
the selection function should respect causal as well as temporal constraints.
Edgington (2004) gives a representative Morgenbesser case.

Our heroine misses a flight to Paris due to a car breakdown. She com-
plains to the repairman: ‘If I had caught the plane, I would have been
halfway to Paris by now!’ But he corrects her: ‘I was listening to the radio.
It crashed. If you had caught that plane, you would be dead by now.’

The repairman claims that the following counterfactual is true.

LETHAL. If the heroine had caught that plane, she would be dead by
now.

He is right. It’s not clear that past predominance can explain why he’s
right: the plane crash occurs after our heroine would have made her
flight.6 What matters is that the plane crash is causally independent of
whether she makes her flight. This is why, when assessing what would
have happened if our heroine had made her flight, we should hold the
plane crash fixed.

Pearl (2009) proposes a causal theory of counterfactuals that accounts
for Morgenbesser cases. His theory relies on the concept of a causal model,
consisting of a set of variables, which represent what circumscribed parts
of the world are like, and a set of structural equations, which represent
direct causal links between variables. Each variable is assigned an actual
value; we can think of variables as questions about parts of the world, their
possible values as possible answers to those questions, and their actual
values as the correct answers in the actual world. Note that although I
introduced selection semantics as a recipe for assigning truth values to
conditionals at worlds, Pearl’s theory is a recipe for assigning truth values
to conditionals at model-valuation pairs.7

6 But see Phillips (2007) for an argument that past predominance can provide an adequate
explanation.

7 Pearl’s theory can be understood as a version of the situation semantics defended by
Barwise and Perry (1981). Instead of assigning truth values to propositions at worlds, it
assigns truth values to propositions at situations, which represent ways that circumscribed
parts of the world could be.
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We can understand Pearl’s theory by first building a causal model of
Edgington’s plane example, then using the model to evaluate the condi-
tional lethal. The model will include the following variables.

car =

1 if the car is working,

0 otherwise.

catch =

1 if our heroine catches her plane,

0 otherwise.

crash =

1 if there is a crash,

0 otherwise.

location =


0 if our heroine ends up stuck at the side of the road,

1 if our heroine ends up in Paris,

2 if our heroine ends up dead.

car and crash are what Pearl calls exogenous variables; their values are
determined by factors outside the model. catch and location are endoge-
nous variables; their values are determined by the values of other variables
in the model.

For each of the endogenous variables, the model specifies a structural
equation. In the plane example, the structural equations are as follows.

catch = car

location =


0 if catch = 0,

1 if catch = 1 and crash = 0,

2 if catch = 1 and crash = 1.

(NB: the structural equations are asymmetric. The variable on the left-hand
side has its value causally determined by the variables on the right-hand
side.)

In the plane example, the variables take on the following values.

car = 0,

catch = 0,

crash = 1,

location = 0.

We can summarize information about the variables and structural equa-
tions using the causal graph in Figure 3a. An arrow from one variable to



558 r . a . briggs

car catch

crash location

(a) The actual model

car catch

crash location

(b) The submodel generated by intervening to make the antecedent true

Figure 3: Causal graph used to evaluate the counterfactual lethal: ‘If the heroine
had caught that plane, she would be dead by now’.

another indicates that the first variable exerts direct causal influence on
the second, but unlike the structural equations, the causal graph doesn’t
specify the nature of that influence.

Given a pair consisting of a model and an assignment of values to
variables in the model, we can use a selection function to assign truth
values to conditionals. (This time, the selection function takes in a model,
and returns a singleton containing one new model.) Pearl’s account is
restricted to counterfactuals whose antecedents are either ‘literals’, which
say that a particular variable takes on a particular value, or conjunctions
of literals. (So ‘the heroine’s car breaks down and the plane crashes’ is an
acceptable antecedent, while ‘the heroine’s car breaks down or the plane
crashes’ is not.)

Where 〈M, V〉 is a model paired with an assignment of values to vari-
ables, and A is an antecedent with the appropriate form, we can generate a
submodel 〈MA, VA〉 by ‘intervening’ on 〈M, V〉 to make A true. Intuitively,
we can imagine an intervention as an action by someone outside the model
who ‘reaches in’ to make the antecedent true, without tinkering with
variables that are causally independent of the antecedent. For instance,
a cabbie could intervene to set catch = 1 by driving our heroine to the
airport regardless of whether or not her car has broken down.

Formally, the submodel MA is a model with the same variables as M,
but different structural equations. If X is one of the variables mentioned in
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A, and X is endogenous, we delete the structural equation corresponding
to X, and make X exogenous instead. (This corresponds to the idea that an
intervention makes A true regardless of whether its typical causes obtain;
the intervening cabbie enables the heroine to get to the airport whether
or not her car is in working order.) We then set the value VA of each
X mentioned in A to the value specified by A. (This corresponds to the
idea that the intervention makes the antecedent true.) If a variable is not
causally influenced (either directly or indirectly) by any of the variables
mentioned in the antecedent, then VA assigns it the same value as V. (This
corresponds to the idea that an intervention is minimal, so that only the
variables mentioned in the antecedent are directly affected.) Finally, if a
variable is causally influenced by one of the variables mentioned in the
antecedent, then its value VA is fixed by the structural equations. (This
corresponds to the idea that an intervention is minimal in another sense: it
does not interfere with the downstream effects of the variables mentioned
in the antecedent.)

We are now ready to evaluate the counterfactual

LETHAL. If the heroine had caught that plane, she would be dead by
now.

in our original model. To check whether lethal is true in the original
model, we intervene to make its antecedent true—i.e., to set catch = 1.
We then check whether the consequent is true (i.e., location = 2) in the
resulting submodel.

First, we delete the structural equation for catch, turning catch into
an exogenous variable. Our only remaining structural equation is

location =


0 if catch = 0,

1 if catch = 1 and crash = 0,

2 if catch = 1 and crash = 1.

(The graph for the resulting submodel is shown in Figure 3b.)
Second, we set the values of the variables. The antecedent requires that

catch = 1.

Since neither car nor crash is downstream from catch, we have

car = 0,

crash = 1.

Finally, the value of location is fixed by the structural equation. Since
catch = 1 and crash = 1, we have

location = 2.
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Therefore, in the submodel, the protagonist is dead, so in the original
model, had she caught her plane, she would have been dead.

