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Abstract. Sometimes appearances provide epistemic support that gets undercut
later. In an earlier paper I argued that standard Bayesian update rules are at odds
with this phenomenon because they are ‘rigid’. Here I generalize and bolster that
argument. I �rst show that the update rules of Dempster-Shafer theory and ranking
theory are rigid too, hence also at odds with the defeasibility of appearances. I
then rebut three Bayesian attempts to solve the problem. I conclude that defeasible
appearances pose a more di�cult and pervasive challenge for formal epistemology
than is currently thought.

Sometimes appearances provide initial support that gets undercut later. I might
glimpse a red-looking sock but then learn the lighting is deceptive, for example.

Call this phenomenon perceptual undermining since the undermined support comes
from perception, at least in part. Here I argue that three leading models of belief-
change cannot accommodate this phenomenon. �e standard updating rules of
Bayesianism, Dempster-Shafer theory, and ranking theory all mishandle perceptual
undermining.
�e worry that Bayesianism runs afoul of perceptual undermining originates with

David Christensen (1992). Christensen argues that Bayesian update rules at best
treat the interaction between perception and background belief as a black box. My
response to a reddish glimpse of a sock should depend on what I think about the
reliability of my vision, but Bayesianism does not model or regulate this interaction.
If I suspect my vision is unreliable, the Bayesian can recommend that I Je�rey
Conditionalize (§1.1) on the proposition�e sock is red with a middling probability
instead of a high one. But the choice of a middling input instead of a high one is not
something the Bayesian formalism explains or prescribes (Field, 1978).
In my (2009) I took Christensen’s argument a step further. Je�rey Conditional-

ization doesn’t just fail to regulate perceptual undermining, it bungles it. Consider
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help.
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the case where I �rst glimpse the sock, then learn the lighting is deceptive. Surpris-
ingly, Je�rey Conditionalization makes my discovery about the deceptive lighting
ine�ectual, failing to undermine my belief that the sock is red.�e reason is that
Je�rey Conditionalization is ‘rigid’ (§1.1), and thus independence preserving. Before I
glimpse the sock, the quality of the lighting and the actual colour of the sock are inde-
pendent, meaning information about one factor has no bearing on my beliefs about
the other. Because it is rigid, Je�rey Conditionalization preserves this independence.
Information about the lighting’s deceptiveness has no bearing on my beliefs about
the sock’s actual colour, even a�er I come to believe it is red based on its looking that
way.
My aim here is to generalize and strengthen this argument. I �rst prove a general

“RIP theorem” encompassing Bayesianism, Dempster-Shafer theory, and ranking
theory.�e standard update rules of these frameworks are all Rigid, hence Indepen-
dence Preserving (RIP). I then critique three solutions that have been proposed in
response to the challenge for Bayesianism.
I’ll begin by rehearsing the challenge for Bayesianism in §1. I’ll then lay out the

RIP theorem in §§2–3. �en, in §§4–6, I will address three Bayesian solutions to
the problem. I conclude in §7 that perceptual undermining poses a more serious
challenge than is currently thought.

1. The Challenge for Bayesianism

Bayesianism is traditionally anchored in the psychological assumption that we have
degrees of belief measurable by real numbers, and the normative assumption that
these degrees of belief should obey a synchronic constraint called Probabilism:1

Probabilism: An agent’s degrees of belief ought to obey the probability axioms.

We will assume Probabilism in this section. Our focus is the diachronic question
how probabilistic degrees of belief should change in response to new experiences.

1.1. Updating and Experience. Bayesians typically answer the diachronic question
by looking to the agent’s prior conditional degrees of belief, those she had before
the new experience.�e traditional answer in this vein was that the agent should
conditionalize on a proposition completely describing her observation:

1Some Bayesians, like Levi (1974), allow imprecise degrees of belief represented by sets of probability
functions instead of single probability functions.�e problem of perceptual undermining applies to
this more liberal view too, as fn. 5 demonstrates.
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Conditionalization: If your degrees of belief are given by the probability function
p and you make an observation completely described by B, your new degrees
of belief should be given by p′(A) = p(A∣B) for all A.

�e proposition Bmight be interpreted externally (�ere is a red sock on the �oor) or
internally (�ere appears to be a red sock on the �oor). Either way, most Bayesians now
think Conditionalization can’t be right, at least not for fallible agents like us. It has
the e�ect of making the agent certain of B, yet experience rarely (if ever) furnishes
us with certainties, whether external or internal.
Many Bayesians therefore follow Richard Je�rey (1965; 1968) in embracing a more

liberal rule, one that doesn’t require certainties but still revolves around the agent’s
prior conditional degrees of belief. Je�rey conceives experience-based updating
as having two parts: experience “directly a�ects” (1968, §2) some of the agent’s
credences, and these changes rationalize others which “propagate” (1965, p. 168) over
her remaining beliefs. How should the indirect e�ects of experience propagate?

Je�rey Conditionalization: If your degrees of belief are given by the probability
function p, and (i) experience directly a�ects your credences over the parti-
tion {Bi} changing them to the values p′(Bi), but (ii) experience does not
directly a�ect any other credences, then your new credences should be given
by p′(A) = ∑i p(A∣Bi)p′(Bi) for all A.

