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In an earlier post we met the λ-continuum, a generalization of Laplace’s
Rule of Succession. Here is Laplace’s rule, stated in terms of �ips of a coin
whose bias is unknown.

the rule of succession Given k heads out of n �ips, the probability
the next �ip will land heads is

k + 1
n + 2.

To generalize we introduce an adjustable parameter, λ. Intuitively λ captures
how cautious we are in drawing conclusions from the observed frequency.

the λ continuum Given k heads out of n �ips, the probability the next
�ip will land heads is

k + λ/2
n + λ .

When λ = 2, this just is the Rule of Succession. When λ = 0, it becomes
the “Straight Rule,” which matches the observed frequency, k/n.�e general
pattern is: the larger λ, the more �ips we need to see before we tend toward
the observed frequency, and away from the starting default value of 1/2.
So what’s so special about λ = 2? Why did Laplace and others take

a special interest in the Rule of Succession? Because it derives from the
Principle of Indi�erence. We saw in a previous post that setting λ = 2
basically amounts to assuming all possible frequencies have equal prior
probability. Or that all possible biases of the coin are equally likely.�e Rule
of Succession thus corresponds to a uniform prior.
What about other values of λ then? What kind of prior do they corre-

spond to?�is question has an elegant and illuminating answer, which we’ll
explore here.
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1 a preview

Let’s preview the result we’ll arrive at. Because, although the core idea isn’t
very technical, deriving the full result does takes some noodling. It will be
good to have some sense of where we’re going.
Here’s a picture of the priors that correspond to various choices of

λ. �e x-axis is the bias of the coin, the y-axis is the probability density.

Notice how λ = 2 is a kind of in�ection point. �e plot goes from being
concave up to concave down. When λ < 2, the prior is U-shaped.�en, as λ
grows above 2, we approach a normal distribution centered on 1/2.
So, when λ < 2, we start out pretty sure the coin is biased, though we

don’t know in which direction. When λ < 2 we’re inclined to run with the
observed frequency, whatever that is. If we observe a heads on the �rst toss,
we’ll be pretty con�dent the next toss will land heads too. And the lower λ
is, the more con�dent we’ll be about that.
Whereas λ > 2 corresponds to an inclination to think the coin fair, or at

least fair-ish. So it takes a while for the observed frequency to draw us away
from our initial expectation of 1/2. (Unless the observed frequency is itself
1/2.)

�at’s the intuitive picture we’re working towards. Let’s see how to get
there.



2 pseudo-observations 3

2 pseudo-observations

Notice that the Rule of Succession is the same as pretending we’ve already
observed one heads and one tails, and then using the Straight Rule. A 3rd toss
landing heads would give us an observed frequency of 2/3, precisely what
the Rule of Succession gives when just 1 toss has landed heads. If k = n = 1,
then

k + 1
n + 2 =

2
3
.

So, setting λ = 2 amounts to imagining we have 2 observations already, and
then using the observed frequency as the posterior probability.
Setting λ = 4 is like pretending we have 4 observations already. If we

have 2 heads and 2 tails so far, then a heads on the 5th toss would make
for an observed frequency of 3/5. And this is the posterior probability the
λ-continuum dictates for a single heads when λ = 4:

k + λ/2
n + λ = 1+ 4/2

1+ 4 = 3
5
.

In general, even values of λ > 0 amount to pretending we’ve already observed
λ �ips, evenly split between heads and tails, and then using the observed
frequency as the posterior probability.

�is doesn’t quite answer our question, but it’s the key idea. We know
that the uniform prior distribution gives rise to the posterior probabilities
dictated by λ = 2. We want to know what prior distribution corresponds to
other settings of λ. We see here that, for λ = 4, 6, 8, . . . the relevant prior is
the same as the “pseudo-posterior” we would have if we updated the uniform
prior on an additional 2 “pseudo-observations”, or 4, or 6, etc.
So we just need to know what these pseudo-posteriors look like, and

then extend the idea beyond even values of λ.

3 pseudo-posteriors

Let’s write Sn = k tomean that we’ve observed k heads out of n �ips. We’ll use
p for the unknown, true probability of heads on each �ip. Our uniform prior
distribution is f (p) = 1 for 0 ≤ p ≤ 1. We want to know what f (p ∣ Sn = k)
looks like.
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In a previous post we derived a formula for this:

f (p ∣ Sn = k) = (n + 1)!
k!(n − k)! p

k(1− p)n−k .