The procedure described is a type of selection semantics: given an
antecedent and a model-valuation pair, we call on a ‘submodel’ selection
function that returns the singleton set of another model-valuation pair
(a submodel). Galles and Pearl (1998) argue that this selection semantics
is formally equivalent to the closest-worlds account. However, there is
a key difference between the two accounts: the selection semantics lets
us assigns truth conditions to counterfactuals built up from arbitrary
sentences, while the causal modeling account only lets us assign truth
values to counterfactuals whose antecedents are literals, or conjunctions
of literals. Schulz (2011) and Briggs (2012) propose ways of extending
the language to counterfactuals with logically complex antecedents; their
proposed theories are logically inequivalent to the closest-worlds semantics.
Huber (2013) proposes an alternative way of extending the language that
makes it logically equivalent to the closest-worlds account.

5 counterpossible conditionals

Selection semantics has trouble with counterpossible conditionals—that is,
conditionals whose antecedents are impossible. It counts all counterpos-
sible conditionals as trivially true. Where A is impossible, there are no
possible A-worlds. Therefore, if we feed the selection function an impos-
sibility A and a world w and ask it to return a set of possible A-worlds,
it returns the empty set. Trivially, all the A-worlds in the empty set are
C-worlds, so that trivially A� C is true in the original world.

But counterpossibles seem to have non-trivial truth conditions: some
are true, while others are false. Examples of true counterpossibles include:

If Hobbes had (secretly) squared the circle, sick children in the
mountains of South America at the time would not have cared
(Nolan, 1997, p. 544).

If I were a horse, then I would have hooves (Krakauer, 2012, p. 10).

If wishes were horses, beggars would ride (Krakauer, 2012, p. 10).

If intuitionistic logic were the correct logic, then the law of excluded
middle would no longer be unrestrictedly valid (adapted from Bro-
gaard & Salerno, 2013).

Corresponding examples of false counterpossibles include:

If Hobbes had (secretly) squared the circle, sick children in the
mountains of South America at the time would have taken notice.
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If I were a horse, then I would have scales.

If wishes were horses, no one would own any horses.

If intuitionistic logic were the correct logic, then the law of excluded
middle would still be unrestrictedly valid.

Assigning non-trivial truth values to counterpossibles doesn’t just cap-
ture linguistic intuitions; it also enables counterpossibles to do valuable
philosophical work. Non-trivial counterpossibles help us assess rival philo-
sophical, mathematical, and logical theories by telling us what would
follow if those theories were true (Krakauer, 2012; Brogaard & Salerno,
2013; Nolan, 1997). They explain how necessary events and omissions of
impossible events are causally relevant to the actual world—how a mathe-
matician’s failure to disprove Fermat’s Last Theorem prevented her from
getting tenure, how my failure to be in two places at once caused me to
miss a colloquium talk, or how the copresence of a mental property and its
subvening physical property can result in a subject’s raising his arm (Bern-
stein, 2016). They can be used to give an account of essences: an essential
property is one such that, if the bearer had lacked it, then the bearer would
not have existed (Brogaard & Salerno, 2013, 2007). (Non-trivial counterpos-
sibles save this account from certain implausible commitments—e.g., that
living in a world where 2 + 2 = 4 is trivially part of everyone’s essence.)

Not everybody agrees that counterpossibles have non-trivial truth values,
however. Williamson (2007, p. 172) argues that apparent examples of non-
trivial counterpossibles collapse under closer scrutiny. In a slight variant
on Williamson’s example,8 imagine that a student is mulling over a graded
arithmetic test. Of the 12 problems on the test, the student has gotten
the last one wrong: ‘what is 5 + 7?’ The student, who answered ‘11’,
laments: ‘If only 5 + 7 were 11, I would have gotten a perfect score!’ This
seems to be true, and furthermore, it seems false that if 5 + 7 were 11, the
student would have gotten one of the problems wrong. But appearances
are deceptive. Suppose that 5 + 7 were 11. Then in answering all the
problems right, the student would have given five right answers followed
by seven more right answers, for a total of 11 right answers. Since there
are 12 problems on the test, the student would have gotten one problem
wrong after all. (For a rebuttal of Williamson’s argument, see Salerno and
Brogaard, 2007.)

5.1 Impossible Worlds

Nolan (1997) gives an account of counterpossibles by supplementing the
closest-worlds account with impossible worlds—ways the world couldn’t

8 Thanks to Sharon Berry for suggesting this version in conversation.
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be. We can then say that A � B is true at w just in case B is true at all
the closest possible or impossible A-worlds to w. Two questions then arise:
what are impossible worlds, and what makes them closer to or further
away from the actual world?

The ontology of impossible worlds has spawned its own literature: they
may be collections of individuals like our actual world (Yagisawa, 2010),
or they may be sets of sentences in some suitable language (Hintikka,
1975; Melia, 2001; Sider, 2002; see Berto, 2013, for a general overview and
discussion.) Another pressing question for theorists of counterpossibles
concerns the logical structure of impossible worlds. Is it the case that for
every set of sentences, there is some impossible world where all and only
the sentences in the set are true? Or is there more logical structure we can
impose on impossible worlds?

Proponents of impossible worlds typically don’t require that the im-
possible worlds be closed under classical logical consequence—in other
words, they don’t require that whenever some propositions are true at an
impossible world, all the classical logical consequences of those propo-
sitions are true at the world too. If impossible worlds had to be closed
under classical logical consequence, then whenever A was impossible by
the rules of classical logic, A � C would be trivially true. Nolan (1997,
p. 547) argues that we should not require impossible worlds to be closed
under any kind of logical consequence, since for every putative logical
truth, there are non-trivial facts about what the world would be like if
that logical truth did not obtain. A similar line of reasoning suggests that
some impossible worlds have truth-value gluts: we can speculate about
what would happen if there were true contradictions, so there must be
impossible worlds at which there are true contradictions.

Bjerring (2013) argues that some impossible worlds have truth-value
gaps. Otherwise, he argues, our theory of counterpossibles would misclas-
sify certain conditionals as true, such as this one: ‘If intuitionistic logic
were correct, then the Law of Excluded Middle would hold.’ (The Law of
Excluded Middle says of every proposition that either it or its negation
holds; intuitionists famously deny it.)

What about closeness? Nolan (1997) proposes the

Strangeness of Impossibility Condition. Any possible world is more
similar [closer] to the actual world than any impossible world (Nolan,
1997, p. 550).