Intuitively the idea is this. When experience directly speaks only to the question of
which Bi is true, and thus not to what each Bi indicates if true, one’s new opinions
should weight what each Bi would indicate if true by the new probability that it is
true.
In later writings, Je�rey (1983, pp. 136–7) abandons the two-part picture along

with talk of “direct e�ects” and “propagation”. He says instead that Je�rey Condition-
alization is merely a consequence of Probabilism in the special case where the agent
responds to experience by changing her credences in such a way that:

p′(A∣Bi) = p(A∣Bi) for any A and Bi . (1)

In this special case we can transform the law of total probability:

p′(A) = ∑
i
p′(A∣Bi)p′(Bi) (2)

to obtain as a theorem:

p′(A) = ∑
i
p(A∣Bi)p′(Bi). (3)
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�e idea seems to be that formula (3) is not a diachronic norm governing experience-
based updates, but rather a useful tool for describing these updates in cases where it
is merely a theorem of Probabilism.2 (Cf. Bradley 2005; Wagner 2013.)
However Je�rey may have understood his rule at various times, we will follow

authors like Field and Christensen who understand Je�rey Conditionalization as a
substantive diachronic normgoverning the indirect import of experience. In so doing,
we adhere to a Bayesian tradition that includes authors like Carnap (Je�rey, 1975, p.
44), Hacking (1967), and Lewis (1999), all of whom view Je�rey Conditionalization’s
predecessor, Conditionalization, as a substantive diachronic norm. Viewed in this
way, the substance of Je�rey Conditionalization lies in its assertion that, when the
direct e�ects of experience leave conditional probabilities on a partition untouched
despite touching their conditions, those untouched conditional probabilities serve
as the “arrows” along which experience’s e�ects should “propagate”.
On this view of things, (1) is an important e�ect of obeying Je�rey Conditionaliza-

tion. When an agent applies Je�rey Conditionalization, not only does experience
make no direct changes to her conditional probabilities given elements of {Bi}, it
makes no indirect changes either. �is property of Je�rey Conditionalization is
known as rigidity:3

Je�rey Conditionalization is Rigid: If p is a probability function and p′ comes
from p by Je�rey Conditionalization on the partition {Bi}, then p′(A∣Bi) =

p(A∣Bi) for every A and Bi .

Rigidity is a key ingredient in the problem of perceptual undermining.

1.2. �e Problem. Rigidity looks like a desirable property at �rst. Suppose I start
out thinking that, if the sock on the �oor is red, then it is probably my roommate’s.
If I then observe that it is red, my conditional opinion should not change. I should
continue to believe the sock is probably my roommate’s if it is red. Other features of
my opinion should change. I should come to believe it is probably my roommate’s
sock, for example. But my conditional beliefs about the owner of the sock given its
colour should not change when I observe its colour.

2�ere are hints of this view in Je�rey’s earlier writings. His views may have been ambiguous all
along, wavering between viewing equation (3) as a diachronic norm, as a handy tool in the art of
judgment, and as a useful theorem for rationally reconstructing an agent’s belief-changes.
3Je�rey sometimes writes as if rigidity is not a consequence of applying Je�rey Conditionalization,

but rather a precondition for its applicability (Je�rey, 2002).�is understanding �ts much better with
the special-case-theorem interpretation than with our substantive-diachronic-norm interpretation. If
rigidity were a pre-condition for following a diachronic norm, whether you ought to follow it would
depend on your posterior credences, when it’s those posterior credences the norm is supposed to
govern.
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Despite appearances though, complete rigidity is not desirable.�ere are some
propositions whose probabilities conditional on the sock’s redness should change.
Propositions that should underminemy con�dence in the sock’s redness must change
their conditional probabilities in order to function as underminers. To see why, let’s
work through the sock example from a Bayesian point of view.
Let E be the proposition�e sock is red and F the undermining proposition�e

lighting in the room is deceptive, so that apparent colour is no indication of actual
colour. Initially my credence in E is low; in response to my glance at the sock it
becomes high; and if I learn F it should become low again. So we have the following
constraints:

p(E) = low, (4)

p′(E) = high, (5)

p′(E∣F) = low. (6)

Notice that we also have the constraint:

p(E∣F) = p(E), (7)

because the trickiness of the lighting has no bearing on the actual colour of the sock
at the outset. Initially, the lighting is only relevant to the sock’s apparent colour. Only
a�er I base my opinion about the sock’s redness on its appearance does the quality of
the lighting become relevant to its actual colour.
�e problem is that (5), (6), and (7) are incompatible with p′ coming from p by a

rigid update on {E , E}.�e following is a theorem:

Rigidity is Independence Preserving: If the transition from p to p′ is rigid on the
partition {Bi} and p(Bi ∣A) = p(Bi) for every Bi , then p′(Bi ∣A) = p′(Bi)

for every Bi .4

�e theorem tells us that, because E is independent of F at the outset as stipulated
in (7), and the update from p to p′ is rigid on the partition {E , E}, E will remain
independent of F under p′, contra (5) and (6). Intuitively of course, the trickiness of
the lighting should be irrelevant to the sock’s colour before the glance, and negatively
relevant a�er. But, as long as the update in between is rigid with respect to the

4Proof. If the transition from p to p′ is rigid with respect to {B i}, then p′(A∣B i) = p(A∣B i) = p(A)
for every B i . By the theorem of total probability, p′(A) is a weighted sum of these p′(A∣B i). So if they
all have the same value, it must be that p′(A) = p′(A∣B i), for any B i .
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sock’s redness, this cannot happen. Rigidity prevents the introduction of a negative
correlation between E and F.5

Stepping back from the sock example, we can see how rigidity clashes with per-
ceptual undermining in general. Cases of perceptual undermining are ones where a
perceptual state provides evidence for a proposition, but some undermining defeater
for that support is then discovered. Because the defeater is an undermining one,
as opposed to a rebutting one, it is not evidence against the proposition itself; it
merely undercuts the evidential support o�ered by the perceptual state (Pollock,
1986, 2008). In probabilistic terms this means the underminer is irrelevant to the
supported proposition at �rst, but negatively relevant a�er the perceptual state has
lent its support. And this is precisely what Rigidity is Independence Preserving
rules out. If the underminer is irrelevant before the perceptual state supports the
proposition, it is irrelevant a�er as well. So rigidity prevents perceptual undermining
when it obviously shouldn’t.