�is is the posterior distribution a�er observing k heads out of n �ips, assum-
ing we start with a uniform prior which corresponds to λ = 2. So, when we
set λ to a larger even number, it’s the same as starting with f (p) = 1 and up-
dating on Sλ−2 = λ/2− 1. We subtract 2 here because 2 pseudo-observations
were already counted in forming the uniform prior f (p) = 1.

�us the prior distribution fλ for a positive, even value of λ is:

fλ(p) = f (p ∣ Sλ−2 = λ/2− 1)

= (λ − 1)!
(λ/2− 1)!(λ/2− 1)! p

λ/2−1(1− p)λ/2−1.

�is prior generates the picture we started with for λ ≥ 2.

As λ increases, we move from a uniform prior towards a normal distribution
centered on p = 1/2.�is makes intuitive sense: the more we accrue evenly
balanced observations, the more our expectations come to resemble those
for a fair coin.
So, what about odd values of λ? Or non-integer values? To generalize

our treatment beyond even values, we need to generalize our formula for fλ.

https://jonathanweisberg.org/post/inductive-logic-2/
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4 the beta prior

Recall our formula for f (p ∣ Sn = k):

(n + 1)!
k!(n − k)! p

k(1− p)n−k .

�is is amember of a famous family of probability densities, the beta densities.
To select a member from this family, we specify two parameters a, b > 0 in
the formula:

1
B(a, b) p

a−1(1− p)b−1.

Here B(a, b) is the beta function, de�ned:

B(a, b) = ∫
1

0
xa−1(1− x)b−1 dx.

We showed that, when a and b are natural numbers,

B(a, b) = (a − 1)!(b − 1)!(a + b − 1)! .

To generalize our treatment of fλ beyond whole numbers, we �rst need to do
the same for the beta function. We need B(a, b) for all positive real numbers.
As it turns out, this is a matter of generalizing the notion of factorial.�e

generalization we need is called the gamma function, and it looks like this:

https://en.wikipedia.org/wiki/Beta_distribution
https://jonathanweisberg.org/post/inductive-logic-2/#the-beta-function
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�e formal de�nition is

Γ(x) = ∫
∞
0

ux−1e−u du.

�e gamma function connects to the factorial function because it has the
property:

Γ(x + 1) = xΓ(x).

�is entails, by induction, that Γ(n) = (n − 1)! for any natural number n.
In fact we can substitute gammas for factorials in our formula for the

beta function:
B(a, b) = Γ(a)Γ(b)

Γ(a + b) .

Proving this formula would require a long digression, so we’ll take it for
granted here.
Now we can now work with beta densities whose parameters are not

whole numbers. For any a, b > 0, the beta density is

Γ(a + b)
Γ(a)Γ(b) p

a−1(1− p)b−1.

We can now show our main result: setting a = b = λ/2 generates the λ-
continuum.

5 from beta to lambda

We’ll write Xn+1 = 1 to mean that toss n + 1 lands heads. We want to show

P(Xn+1 = 1 ∣ Sn = k) = k + λ/2
n + λ ,

given two assumptions.

• �e tosses are independent and identically distributed with probability
p for heads.

• �e prior distribution fλ(p) is a beta density with a = b = λ/2.
We start by applying the Law of Total Probability:

P(Xn+1 = 1 ∣ Sn = k) = ∫
1

0
P(Xn+1 = 1 ∣ Sn = k, p) fλ(p ∣ Sn = k)dp

= ∫
1

0
p fλ(p ∣ Sn = k)dp.
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Notice, this is the expected value of p, according to the posterior fλ(p ∣ Sn =
k). To analyze it further, we use two facts proved below.

1. �e posterior fλ(p ∣ Sn = k) is itself a beta density, but with parameters
k + λ/2 and n − k + λ/2.

2. �e expected value of any beta density with parameters a and b is
a/(a + b).

�us
P(Xn+1 = 1 ∣ Sn = k) = ∫

1

0
p fλ(p ∣ Sn = k)dp

= k + λ/2
k + λ/2+ n − k + λ/2

= k + λ/2
n + λ .

�is is the desired result, we just need to establish Facts 1 and 2.