The Strangeness of Impossibility Condition ensures that where A is a
possible proposition, supplementing the closest-worlds account with im-
possible worlds has no effect on how we evaluate A� C. So long as A
is possible, the set of closest possible A-worlds coincides with the set of
closest possible or impossible A-worlds.
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Bjerring (2013, p. 348) proposes another constraint on closeness, which
implicitly relativizes closeness to the antecedent of a counterfactual. Given
a collection of logical systems L1, L2, . . . , Ln, where L1 is classical logic, and
where WLi is the set of worlds deductively closed under Li’s entailment
relation, Bjerring endorses the

Relative Closeness Condition. For any counterfactual whose antece-
dent presupposes that some logic Li is correct (true, adequate), a
world in modal space WLi is closer to the actual world than any
world in modal space WLj , where WLi 6= WLj , and where i ≥ 1 and
j > 1.9

Brogaard and Salerno (2013) develop a theory on which impossible
worlds are close to the actual world to the extent that they

1. minimize discrepancies with relevant background facts about the
actual world (where the relevance of background facts is fixed by
context), and

2. minimize violations of relevant a priori entailment (where relevant a
priori entailment is spelled out in more detail in the paper).

As an illustration of these conditions, Brogaard and Salerno use them to
evaluate the counterpossible conditional ‘if water had not been H2O, then
water would have been a monkey’. This counterpossible is false. Their
theory delivers the correct verdict, they claim, because it is a priori that
water is not a monkey.

To derive this verdict, they consider two impossible worlds where the an-
tecedent is true. At w1, water is some chemical compound XYZ (different
from H2O), while at w2, water is a monkey.

w1 w2

water is not H2O water is not H2O

water is XYZ water is a monkey

Since there are more a priori truths that hold at w1 than at w2, and since
both agree with the actual world about the same number of propositions,
w1 is closer to the actual world than w2. (Brogaard and Salerno tacitly
assume that there are no antecedent worlds closer to the actual world than

9 As stated by Bjerring, the Relative Closeness Condition seems to presuppose that WLi and
WLj do not intersect. We can get rid of this presupposition by modifying the condition
slightly:

Relative Closeness Condition
∗. For any counterfactual whose antecedent presupposes

that some logic Li is correct (true, adequate), a world in modal space WLi is closer to
the actual world than any world outside WLi .
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w1 or w2.) Thus, at least one of the closest impossible worlds where water
is not H2O is one where water fails to be a monkey, so the conditional is
false at the actual world.

5.2 Relevant Logic

Relevant logics are motivated by the thought that the conditional ‘if A,
then C’ claims that the truth of A is connected to the truth of C. Relevant
logics originated as rivals to the material conditional account, on which
the conditional ‘if A, then C’ is true just in case A is false or C is true (see
Section 6). However, some of the same intuitions that favor relevant logics
over the material conditional account also favor them over the closest-
worlds account. After all, the reason it seems wrong to say ‘if Hobbes had
squared the circle, sick children in the mountains of South America would
have cared’ is that there is no connection between Hobbes’s squaring the
circle and the interests of sick South American children. Likewise, the
reason it seems right to say ‘if I were a horse, I would have hooves’ is
because something’s being a horse is connected to its having hooves.

Relevant logics are often characterized in proof-theoretic terms. But
Routley and Meyer (1973, 1972a, 1972b) develop a versatile semantics for
the conditionals of relevant logics, which generalizes the strict conditional
semantics of Section 4.1. Recall that on the strict conditional interpretation,
A� C is true at w just in case C is true at all possible A-worlds (relative
to w). We can rewrite the selection function in terms of a two-place ac-
cessibility relation among worlds: we say that Rwx just in case world x is
possible according to world w, and that f (A, w) is the set of all A-worlds
x such that Rwx.

Routley and Meyer interpret the conditional in terms of a three-place
accessibility relation among worlds. ‘If A, then C’ is true at w just in case,
for all worlds x and y such that Rwxy and x is an A world, C is true at y.
Different restrictions on relation R generate different relevant logics. (For
some logics, we need impossible worlds where both a sentence and its
negation fail to be true, or impossible worlds where both sentence and its
negation are true.)

This three-place R relation is formally useful, but does it mean anything?
Beall et al. (2012) propose three interpretations of Rwxy, which spring
from different ways of grouping w, x, and y.10 All three interpretations
can be illustrated with the conditional

THERMITE. If you light a bucket of thermite with a titanium fuse, then a
huge explosion will ensue.

10 For a discussion of other ways of interpreting the ternary relation, with references, see
Jago (2013).
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grouping the second and third worlds together : Rw〈xy〉 .
‘If A, then C’ says at the actual world w, there are no counterexamples
where A is true and C is false. We typically think of counterexamples as
involving a single world which makes some things true and other things
false, but relevant logicians split the labor between two worlds x and y, so
that whatever holds at x is true, while whatever fails to hold at y is false.
In the example of thermite, we might think of potential counterexamples
as divided into an earlier part x, when a bucket of thermite may or may
not be lit with a titanium fuse, and a later part y, when there may or may
not be an explosion. If the actual world w admits some possible two-part
scenarios that begin with the lighting of thermite with a titanium fuse, but
fails to end in a huge explosion, then these scenarios are counterexamples
that falsify thermite.

grouping the first and second worlds together : R〈wx〉y .
‘If A, then C’ says that using one’s current information to draw inferences
from A will yield the information that C. To say that Rwxy is to say that
when the rules of w are applied to the information in x, it is possible to
infer y (or some information that entails y). In the case of thermite, we
can imagine w as a parcel of information specifying the actual laws of
nature, and x as another parcel of information specifying that a bucket
of thermite has been lit with a titanium fuse. If sticking these parcels of
information together licenses the conclusion that there has been a huge
explosion (and does so no matter how we fill in x, the information that
the thermite has been lit), then the conditional thermite is true.

grouping the first and third worlds together : Rw〉x〈y . ‘If
A, then C’ says that C is necessary relative to A, or that C is necessary
in an A-ish way. The conditional thermite does not say it is absolutely
necessary that a huge explosion will ensue. The world w may permit a
possible scenario y in which no huge explosions occur. However, once we
enrich w with some additional information x, specifying that a bucket of
thermite has been lit with a titanium fuse, we can consider what is possible
under that supposition. If there is some way of filling in the antecedent
that makes y a possibility, then y is possible not just absolutely, but under
the supposition that the antecedent of thermite is true.