1.3. Objections. �e problem might seem easily answered at �rst, even misguided
or marginal. Answering some preliminary objections shows it isn’t so.

Objection. �e problem results from updating on the wrong partition. If one’s
evidence is a perceptual state like a glimpse of a red sock, the appropriate evidential
propositions are appearance propositions, not propositions about the sock’s actual
colour. So the right proposition to update on is not E =�e sock is red, but rather
something like E∗ =�e sock appears red.

Reply. For this objection to work there must be no underminers for appearance
propositions. Otherwise the same problem just re-arrises at the level of appearance
propositions. Suppose, for example, that the proposition I’ve just had a brain scan
showing that I am an unreliable judge of my own colour experiences is an underminer
for the appearance proposition,�e sock appears red. At the outset this proposition
is probabilistically irrelevant to whether the sock will appear red to me in a moment.
However, when the sock does appear red to me, and I become con�dent on that
basis that it appears red to me, this underminer should become negatively relevant
to the proposition that the sock appears red. But once again, because Rigidity is
Independence Preserving, a negative correlation cannot be introduced, making it
impossible for this underminer to act as it should. It cannot be irrelevant before the
update and negatively relevant a�er.

5�e problem also a�ects imprecise credences represented by sets of probability functions. We
may assume that the agent de�nitely regards E and F as independent before the glimpse, so that her
representor (van Fraassen, 1990) contains only probability measures on which E and F are independent.
Updating each member of her representor by Je�rey Conditionalization on {E , E} then yields a
posterior representor containing only probability functions on which E and F are independent.
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One could maintain that there are no underminers for appearance propositions—
that nothing could cast doubt on the proposition that there appears to be a red sock,
not even a brain scan. I won’t attempt a full refutation of this view here. Doing so
would require a much longer discussion than would be appropriate here, and I expect
most readers will not be sympathetic to this view anyway. Instead I will o�er a few
brief reasons for proceeding on the assumption that appearance propositions are not
the solution to our problem.6

First, if the transition from perception to beliefs about perception is susceptible
to error, then the discovery that one is prone to such errors is generally available
as an underminer. It may be a di�cult, empirical question whether that transition
really is generally susceptible to error, but this is just grist for the mill. For then
there are empirical discoveries that could cast doubt on our beliefs about our own
sensory experiences. Suppose that a�er much study neurologists conclude sensory
experience and belief-formation happen in distinct parts of the brain. �ey also
�nd that the causal pathway connecting one part to the other can be interrupted by
magnetic interference. If one then participates in a study that uses such interference
to dupe subjects into believing they are having reddish experiences when they are
actually having green ones, it would be entirely reasonable upon being debriefed to
wonder what one actually experienced during the experiment.
Second, a number of classic arguments and examples have leadmost contemporary

philosophers, including many foundationalists, to be leary of the kind of Cartesian
certitude we’re entertaining. Ryle’s famous example of the speckled hen is one widely-
discussed reason: looking at a hen with 47 speckles on its facing side, couldn’t you
make a mistake about how many speckles are in your visual �eld? Some respond
that one’s experience of the hen has no determinate number of speckles (Ayer, 1940).
One simply experiences it has having many speckles. But this is yet more grist for the
mill. Some philosophers think the hen appears to have 47 speckles, others think the
appearance has no determinate number. Somebody must be mistaken about what
they are experiencing.
And there are other classic arguments for the fallibility of introspection into

sensory experience. Reichenbach (1938, p. 176) and Ayer (1946, p. 89) argue that
any attempt to classify one’s sensory experience as (say) greenish presupposes that
one is using this classi�cation in the usual way, a presupposition which could be
mistaken (cf. Christensen 1992, pp. 544–5). And Reichenbach (1952) o�ers a Bayesian

6Readers who remain unconvinced can view the arguments to follow as modus tollenses instead of
modus ponenses: the di�culty handling perceptual undermining in our leading formal frameworks is
an argument for the kind of Cartesian foundationalism they advocate.



8 JonathanWeisberg

argument that “phenomenal reports” are not certain. Experiences at an earlier time
serve as predictors of what one is likely to experience later, so later observations can
discon�rm that one had such-and-such experiences earlier.
�ird and �nally, if appearance propositions were certain this would eliminate

much of the motivation for generalizing Conditionalization to Je�rey Conditional-
ization. A major reason for adopting Je�rey Conditionalization is the thought that, at
least sometimes, experience does not provide us with certain information, not even
about appearances.�ere are other reasons one might be interested in Je�rey Condi-
tionalization, but this one is central for many authors. For these authors, solving our
undermining problem by rejecting the defeasibility of appearance propositions is
not an appealing option. (Cf. also Christensen 1992, §§3–4.)