5.1 Fact 1

Here we show that, if f (p) is a beta density with parameters a and b, then
f (p ∣ Sn = k) is a beta density with parameters k + a and n − k + b.
Suppose f (p) is a beta density with parameters a and b:

f (p) = 1
B(a, b) p

a−1(1− p)b−1.

We calculate f (p ∣ Sn = k) using Bayes’ theorem:

f (p ∣ Sn = k) = f (p)P(Sn = k ∣ p)
P(Sn = k)

=
pa−1(1− p)b−1(nk)pk(1− p)n−k

B(a, b)P(Sn = k)

=
(nk)

B(a, b)P(Sn = k) p
k+a−1(1− p)n−k+b−1. (1)
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To analyze P(Sn = k), we begin with the Law of Total Probability:

P(Sn = k) = ∫
1

0
P(Sn = k ∣ p) f (p)dp

= ∫
1

0
(n
k
)pk(1− p)n−k 1

B(a, b) p
a−1(1− p)b−1 dp

=
(nk)

B(a, b) ∫
1

0
pa+k−1(1− p)b+n−k−1 dp

=
(nk)

B(a, b)B(k + a, n − k + b).

Substituting back into Equation (1), we get:

f (p ∣ Sn = k) = 1
B(k + a, n − k + b) p

k+a−1(1− p)n−k+b−1.

So f (p ∣ Sn = k) is the beta density with parameters k + a and n − k + b.

5.2 Fact 2

Here we show that the expected value of a beta density with parameters a
and b is a/(a + b).�e expected value formula gives:

1
B(a, b) ∫

1

0
ppa−1(1− p)b−1 dp = Γ(a + b)

Γ(a)Γ(b) ∫
1

0
pa(1− p)b−1 dp.

�e integrand look like a beta density, with parameters a + 1 and b. So we
multiply by 1 in a form that allows us to pair it with the corresponding
normalizing constant:

Γ(a + b)
Γ(a)Γ(b) ∫

1

0
pa(1− p)b−1 dp

= Γ(a + b)
Γ(a)Γ(b)

Γ(a + 1)Γ(b)
Γ(a + b + 1) ∫

1

0

Γ(a + b + 1)
Γ(a + 1)Γ(b) p

a(1− p)b−1 dp

= Γ(a + b)
Γ(a)Γ(b)

Γ(a + 1)Γ(b)
Γ(a + b + 1) .

Finally, we use the the property Γ(a + 1) = aΓ(a) to obtain:

Γ(a + b)
Γ(a)Γ(b)

aΓ(a)Γ(b)
(a + b)Γ(a + b) =

a
a + b .
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6 picturing it

What do our priors corresponding to λ < 2 look like? Above we saw that
they’re U-shaped, approaching a �at line as λ increases. Here’s a closer look:

We can also look at odd values λ ≥ 2 now, where the pattern is the same
as we observed previously.

7 what about zero?

What about when λ = 0?�is is a permissible value on the λ-continuum,
giving rise to the Straight Rule as we’ve noted. But it doesn’t correspond to
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any beta density. �e parameters would be a = b = λ/2 = 0. Whereas we
require a, b > 0, since the integral

∫
1

0
p−1(1− p)−1 dp

diverges.
In fact no prior can agree with the Straight Rule. At least, not on the

standard axioms of probability. �e Straight Rule requires P(HH ∣ H) =
1, which entails P(HT ∣ H) = 0. By the usual de�nition of conditional
probability then, P(HT) = 0. Which means P(HTT ∣ HT) is unde�ned.
Yet the Straight Rule says P(HTT ∣ HT) = 1/2.
We can accommodate the Straight Rule by switching to a nonstandard

axiom system, where conditional probabilities are primitive, rather than
being de�ned as ratios of unconditional probabilities. �is is approach is
sometimes called “Popper–Rényi” style probability.
Alternatively, we can stick with the standard, Kolmogorov system and

instead permit “improper” priors: prior distributions that don’t integrate to
1, but which deliver posteriors that do.
Taking this approach, the beta density with a = b = 0 is called the Hal-

dane prior. It’s sometimes regarded as “informationless,” since its posteriors
just follow the observed frequencies. But other priors, like the uniform prior,
also have some claim to representing perfect ignorance.�e Je�reys prior,
which is obtained by setting a = b = 1/2 (so λ = 1), is another prior with a
similar claim.

�at multiple priors can make this claim is a reminder of one of the great
tragedies of epistemology: the problem of priors.
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