Mares and Fuhrmann (1995) propose a theory of counterfactuals that
combines the closest-worlds interpretation of the selection function with
the relevant interpretation of the conditional: A� B is true at a world w
just in case the relevant conditional ‘if A, then B’ is true at all closest A-
worlds to w. Mares (1994) argues that this theory has useful applications to
conditional analyses of causation, and to theories of conditional obligation.
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6 the material conditional account of indicatives

According to the material conditional account defended by Grice (1989)
and Jackson (1987), an indicative conditional A → C is true just in case
either its antecedent A is true, or its consequent C is false. (The material
conditional account is almost always offered as a theory of indicative condi-
tionals alone, since counterfactual conditionals with false antecedents can
be false. Even though I don’t keep a horse, it is false that if I were to keep a
horse, it would breathe fire.) The material conditional account has a simple
explanation for the apparent validity of all the the inferences discussed in
Section 2 (modus ponens, modus tollens, conditional proof, strengthen-
ing the antecedent, transitivity, contraposition, and simplification): these
inferences really are valid.

Furthermore, there are persuasive arguments for the conclusion that
an indicative conditional A→ C is true if and only if the corresponding
material conditional ‘not A or C’ is true. Suppose the indicative conditional
is true. Then it can’t have a true antecedent and a false consequent; that
would be a violation of modus ponens. So the indicative conditional
entails the material conditional. But when I know that either C holds or A
doesn’t, I can infer that if A, then C. So the material conditional entails the
indicative. (Stalnaker, 1975, p. 136, calls this the direct argument.) Since
the material and indicative conditionals entail each other, they must be
equivalent.

Gibbard (1981) provides a formal argument for the equivalence of the
indicative and material conditionals based on three logical principles.
Where ‘not A’ is abbreviated ¬A and ‘A or B’ is abbreviated A ∨ B, the
principles are:

Pseudo Modus Ponens. A→ C entails ¬A ∨ C.

Import-Export. A→ (B→ C) is equivalent to (A ∧ B)→ C.

Conditional Proof. If A entails C, then A→ C is a logical truth.

To show that A → C and ¬A ∨ C are equivalent, Gibbard only needs to
show that each entails the other. By Pseudo Modus Ponens, A→ C entails
¬A ∨ C. The proof that ¬A ∨ C entails A→ C is as follows.

1. ((¬A ∨ C) ∧ A) entails C. (By tautological reasoning.)

2. It is a truth of logic that ((¬A ∨ C) ∧ A)→ C. (By 1 and Conditional
Proof.)

3. It is a truth of logic that (¬A ∨ C) → (A → C). (By 2 and Import-
Export.)
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4. It is a truth of logic that ¬(¬A ∨ C) ∨ (A → C). (By 3 and Pseudo
Modus Ponens.)

5. (¬A ∨ C) entails (A→ C). (By 4 and tautological reasoning.)

Despite these points in its favor, the material conditional account faces
substantial difficulties. It seems to yield wrong predictions about logical
validity, often called ‘paradoxes of material implication’.

For example,the material conditional account entails that all of the
following are truths of logic:

Either the unburied dead will walk the Earth if I bury a chicken head
in my backyard, or the unburied dead will walk the Earth if I fail to
bury a chicken head in my backyard (McGee, 2005).

Either you are virtuous if you are rich, or you are rich if you are
virtuous.

One of these three things holds: if you grant voting rights to children,
you will grant them to guinea pigs; if you grant voting rights to
guinea pigs, you will grant them to inanimate objects; or if you grant
voting rights to inanimate objects, you will take them away from
adult human beings.

Furthermore, the material conditional account entails that all of the follow-
ing inferences are valid. (The proof of God’s existence is due to Edgington,
1986.)

1. I will not do my chores today.

∴ If I do my chores today, then the world will implode.

1. Dinner will be delicious.

∴ If I burn the veggie burgers and pour sand into the sweet potatoes,
then dinner will be delicious.

1. If God does not exist, then it’s not the case that if I pray, my prayers
will be answered.

2. I do not pray.

∴ God exists.

In addition to yielding bad predictions about validity, the material
conditional account yields bad predictions about the probabilities of con-
ditionals. Suppose I draw a card at random from a 52-card deck. The
material conditional ‘either I do not draw a red ace, or I draw the ace of
hearts’ has probability 51/52. (The only way for me to make it false is to
draw the ace of diamonds.) Therefore, by the material conditional account,
I should assign probability 51/52 to the indicative conditional ‘if I draw a
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red ace, then it will be the ace of hearts’. But the indicative conditional ‘if
I draw a red ace, then it will be the ace of hearts’ should get probability
1/2, since half the time when I draw a red ace, it will be an ace of hearts.

More generally, the material conditional account falls afoul of

The Thesis. Whenever A and C are propositions, the probability of the
indicative conditional A→ C is equal to the conditional probability
of C given A, understood as

Pr(A|C) = Pr(A ∧ C)
Pr(C)

.

the thesis is a plausible way of unpacking the so-called Ramsey test, based
on a famous remark by Ramsey (1978, 143n):

If two people are arguing ‘If p will q?’; and are both in doubt
as to p, they are adding p hypothetically to their stock of
knowledge and arguing on that basis about q; so that in a sense
‘If p, q’ and ‘If p, [not q]’ are contradictories.

Unfortunately, the material conditional account is straightforwardly in-
compatible with the thesis, and with the Ramsey test more generally. The
probability that a material conditional is true is not, in general, the condi-
tional probability of the consequent given the antecedent. (The probability
of the material conditional may be anywhere between that conditional
probability and 1.) Furthermore, where A is highly unlikely, the material
conditional ‘not A or C’ is both highly believable and highly assertible,
whether or not adding A to one’s stock of knowledge would justify a high
degree of confidence in C.

Grice (1989) and Jackson (1987) explain these wrong predictions by
distinguishing between true sentences and sentences that can appropriately
be asserted. According to Grice, in a situation where I will not do my
chores today, it is technically true that if I do my chores today, then the
world will implode. Likewise, in a situation where dinner will be delicious,
it is technically true that if I burn the veggie burgers and pour sand into the
sweet potatoes, then dinner will be delicious. Nonetheless, it is misleading
to assert a conditional when I know that its antecedent is false, or when I
know that its consequent is true, because it is misleading to assert a weak
claim when I could have asserted a stronger one. Refusing to assert the
stronger claim is liable to mislead my audience into thinking that I do
not know it. The supposedly paradoxical arguments are valid. When their
premises are true, their conclusions may be bad, but this does not make
their conclusions false.