Objection. Not all cases of undermining defeat are as pure as in the sock example.
Sometimes a proposition is both an undermining defeater and a rebutting defeater.
For example, suppose the housekeeper testi�es that the butler murdered the master
of the house, but we learn later that the butler reported the housekeeper to the master
for stealing.�is later discovery undermines the housekeeper’s credibility (at least
partially), since she has motive to smear the butler. But it is also evidence that the
butler did not murder the master, just in virtue of being a display of loyalty. So it
undermines and rebuts the proposition that the butler committed the murder. When
it comes to perceptual undermining, if an undermining defeater is also a rebutting
defeater, we cannot assume that the underminer is probabilistically irrelevant to the
supported proposition at the outset. So an assumption analogous to (7) does not
hold in every case of perceptual undermining.

Reply. �e fact that Rigidity is Independence Preserving may not rule out all
perceptual underminers, but it still rules out “pure” perceptual underminers. Unless
we are prepared to say there is no such thing as a pure underminer of perceptual
support, the problem remains. And there do seem to be cases of pure perceptual
underminers, as in the sock example. More generally, there is always the possibility
of learning that one is prone to misperception in the present environment. Since at
the outset this possibility (or something more speci�c) will usually be irrelevant to
what the environment contains, we can expect pure perceptual underminers to be
ubiquitous.

Objection. It was a mistake to apply Je�rey Conditionalization to the sock example
in the �rst place, since clause (ii) of Je�rey Conditionalization is not satis�ed there.
Experience doesn’t just directly a�ect my credences in E and E, it also directly a�ects
my conditional credences given E and E, especially my credence in F given E. Indeed,
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this is how the desired negative correlation between E and F gets introduced into p′.
(Cf. Wagner 2013.)

Reply. If Je�rey Conditionalization doesn’t apply here, then it never applies (or
hardly ever does). Actually discovering a perceptual underminer may be a rare
occurrence, but the potential for perceptual underminers is ubiquitous, as the replies
to the previous two objections showed. I should always be prepared to give up my
perceptually-based beliefs in response to underminers. But then I can’t obey Je�rey
Conditionalization, since it gets the conditional probabilities of these potential under-
miners wrong. Whether or not I actually learn F, p′(E∣F) should be low, yet Je�rey
Conditionalization makes it high. So this objection saps Je�rey Conditionalization’s
substance by making it generally inapplicable.

Objection. �e perceptual undermining problem only shows that Je�rey Con-
ditionalization is not a global update rule, in the sense that it is not the way to
update one’s credence in every proposition. We may need some other rule to tell
us how to update our credences in perceptual underminers, but Je�rey Condition-
alization is still adequate for less exotic beliefs. For example, I can still count on
Je�rey Conditionalization to dictate my new credence that the sock belongs to my
roommate.

Reply. Je�rey Conditionalization is popular because its recommendations are
plausible for the most part. So whatever the correct diachronic norm is, it will
probably agree with many of Je�rey Conditionalization’s recommendations. But
the fact remains that perceptual undermining exposes Je�rey Conditionalization to
be only partly correct at best. And as long as we do not have a complete account,
we should worry about why our account is incomplete. Maybe pursuing rules that
revolve around prior conditional credences was wrongheaded. Maybe the correct,
general diachronic norm will explain why Je�rey Conditionalization works when it
does and doesn’t when it doesn’t. In general, philosophers do not rest content with a
partial account when counterexamples emerge. We look for a more general account,
so that the counterexamples will illuminate what our earlier account missed.
�ere are more ways Bayesians might respond to the problem of perceptual un-

dermining. But before we consider them, I want to explore another avenue.�ere
are other models of rational belief change, and we might hope that they avoid the
problem altogether. In the next two sections I show that two prominent alternatives
face the same problem.
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2. The Challenge for Dempster-Shafer Theory

Dempster-Shafer theory (DST) represents doxastic states di�erently than Bayesian-
ism, and it uses a di�erent rule to update those states. So we might hope DST can
avoid the challenge perceptual undermining poses for Bayesianism. Here I argue
that it can’t.�e RIP theorem applies to DST too: updating in DST is Rigid, hence
Independence Preserving. I’ll �rst lay out the elements of DST, then formulate the
RIP theorem and perceptual undermining problem for DST.

2.1. Background on Dempster-Shafer�eory. DST represents doxastic states us-
ing belief functions instead of probability functions:

Belief Function: A function bel ∶ ℘(Ω)→ [0, 1]7,8 is a belief function just in case:

(B1) bel(∅) = 0,
(B2) bel(Ω) = 1,
(B3) For any subsets A1, . . . ,An of Ω,

bel(A1 ∪ . . . ∪ An) ≥ ∑
I⊆{1,...,n}, I≠∅

(−1)∣I∣+1bel(∩i∈IAi).

While the �rst two axioms are familiar from probability theory, (B3) is less familiar
and certainly more di�cult to read. It helps to notice that it is the same as the
generalized addition rule from probability theory, except that ‘=’ is replaced by ‘≥’.
So, where probability theory says that:

p(A∪ B) = p(A) + p(B) − p(A∩ B),

for any propositions A and B, DST only requires that:

bel(A∪ B) ≥ bel(A) + bel(B) − bel(A∩ B).

For this reason, belief functions are sometimes called super-additive measures, as
opposed to the additive measures of probability theory.
To understand how belief functions are updated in DST, we �rst need to introduce

a second way of representing doxastic states, namely via mass functions:

Mass Function: A function m ∶ ℘(Ω)→ [0, 1] is amass function just in case:

(M1) m(∅) = 0,
(M2) ∑A⊆Ωm(A) = 1.