Grice’s proposed mechanism for explaining away the problem is useful
in other domains: it can explain why some non-conditional assertions are
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misleading. For instance, if you ask where John is, and I know that he
is in the library, it is misleading for me to reply ‘He is either at the pub,
or in the library.’ A similar trick works for negated conjunctions, as an
example by D. Lewis (1976) shows. If I point out a harmless mushroom
that I plan to keep for myself, and remark ‘You won’t eat that and live’,
knowing that my assertion will prevent you from eating it, then I am guilty
of misleading you, though what I say is technically true.

Jackson (1987) is not satisfied with Grice’s explanation, since sometimes,
it is all right to assert an indicative conditional even if you know that the
antecedent is false, or the consequent is true. I know that Oswald killed
Kennedy, but can nonetheless assert that if Oswald didn’t kill Kennedy,
someone else did. Jackson has a different explanation for why technically
true conditionals might sound wrong. While the material conditional
account captures the truth conditions of an indicative conditional, the
meaning of ‘if. . . then. . . ’ goes beyond its truth conditions. Built into the
meaning of an English indicative conditional is the implication that it
would still be appropriate to assert the material conditional, even if its
antecedent were known. (Jackson calls this feature ‘robustness’.) The
Oswald-Kennedy conditional is robust, because even if I had reason to
doubt that Oswald killed Kennedy, I would still have good reasons to
believe that either Oswald or someone else killed him.

7 the no truth values (ntv) account of indicatives

Suppose you are convinced that the material conditional account gives the
wrong truth conditions for the indicative conditionals. You might hope
that there was some other account of the truth conditions for indicative
conditionals—one that could better explain the truth of the thesis. Un-
fortunately, a collection of so-called ‘triviality theorems’ suggests that no
truth conditions whatsoever will do the trick. Triviality theorems motivate
Edgington (1986, 1995) and Appiah (1985) to claim that indicative condi-
tionals lack truth values altogether. (Edgington, 2008, goes on to develop
a Y-shaped theory on which counterfactual conditionals also lack truth
values altogether.)

In general, triviality theorems show that if the thesis is true in general,
then every probability function is trivial: it assigns positive probability
to at most two mutually exclusive alternatives. But it is absurd to claim
that every probability function is trivial. (Here is a non-trivial probability
function: the one that assigns probability 1/6 to each possible outcome of
the roll of a single die.) Therefore, we must reject the thesis.

To see how triviality theorems work, we can consider an early result by
D. Lewis (1976), illustrated by system of diagrams adapted from Edgington
(1995). Edgington visualizes probabilities using rectangles, divided into
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C

¬C

A

¬A

A

¬A

Figure 4: A probability space

horizontal segments representing propositions. The height of a segment
represents the probability of the corresponding proposition; the entire
rectangle is normalized to have height 1. In Figure 4 the proposition C has
probability 1/2. C is subdivided into the propositions A ∧ C (probability
1/4) and A ∧ ¬C (probability 1/4). ¬C (also with probability 1/2) is
subdivided into the propositions ¬C ∧ A (probability 1/8) and ¬C ∧ ¬A
(probability 3/8).

Figure 5 shows how to calculate the probability of A conditional on C by
erasing the bottom half of the diagram, and stretching out the remaining
part of the rectangle so its height is 1 (in effect multiplying the height
of each of its sub-regions by 1

Pr(C) ). The new height of the A region is
Pr(A|C).

According to the Law of Total Probability (illustrated in Figure 6), for
any two propositions X and Y,

Pr(Y) = Pr(Y|X)× Pr(X) + Pr(Y|¬X)× Pr(¬X). (1)

Consider any two propositions A and C such that P(A ∧ C) > 0, and
P(A ∧ ¬C) > 0. Plugging in A for X and A → C for Y in Equation 1

yields:

Pr(A→ C) = Pr(A→ C|C)× Pr(C) + Pr(A→ C|¬C)× Pr(¬C). (2)

In other words, we can split the probability space into a C part and
a ¬C part, and figure out the probability of A → C by averaging its
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Step 1: Erase the ¬C area.

C

¬C

A

¬A

A

¬A

Step 2: Stretch the C area.

C

A

¬A

Figure 5: Calculating conditional probability

probabilities conditional on each part, a procedure illustrated in Figure 7.
Consider the probability distribution PrC such that for all propositions X,
PrC(X) = Pr(X|C) (shown in the top center of Figure 7). Using the fact
that PrC(A) > 0, the fact that PrC(C) = 1, and the definition of conditional
probability, we can show that

PrC(C|A) = 1. (3)

Thus, by the thesis and Equation 3,

PrC(A→ C) = 1. (4)

By the definition of PrC and Equation 4,

Pr(A→ C|C) = 1. (5)

Likewise, when we consider the probability distribution Pr¬C such that
for all X, Pr¬C(X) = Pr(X|¬C) (shown in the bottom center of Figure 7),
we see by the fact that PrC(A) > 0, the fact that PrC(C) = 1, and the
definition of conditional probability that

Pr¬C(C|A) = 0. (6)

Thus, by the thesis, and Equation 6,

Pr¬C(A→ C) = 0. (7)
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Pr(Y)
(total height of
shaded region)

=

X

¬X

Y

¬Y

Y

¬Y

Pr(Y|X)

(height of shaded
stretched region)

Pr(X)

(stretch factor) ×

X

Y

¬Y

+

Pr(Y|¬X)

(height of shaded
stretched region)

Pr(¬X)

(stretch factor) ×

¬X

Y

¬Y

Figure 6: The Law of Total Probability



conditionals 573

And by the definition of Pr¬C and Equation 7,

Pr(A→ C|¬C) = 0. (8)

Using Equation 5 and Equation 8 to make the appropriate substitutions
into equation Equation 2, we get:

Pr(A→ C) = 1× Pr(C) + 0× Pr(¬C) = Pr(C). (9)

But by the thesis,
Pr(A→ C) = Pr(C|A). (10)

Substituting Pr(C|A) for Pr(A→ C) on the left-hand side of Equation 9,
we get:

Pr(C|A) = Pr(C) (11)

—in other words, A and C are probabilistically independent.
The above proof shows that Equation 11 holds for arbitrary propositions

A and C, provided both Pr(A ∧ C) and Pr(A ∧ ¬C) are both greater than
0. Therefore Equation 11 should hold for all pairs of propositions A and C
such that Pr(A ∧ C) and Pr(A ∧ ¬C) are both greater than 0. But this is
only possible in trivial probability spaces. So one of our assumptions must
have gone wrong, and the natural place to pin the blame is on the thesis.