7For technical reasons (fn. 9) we’ll restrict ourselves to �nite Ω.�e in�nite case is discussed in
Appendix A.II.
8
℘(Ω) is the powerset of Ω.
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Mass functions are an alternative way of representing doxastic states in DST because
every belief function corresponds to a unique mass function and vice versa:9

Proposition. If m is a mass function and we de�ne:

bel(A) ∶= ∑
B∶B⊆A

m(B),

then bel is a belief function. And if bel is a belief function, there is a unique mass
function m such that:

bel(A) = ∑
B∶B⊆A

m(B).

A proposition’s massm(A) should not be confused with its degree of belief, which
is given instead by bel(A). Whatm(A) represents ismore like the amount of evidence
pointing speci�cally to A. To illustrate, suppose a somewhat reliable source at NASA
predicts that a meteor will strike Canada tomorrow, while another, slightly less
reliable source believes it will strike the United States.�en I might assign mass 0.3
to its landing in Canada and mass 0.2 to its landing in the U.S., with the remaining
0.5 mass “unused”, i.e. assigned to Ω. My degree of belief that the meteor will strike
somewhere in North America is then the sum of the masses for all logically stronger
propositions, in this case 0.5 = 0.3 + 0.2. And this is so despite the fact that 0
mass is assigned to North America. Neither piece of evidence points directly to the
proposition that the asteroid will land in North America. Each speaks instead to a
more speci�c possibility: Canada or the U.S.
Bayesians typically represent evidence with a proposition, a probability distri-

bution over a partition, or more generally as an expected value. While DST can
also represent evidence as a single proposition, or even as a belief function over a
partition, its most general representation allows evidence to be any kind of belief
function over ℘(Ω). In general, evidence is updated on by combining the belief
function representing your prior credal state with a belief function representing the
evidence.
�e rule for performing these combinations is de�ned using mass functions. We

�rst de�ne a combination operator, ⊕, as follows:

Dempster Combination: Let the non-zero points of the mass function m1 be the
Bi ’s, and the non-zero points of mass function m2 the C j’s. �e Dempster

9�is fact does not holdwhenΩ is in�nite because some belief functionswill not have corresponding
mass functions (Halpern, 2003, p. 36). For more on the in�nite case, see Appendix A.II.
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combination of m1 and m2, written m1 ⊕m2, is de�ned:

(m1 ⊕m2)(∅) = 0, and

(m1 ⊕m2)(A) =
1
c ∑
B i∩C j=A

m1(Bi)m2(C j) for A ≠ ∅,

where c is the normalization constant:

c = 1 − ∑
B i∩C j=∅

m1(Bi)m2(C j).

�e Dempster combination of the belief functions corresponding to m1 and
m2, call them bel1 and bel2, is similarly written bel1 ⊕ bel2.

One can prove that the combination of two mass functions is always a mass function,
and thus the combination of two belief functions is always a belief function. �e
dynamics of DST can thus be given by:

Dempster’s Rule: If your credences are represented by the belief function bel and
your new evidence by the belief function belB, then your new credences
should be represented by the belief function bel′ = bel⊕ belB.

Just as Bayesians must be careful to separate the de�nition of conditional probability
from the dynamic rule of Conditionalization, in DST we must separate the de�nition
of ⊕ from this dynamic rule for updating.
Like in probability theory, we can look to the special case where a single proposi-

tion is learned with certainty for a notion of conditional belief, and write bel(A∣B).
�ere is even an analogue of the ratio rule from probability theory.10 However, this
notion of conditional belief plays a very minor role in DST, unlike the notion of
conditional probability in probability theory. For example, there is no analogue of
Bayes’ rule, relating bel(A∣B) and bel(B∣A) in a simple, helpful way.�ere is also no
analogue of the rule of total probability, relating bel(A) to bel(A∣B) and bel(A∣B).
Indeed, this latter fact will prove a minor stumbling block for our discussion of
rigidity, though one we can work around (see the discussion of conglomerability in
the next subsection).

2.2. �e Problem for Dempster-Shafer �eory. Now that we have DST on the
table, we can ask whether it correctly handles perceptual undermining. My argument
that it does not parallels the one for Bayesianism: when updating on E by Dempster’s
Rule, independence is preserved between E and its underminer, F. �us, having

10In probability theory, p(A∣B) = p(A∩ B)/p(B). In DST, bel(A∣B) = [bel(A∪ B) − bel(B)]/[1 −
bel(B)].
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updated on E in response to the appearance of the red sock, subsequently learning F
will not lower one’s degree of belief in E.
�e argument requires three things. First we need to formalize “updating on E” in

DST. When I glimpse the red-looking sock, what belief function do I combine with
my prior belief function? Second, we need to formalize the notion of independence
in DST. When does a belief function treat two propositions as independent? And
third, we need theorems. We need to show that Dempster’s Rule is Rigid, and that
Rigidity is Independence Preserving. Let’s tackle each of these tasks in turn.
How should we understand “updating on E” in the context of DST? For Bayesians

the answer was straightforward: Je�rey Conditionalize using the partition {E , E},
with a high value for E and a low value for E. But DST is more liberal. It allows that
one can have evidence for E without having evidence against or about E. So there
are a number of candidates for representing the evidence when we “update on E”.
We could use a mass function that:

● assigns all mass to E,
● assigns some mass to E, the rest to E,
● assigns some mass to E, the rest to Ω, or
● assigns some mass to E, some to E, and the rest to Ω.

Fortunately, it won’t matter which representation we choose. In all four cases, the
corresponding belief function is said to be “focused on” the partition {E , E}:

Focus: A belief function bel is focused on {E , E} just in case m(A) = 0 whenever
A /∈ {E , E , Ω}, where m is the mass function corresponding to bel.