There are various possible ways out of Lewis’s triviality theorem. The
proof assumes that the conditional A → C has a single set of truth con-
ditions, which remain stable across Pr, PrC, and Pr¬C. Defenders of the

thesis might reject this assumption and claim that the truth-conditions
of conditionals are context-dependent. The proof also assumes that the

thesis holds for all probability functions and all conditionals. Defend-
ers of the thesis might retreat and claim that it is true for only some
conditionals, or some probability functions.

Unfortunately, both escape routes are treacherous. New triviality theo-
rems can be derived from much weaker assumptions; for a helpful survey,
see Hall and Hájek (1994). There are even triviality results that use non-
probabilistic variants of the thesis (Gärdenfors, 1988), and trivializing
versions of the thesis that apply to counterfactuals rather than indica-
tives (Williams, 2012). On a slightly more optimistic note, non-triviality
results can be obtained by adopting (sufficiently weak) non-classical logics
(Morgan & Mares, 1995).

Another way out of Lewis’s triviality theorem is to reject the thesis.
Kaufmann (2004) produces examples of indicative conditionals in English
that intuitively seem to violate the thesis, and Douven and Verbrugge
(2013) provide experimental evidence that English speakers’ judgments
about indicative conditionals violate the thesis.

If probability is probability of truth, defenders of the NTV view should
reject the thesis too. However, defenders of the NTV view typically defend
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Pr¬C(C|A) = 0

¬C A

Figure 7: The Lewis triviality theorem illustrated



conditionals 575

versions the thesis, but adopt alternative interpretations of ‘probability’,
on which the probability of a conditional is not the probability of its truth.

Calling on alternative theories of probability makes sense: probability is
a versatile explanatory tool, and the NTV theory has plenty of explaining
to do. In particular, the NTV theory needs to explain why conditionals
seem to have the features of truth-evaluable statements. It is sometimes
reasonable to believe a conditional—but ordinarily, to believe something
is to believe that it is true. Likewise, it is sometimes reasonable to assert
a conditional—but ordinarily, to assert something is to claim that it is
true. Arguments with conditionals in their premises and conclusions are
sometimes valid and sometimes invalid—but ordinarily, a valid argument
is one that cannot have true premises and a false conclusion, and it’s not
clear how to fruitfully apply the concept of validity when a premise or
conclusion lacks truth conditions altogether.

Adams (1975) and Edgington (1986) give a probabilistic account of
belief in conditionals. Belief comes in degrees, which are measured by
probabilities. A person’s degree of belief in a conditional is simply her
conditional degree of belief in its consequent on its antecedent.

Adams (1975) gives a probabilistic account of validity for conditionals.
An argument is said to be probabilistically valid just in case it is impossi-
ble for its premises to be probable and its conclusion improbable. More
precisely, an argument from premises P1, P2, . . . , Pn to conclusion C is valid
just in case, for every real number ε > 0, there is a real number δ > 0 such
that, if each of P1, P2, . . . , Pn has probability greater than 1− δ, then C has
probability at least 1− ε.

Adams’ definition of validity coincides with the classical definition
where P1, P2, . . . , Pn and C are conditional-free sentences, and lets us define
validity for arguments containing simple conditionals. The theory is built
to handle only simple conditionals, and does not let us assess validity
for arguments containing compound sentences with conditionals as parts.
McGee (1989) extends Adams’ theory to cover compounds of conditionals.

Edgington (1995) gives a non-probabilistic account of what it is to
assert a conditional: it is to assert the consequent if the antecedent is true,
and to assert nothing otherwise. She argues that her account assimilates
conditional assertions to a larger class of conditional speech acts, including:

Conditional Questions. ‘If he phones, what shall I say?’

Conditional Commands. ‘If he phones, hang up.’

Conditional Promises. ‘If he phones, I promise not to be rude.’

Conditional Agreements. ‘If he phones, we’re on for Sunday.’

Conditional Offers. ‘If you phone, you can have a 20% discount.’
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Any speech act whatsoever, she claims, can be performed conditionally
or unconditionally. We can think of conditionals as ‘speech act bombs’
primed to detonate when and only when the antecedent is true (see Egan,
2009).

8 dynamic semantics

So far, we’ve seen several accounts of conditionals that posit more to their
meanings than truth conditions—either because conditionals have no truth
conditions (on the NTV account) or because their truth conditions are
not sufficient to determine when they can reasonably be asserted (on the
material conditional account). Enter dynamic semantics, which provides
new tools for modeling meaning.

Dynamic semantics explains the meanings of sentences by appeal to a
conversational context—a set of background assumptions taken for granted
by all the participants in a conversation. For instance, if a group of friends
is discussing where to go for lunch, the conversational context might
include the information that among the nearby restaurants are Veggie
Garden and Buddha’s Palace. The context set is a set of worlds compatible
with those background assumptions (see Stalnaker, 1999, p. 84).11

The conversational context changes as the conversation progresses, and
the context set shrinks and grows accordingly. When a participant makes
an assertion, then the content of the assertion is added to the context, and
all the worlds incompatible with what is asserted are eliminated from the
context set. For instance, if someone asserts that Veggie Garden is open,
then the worlds where Veggie Garden is closed are eliminated from the
context set.

Figure 8 depicts the effect of asserting ‘Veggie Garden is open today’ on
the context set. The original context set is shown in the rectangle at the
top of the figure: the circles depict worlds. Each world is labeled with a
set of propositions true at that world: ‘BP’ stands for ‘Buddha’s Palace is
open’; ‘VG’ stands for ‘Veggie Garden is open’; and ‘TD’ stands for ‘we
can get gluten-free tofu dogs’.

Notice that some assertions have no effect on the context set. If someone
were to assert ‘Buddha’s Palace is open’, none of the worlds in the context
set would be eliminated. This is because ‘Buddha’s Palace is open’ is al-
ready acceptable in the original context—it follows from what is accepted.

11 To give a complete theory of conditionals, the conversational context will need to include
more information than just the context set. Other proposed parameters include a probability
function or set of probability functions (Yalcin, 2007, 2012b), and a function that ranks
worlds from most to least likely (Spohn, 2015). However, I focus my exposition on the
context set to provide a simple illustration of the main ideas.
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w1

BP

VG

TD

w2

BP

¬VG

TD

w3

BP

¬VG

¬TD

(a) The original context set

w1

BP

VG

TD

(b) The context set after an assertion of ‘Veggie Garden is open’

Figure 8: The effects of an assertion on the context set
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Starr (2014) proposes that within this dynamic semantics framework,
conditionals can be understood as tests, along the lines of the Ramsey test.
To determine the effect of asserting a conditional ‘if A, then B’ on a context
c, we first suppose A, by considering the context c[A] that results from
adding A to c. We then check whether B is true under the supposition.
If B is true at c[A], then c ‘passes’ the test, and c remains unchanged.
Otherwise, c ‘fails’ the test. If a conditional passes the test, it is acceptable
in the original context.

This characterization of acceptability, by itself, is not enough to deter-
mine the effect of uttering a conditional in a context where it is not already
acceptable. For instance, suppose you go to pet a dog, and I say ‘if you pet
it, it will bite.’ This conditional doesn’t follow from our shared background
information, but you can use it to rule out possibilities—in particular, those
possibilities where you pet the dog and it does not bite. What explains
the relationship between my utterance and the corresponding change to
the context set? In very broad terms, uttering a conditional should change
the context set so that the conditional becomes acceptable, and the change
involved should be the smallest one that does the job. There are multiple
ways of spelling out what constitutes a minimal change to contextual
information, but the part of the account that deals with acceptability can
be separated from the part that deals with context change.

To illustrate the concept of a conditional test, consider the conditional ‘if
Veggie Garden is open, then we can get gluten-free tofu dogs’, as asserted
in the context depicted by Figure 8a. To perform the test, we first create
a new context, by augmenting the old context with the information that
Veggie Garden is open; the resulting context set is depicted in Figure 8b.
We then check whether, in the new context, ‘we can get gluten-free tofu
dogs’ is acceptable. If so, the old context passes the test, and the conditional
is acceptable in the old context; otherwise, the old context fails the test,
and the conditional is not acceptable in the old context. Starr extends his
account to handle counterfactuals (which use a modified test in which
the context set is expanded with extra possibilities before adding the
information in the antecedent).

Other theorists offer context-dependent truth conditions for conditionals
using the tools of dynamic semantics. Stalnaker (1975) and Williams (2008)
defend a modified closest-worlds theory of indicative conditionals, where,
if w is a world in the context set, every world in the context set is stipulated
to be closer to w than every world outside it. Gillies (2007) and von Fintel
(2001) propose strict conditional theories of counterfactuals, where a set of
salient worlds is fixed by the context. New worlds are added to the set as
the conversation goes on; in particular, if someone asserts a conditional
whose antecedent is false at all the salient worlds, the set is expanded to
include at least one world compatible with the antecedent.
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9 conditionals as modal restrictors

According to Kratzer (2012, p. 86), many of the above views of condition-
als are ‘based on a momentous syntactic mistake.’ Contrary to popular
opinion, she claims, ‘There is no two-place if. . . then connective in the
logical forms for natural languages.’ Instead, conditionals restrict modal
operators.

One can think of modal operators as quantifiers over possible worlds: to
say that necessarily 2+ 2 = 4 is to say that in all possible worlds, 2+ 2 = 4;
to say that possibly pigs fly is to say that in some possible world, pigs fly;
and to say that it will probably rain is to say that in most possible worlds
(on some suitable way of measuring ‘most’), it rains. Like quantifiers,
modal operators can be restricted. To say that necessarily, if the Peano
axioms are true, then 2 + 2 = 4, is to say that in all possible worlds where
the Peano axioms are true, 2 + 2 = 4. Likewise, to say that if pigs had
hollow bones, then possibly pigs would fly, is to say that in some possible
world where pigs have hollow bones, pigs fly, and to say that if there are
cumulus clouds on the horizon, it will probably rain, is to say that in most
possible worlds where there are cumulus clouds on the horizon, it will
rain.

The modal restrictor view is a generalization of work by D. Lewis (1975)
who notes that conditionals can be used to restrict quantifiers. Consider
the following class of examples.

Sometimes

Always

Usually

Never

if a farmer owns a donkey, she feeds it carrots.

The quantifiers ‘sometimes’, ‘always’, ‘usually’, and ‘never’ are what Lewis
calls unselective quantifiers. To say that always, farmers feed donkeys carrots
is to say that for all ways of assigning a farmer to x and a donkey to y,
x feeds y carrots. To add the clause ‘if a farmer owns a donkey’ is to
restrict the quantifier, so that it ranges only over cases where farmer x
owns donkey y.

The modal restrictor view is Y-shaped: it can handle both indicatives
and counterfactuals (Kratzer, 1981). To explain how this works, we need
three ingredients: a modal base, the modal force of an operator, and an
ordering.

According to Kratzer, the context of an utterance supplies a modal base,
or a function f mapping each world w to a set of propositions that is ‘held
fixed’ when we speculate about what might or must have been true at
w. When we consider what is physically possible, the modal base might
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assign to each world the laws of physics that obtain at that world, but
leave out physically contingent truths. When a detective speculates about
who the burglar might be, the modal base might assign to each world
the detective’s evidence at that world. To determine what is possible (or
necessary, or likely) at a world w, we need to quantify over the possible
worlds where the all of the propositions in f (w) are true.12

Different operators are associated with different kinds of modal force—
roughly, different kinds of quantification over possible worlds. The opera-
tors ‘necessarily’, ‘possibly’, ‘it is likely that’, and ‘it is a good possibility
that’ are all associated with different modal forces. Finally, the context of
utterance supplies an ordering source g, which lets us map each world to an
ordering over worlds.13 (One possible interpretation of this ordering is the
‘closeness’ ordering from Section 4.2, but there are others. Conditional and
unconditional statements about what ought to happen use an ordering
source that ranks worlds from most to least ideal.)