Since our results will apply whenever the evidence is focused on {E , E}, we needn’t
worry about which representation is correct.
How should we understand independence in the context of DST? Importing the

usual de�nitions from probability theory would be unwise. For example, we might
say that A and B are independent just in case bel(A∩ B) = bel(A)bel(B). But this
de�nition turns out to be very weak: it would allow propositions to be independent
when information about one still a�ects one’s beliefs about the other, and it also
allows that A and B are independent even though A and B are not. (Ben Yaghlane et.
al. (2002) go so far as to call this de�nition “useless”.)
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Better de�nitions are available though.�e salient de�nition for our purposes11

comes from Shafer (1976):

Independence (DST): A and B are independent under bel if and only if every belief
function belB focused on {B, B} is such that:

(bel⊕ belB)(A) = bel(A),

(bel⊕ belB)(A) = bel(A).

Intuitively, A and B are independent just in case no information about {B, B} will
a�ect one’s beliefs about {A,A}. As one might expect, independence is symmetric
in DST: if information about {B, B} does not inform one’s beliefs about {A,A}, the
reverse is also true.12

At this point we might appear ready to put the perceptual undermining problem
to DST. At the outset of the sock case, E and F should be independent, so that
bel(F∣E) = bel(F∣E) = bel(F). And we can show that updating on E—i.e. combining
bel with a belief function focused on {E , E}—preserves these conditional beliefs, so
that bel′(F∣E) = bel′(F∣E).13 But it would be fallacious to then infer that E and F are
independent under bel′. For even though bel′(F∣E) = bel′(F∣E), it does not follow
that bel′(F∣E) = bel′(F).�at is, belief functions are not “conglomerable” the way
probabilities are: sometimes one’s conditional beliefs in A given B and given B are
the same, yet one’s unconditional belief in A is something else.14

One might just stop there, concluding that DST is fatally �awed for not having
such an elementary property. But we will press on, for two reasons. First, there
may be cases that favour abandoning conglomerability. Cases like Derek Par�t’s
miner puzzle might be used to argue that conglomerability should not always hold
(Kolodny & MacFarlane, 2010). Second, DST does have a closely related property: if

11�is de�nition of ‘independence’ is usually called “cognitive independence”. Shafer also de�nes a
notion he calls “evidential independence.” Dempster’s rule preserves evidential independence too, as I
prove in an extended version of this paper available online.�e proof is not included here because it is
quite long, and because (despite its name) evidential independence is not the appropriate conception
of independence for our purposes. Rather, evidential independence captures the idea that one’s beliefs
about A∩ B can be “factored” into beliefs just about A and beliefs just about B. In probability theory
the two kinds of independence coincide, since p(B∣A) = p(B) just in case p(A ∩ B) = p(A)p(B).
Factorizability is a useful property for simplifying representation and computation. But only the �rst
kind of independence, “cognitive independence”, is relevant to our epistemological discussion. (�e
labels “cognitive” and “evidential” can be very misleading here, especially to a philosophical audience.
Unfortunately, this terminology has stuck in the literature.)
12�is follows from Shafer’s (1976)�eorem 7.9, which states that independence is equivalent to the

relation 1 − bel(A i ∩ B j) = (1 − bel(A i))(1 − bel(B j)) holding for any A i ∈ {A, A}, B j ∈ {B, B}.
13See Lemma 2 in (Shafer, 1981).
14See Example 1 of Appendix A for a proof.
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one’s credence in Awould be x no matter what evidence one got about {B, B}, then
one’s credence in A is x right now.15 And this property may be what really draws us to
conglomerability. Perhaps we �nd conglomerability plausible because we think that,
when one’s credence in Awould be the same nomatter what information one received
about {B, B}, one should have that credence in A now.16 In a Bayesian context, that’s
equivalent to having p(A) = x when p(A∣B) = p(A∣B) = x. But the dynamics work
di�erently in DST. In DST, it can be that one would have credence x in A if one
learned B with certainty, and likewise for B, yet less-than-certain information about
{B, B} would yield some other credence in A.�us DST’s proponents might argue
that the failure of synchronic, probability-style conglomerability is appropriate given
their diachronic commitments. Rather than try to settle the matter here, we will
spot DST correctness on this point, and show that it nonetheless runs afoul of the
perceptual undermining problem.
Because DST’s dynamics di�er in this way, we must broaden our conception of

rigidity accordingly. One’s credences in A given certainty in B and given certainty
in B no longer capture all of one’s B-conditional attitudes, since they do not �x
one’s credences given less-than-certain information about B and B. So let us con-
ceive of rigidity as something stronger: preserving all B-conditional attitudes, even
conditional on less-than-certain information about {B, B}. We can then show:

Dempster Combination is Rigid: If bel is a belief function, bel1, bel2, bel3 are belief
functions focused on {B, B}, and

(bel⊕ bel1)(B) = ((bel⊕ bel2)⊕ bel3)(B),

(bel⊕ bel1)(B) = ((bel⊕ bel2)⊕ bel3)(B),

then bel⊕ bel1 = (bel⊕ bel2)⊕ bel3.17

Intuitively, this says that updating on bel2 doesn’t change one’s B-conditional attitudes,
where B-conditional attitudes are individuated according to the posterior credences
in B and B. We can also show:

Rigidity is Independence Preserving (DST): Suppose the transition from bel to
bel′ is rigid on the partition {B, B}.�en if A and B are independent under
bel, they are independent under bel′ too.18

15See the proof of “Total Conglomeration” in Appendix A.I
16�is thought has been a recurring theme in the literature on the Re�ection Principle (van Fraassen,