We can then say that the conditional ‘Necessarily if A, then B’ is true at
a world w just in case B is true at all the closest A-worlds to w (according
to the ordering g(w)) where all the propositions in f (w) are true. Likewise,
‘Possibly if A, then B’ is true at a world w just in case B is true at some of
the closest A-worlds to w (according to the ordering g(w)) where all the
propositions in f (w) are true, and similarly for other operators with other
modal force. For indicative conditionals, the modal base is some piece
of salient known information. For counterfactual conditionals, the modal
base is empty (and thus, all possible worlds are consistent with it) while
the ordering source is very rich. Kratzer’s account even has the material
conditional account as a special case, where the modal base maps each
world w to a set of propositions true only at w, and the strict conditional
as another special case, where the modal base is empty and the ordering
source is completely noncommittal, invariably ranking all worlds on a par
with each other.

‘Bare’ conditionals cause trouble for the modal restrictor view. Con-
ditionals supposedly restrict modal operators, but where is the modal

12 Kratzer’s theory could be reformulated in terms of a familiar two-place accessibility
relation among worlds. We might say that world x is accessible from world w (Rwx in
the usual formalism) if and only if all of the propositions in f (w) are true at x. A few
complications arise when the modal base maps some worlds onto inconsistent sets of
propositions. Kratzer wants to say that in such cases, there are non-trivial facts about
what is possible; she gives the example of a modal base that assigns to each world the
set of propositions that are required by a group of Maori elders in that world (Kratzer,
1981, pp. 16-20). In one world w, the elders disagree amongst themselves, and so their
requirements are inconsistent. Nonetheless, there are non-trivial facts about what is
necessary at w according to the elders’ requirements; Kratzer claims that the structure of
the set f (w) of propositions plays an essential role in determining what is necessary.

13 Kratzer’s ordering source officially maps worlds to sets of propositions, which are then
used to create an ordering. I omit this extra step.
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operator in a conditional like ‘If the lights in his study are on, then Roger is
home’? Kratzer (1979, 1981) argues that conditionals without overt modal
operators nonetheless contain implicit modal operators; the underlying
logical form of the example conditional is ‘(MUST: the lights in his study
are on) Roger is home’; the epistemic ‘MUST’ is unspoken.

Heim (1982) provides evidence for Kratzer’s modalized interpretation
of bare conditionals in the form of ‘donkey sentences’ like ‘If John owns
a donkey, then he feeds it carrots’. On at least one plausible reading, our
sample donkey sentence means that John feeds carrots to every donkey
he owns—or in more cumbersome terms, for every x such that x is a
donkey and John owns x, John feeds x carrots. If the conditional were an
ordinary two-place connective, we would have trouble explaining how the
same variable x, bound by the same quantifier, could occur in both the
antecedent and the consequent of the donkey sentence. The conditional
would have the form A→ B, where A contained a quantifier ranging over
donkeys. But Kratzer’s restrictor analysis, together with the assumption
that bare conditionals contain a tacit necessity operator, gives the correct
reading, while providing a uniform treatment of bare and modalized
conditionals.

It is often claimed that Kratzer’s modal restrictor theory allows us to
escape the triviality results of Section 7. Rothschild (2013), for instance,
suggests that Kratzer can escape the triviality results by denying the

thesis. To illustrate Rothschild’s argument, let’s consider the conditional I
originally used to motivate the thesis.

ACE. If I draw a red ace, then it will be the ace of hearts.

I accept the conditional:

CHANCY ACE. With probability 1/2, if I draw a red ace, then it will be
the ace of hearts.

Rothschild suggests that on Kratzer’s account, chancy ace does not
express the thought that ace has probability 1/2, or the thought that the
probability of ace’s being true is 1/2. When I assert chancy ace, I am
not asserting that ace has probability 1/2. Furthermore, when I am 50%
confident that if I draw a red ace, it will be the ace of hearts, this does not
amount to my being 50% confident that ace is true.

Charlow (2015) argues that even if Rothschild is right, Kratzer’s account
is still vulnerable to the triviality result, since Equation 5 and Equation 8

can be motivated independently of the thesis. He goes on to argue that
other easy ways out of the triviality result fail on the modal restrictor view.
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10 conclusion

Conditionals are important in both everyday reasoning and philosophical
argument. There are conditional beliefs, conditional assertions, and con-
ditional propositions, all of which can figure in arguments. The theories
canvassed in this article try to systematize the broad range of data about
which conditionals seem true, and which inferences seem valid. More
phenomena remain to be explained: this article has focused on conditional
beliefs and assertions, and on conditionals in English.

We can gather the similarities among the accounts discussed above into
a sort of rake-shaped theory (a generalization of Bennett’s concept of a
Y-shaped theory), with a short ‘handle’ that captures what is common
to all conditionals, which then splits into many ‘tines’ that capture the
particularities of individual theories. All of the theories we have considered
so far have the following commitments in common.

1. Conditionals are evaluated at ‘points’.

2. To evaluate a conditional ‘if A, then C’ at a point p, one generates a
new point q by adding the information in A to p.

3. The evaluation of the consequent C at q is the evaluation of the entire
conditional at p.

The accounts disagree about the natures of points, what status conditionals
and their consequents should be evaluated for, and what adding an an-
tecedent amounts to. Table 1 summarizes how different views answer this
question. (NB: Selection function and relevant logic accounts typically treat
the initial point and the new point as belonging to different types—the
initial point is a world, while the new point is a set of worlds. But we can
ensure that both points are of the same type by rewriting the theory so
that the initial point is a singleton set of one world; this is what I have
done in Table 1.)

Within each of the accounts, there are open questions: the nature of the
selection function; the correct interpretation of counterpossibles; how best
to respond to the triviality theorems; what makes a conditional believable
or assertable in a given context; how to handle bare modals on the restrictor
account.

There are also open questions about how the accounts interact. Some
accounts seem to be special cases of others: the past predominance view is
a way of filling in the meaning of ‘closest’ on the closest-worlds account.
At other times, different accounts appear to be rivals: it can’t be both that
indicative conditionals have the truth conditions given by the material
interpretation, and that they lack truth values. At other times, they seem to
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be modeling different domains: as with Pearl’s causal modeling theory of
counterfactuals and Starr’s dynamic semantics theory of indicatives. Much
of the interest for future research lies in understanding the interactions
between the different models of conditionals.

If conditionals are useful in a wide variety of domains, from childhood
development to everyday reasoning to philosophy, then conditionals are
well worth studying. I have given reasons for thinking that conditionals are
useful in a wide variety of domains. You may draw your own conclusions.
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