1984, 1995). See (Elga, 2007) and (Weisberg, 2007), for example.
17See Appendix A.II for a proof.
18See Appendix A.II for a proof.
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�uswe have the RIP theorem forDST:Dempster’s Rule is Rigid, hence Independence
Preserving.
Nowwe can put the perceptual undermining problem toDST. Before glimpsing the

sock, my credence function bel should regard E and F as independent. Information
about {E , E} should not a�ect my credences about {F , F}, and vice versa. When I
then glimpse the sock and “update on E”, I combine belwith a belief function focused
on {E , E} using Dempster’s Rule.19 But because Dempster’s Rule is Rigid, hence
Independence Preserving, the resulting bel′ will also regard E and F as independent.
So subsequently learning F cannot lower my credence in E. �us DST faces the
same challenge Bayesianism does. Representing credences by belief functions and
updating by Dempster’s rule is not a solution.
�ere are variants of DST we have not considered, and which may yet prove

better at handling perceptual undermining. Smets’ (1990) Transferable Belief Model
uses “conjunctive combination”, an unnormalized version of Dempster combination.
Although we won’t prove it here, inspecting the conjunctive combination rule and
our proofs in Appendix A.II makes it clear that the RIP theorem readily extends
to conjunctive combination. But Dubois and Prade (1986) also o�er a disjunctive
combination rule, and Fagin & Halpern (1991) o�er an alternative de�nition of
bel(B∣A) inspired by viewing belief functions as lower envelopes on sets of probability
distributions. And there are still more options. Whether any of these is better suited
to handle perceptual undermining is an open question.

3. The Challenge for Ranking Theory

Ranking theory (Spohn, 1988, 2012) departs from Bayesianism and from DST, both
in the way it represents doxastic states and in the rules it uses to update them.20 So
we might hope it can come through where Bayesianism and DST have so far failed.
We will see, however, that the RIP theorem extends to ranking theory too.
In ranking theory, doxastic states are represented by ranking functions:

Ranking Functon: A function κ ∶ ℘(Ω) → N ∪ {∞} is a ranking function just in
case:

(R1) κ(∅) =∞,
19Objection. �e right way to respond to the appearance of the sock is not to combine with an

evidential belief function focused on {E , E}, but to combine with a more complicated belief function
that will introduce the necessary negative correlation between E and F. Reply.�is move is parallel to
the Bayesian’s reply that we must use a richer partition, and is subject to the same objections (see §5).
20It also di�ers in the doxastic attitudes it is chie�y designed to represent, viz. full beliefs rather

than degrees of belief. We will consider the signi�cance of this di�erence once we have the RIP theorem
on the table.
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(R2) κ(Ω) = 0,
(R3) κ(A∪ B) = min[κ(A), κ(B)] for any A and B.

A ranking function represents degrees of disbelief on an integer scale. Propositions
not disbelieved at all are ranked 0, and disbelieved propositions are then ranked
with greater and greater degrees up through∞. Notice though, propositions ranked
0 are not necessarily believed: if A and A are both ranked 0, the subject suspends
judgment about A vs. A. Rather, a proposition is believed just in case its negation is
ranked greater than 0 (A and A can’t both be ranked above 0, on pain of violating
(R2) or (R3)).
Ranking theory employs a notion of conditional rank similar to the notion of

conditional probability:

Conditional Rank: If κ is a ranking function, the conditional rank of A given B,
written κ(A∣B), is de�ned:

κ(A∣B) = κ(A∩ B) − κ(B).

Using conditional ranks, we have two rules for updating that parallel Conditionaliza-
tion and Je�rey Conditionalization respectively:21

Rank Conditionalization: If your ranking function is κ and you then make an
observation completely described by B, then for any A your new rank should
be: κ′(A) = κ(A∣B).

Spohn Conditionalization: If your ranking function is κ and (i) experience directly
a�ects your ranks on the partition {Bi} changing them to the values κ′(Bi),
but (ii) experience does not directly a�ect any other ranks, then for any A
your new rank should be:

κ′(A) = min[κ(A∣B1) + r1, . . . , κ(A∣Bn) + rn].

Rank Conditionalization is the special case of Spohn Conditionalization where the
evidential partition contains B and B and the new ranks are 0 and∞, respectively. So
we will focus on Spohn Conditionalization, for which we have the following result:

21I’ve adapted the usual statements of these update rules to make them explicitly rules for updating
in response to experience. Whether Spohn and other ranking theorists intend this interpretation, it is
appropriate in the present context. Our question is whether the resources of ranking theory do better
with perceptual undermining than those of Bayesianism or DST. See (Huber, 2013, §3.3) or (Huber,
2009, §4) for a more standard statement.
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Spohn Conditionalization is Rigid: If κ′ comes from κ by Spohn Conditionaliza-
tion on the partition {Bi}, then κ′(A∣Bi) = κ(A∣Bi) for all A, Bi .22

So we face the question whether rigidity is independence preserving in ranking
theory.
Independence for ranking functions is de�ned much like in probability theory

(Spohn, 1999):

Rank Independence: If κ is a ranking function, then A is independent of B under κ
just in case both of the following conditions hold:

κ(A∣B) = κ(A∣B),

κ(A∣B) = κ(A∣B).

And parallel to probability theory, we have the result:

Rigidity is Independence Preserving (Ranking�eory): Suppose the transition
from κ to κ′ is rigid on the partition {B, B}.�en, if A and B are independent
under κ, they are independent under κ′ too.23

�is completes our explication of the general RIP theorem. All three frameworks
under consideration—Bayesianism, Dempster-Shafer theory, and ranking theory—
use update rules that are Rigid, hence Independence Preserving.
Before we move on though, a few words about interpreting ranking functions

are in order. While Bayesianism and DST are commonly interpreted as theories
governing partial belief, the standard interpretation of ranking theory treats it as a
theory governing full belief. On the standard interpretation, an agent fully believes A
just in case she disbelieves its negation to some degree greater than 0: κ(¬A) > 0.�e
theory does deal in degrees of disbelief, but whether/how these degrees of disbelief
relate to Bayesian degrees of belief is not straightforward. Ranking theory’s degrees
of disbelief are operationalized in terms of the agent’s conditional full beliefs, or
in terms of the number of independent sources needed to warrant full belief.�is
contrasts sharply with Bayesianism’s operationalization of degrees of belief in terms
of preferences. Since Bayesianism does not include a standardized theory of full
belief, and ranking theory does not include a decision theory, it’s not clear how
to relate degrees of belief to degrees of disbelief.�us ranking theory may have a
di�erent subject matter than Bayesianism and DST, and may not be a competitor or
alternative to those theories.
22See Appendix B for a proof, though the result is already implicit in (Spohn, 1988, §5).
23See Appendix B for a proof, though this result is also implicit in (Spohn, 1988, §6).
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One can still interpret ranking theory’s formalism as a theory governing degrees
of belief (just upside down). If one does, then the results of this section show that
the resulting theory of partial belief faces the same perceptual undermining problem
as Bayesianism. But if one sticks to the standard interpretation, the moral of these
results is importantly di�erent.�ey then show that perceptual undermining isn’t
just a problem for degrees of belief, but for the theory of full belief too. An agent
who fully believes the sock is red based on its appearance cannot have that belief
undermined by the subsequent discovery that the lighting is deceptive.�is makes
the problem of perceptual undermining that much more pressing.
It’s natural to wonder whether perceptual undermining is also a problem for other

theories of full belief, especially the well-known AGM theory of belief revision.�e
prospects are not good.24

AGM represents an agent’s beliefs with a set of sentences, on which it imposes var-
ious synchronic and diachronic constraints. For example, the set should be logically
closed, and adding a sentence should have the same e�ect as adding any logically
equivalent sentence. (Alchourrón et al., 1985)However, the standard set of constraints
massively underdetermines how an agent should update her beliefs. So a second
layer of representation is o�en added, an “entrenchment ranking”, which describes
how easy various beliefs are for the agent to give up. Some natural assumptions then
yield a unique update rule, mapping each entrenchment ranking and input sentence
to a new set of beliefs. (Gärdenfors &Makinson, 1988; Gärdenfors, 1988; Grove, 1988)
Infamously though, this framework only handles one revision. When the agent

learns a second proposition that requires her to revise her beliefs again, the way
forward is once again massively underdetermined.�e reason is that the output of
the �rst update is just a set of beliefs, sans entrenchment ranking. Without a new
entrenchment ranking to work with, AGM’s weak diachronic constraints are all we
have to fall back on. (Boutilier, 1993; Darwiche & Pearl, 1994)
�is limitation is crucial for us because the problem of perceptual undermining

involves two revisions, a response to perception followed by a response to an under-
miner. Because AGM and entrenchment rankings are e�ectively silent on the second
update, they are silent about the problem of perceptual undermining.
Notably though, ranking theory can be viewed as an implementation of AGM, one

that solves the problem of iterated revisions. Ranking�eory’s states of full belief,
and its rules for updating them, obey the standard AGM constraints. Indeed, we
can view ranking functions as re�ned entrenchment rankings, providing cardinal
rather than merely ordinal information about degrees of entrenchment. (Spohn,

24I am indebted to Franz Huber for his generous help with the following discussion.
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1999; Huber, 2009, 2013) So, because ranking theory is an implementation of AGM
and faces the problem of perceptual undermining, the problem is a threat to AGM.
Must any reasonable implementation of AGM run afoul of perceptual undermin-

ing? �at we can’t say. For all I’ve said here, it remains possible that some other
way of strengthening AGM yields a theory di�erent enough from ranking theory to
avoid the problem. We can note, however, that one other prominent strengthening
of AGM, Darwiche & Pearl’s (1994), is not enough to prevent the problem. Darwiche
& Pearl propose four constraints to be added to the standard AGM ones. But they
also show that ranking theory respects their postulates just as it respects the weaker
AGM postulates. Whether some other strengthening or implementation of AGM
might do the job we must leave as an open question.

4. The Appeal toMetacognition

Let’s return to the challenge for Bayesianism and see what solutionsmight be available.
In my presentation of the problem, I assumed that the apparent redness of the sock
should increase my credence in E (�e sock is red), and the subsequent discovery that
F (�e lighting is deceptive) should decrease my credence in E. But, one might object,
the discovery that the lighting is deceptive should not decrease my credence that the
sock is red unless I think my credence in the sock’s redness is based on its appearance.
A�er all, if I think my credence in the sock’s redness is based on testimony, �nding
out that the lighting is deceptive should have no e�ect on my credence that the sock
is red. Only if I think my credence in the sock’s redness is appearance-based should
facts about misleading appearances a�ect my credence.
�is observation, continues the objection, exposes the point where a negative cor-

relation between F and E gets introduced into p′. A�er the �rst update in response to
the sock appearance, there is an update in response to that update, on the proposition
E′ =My credence at t′ that the sock is red is based on its having appeared red at t.�at
is, I make a metacognitive observation that prompts an update in between the up-
dates on E and on F. And that intermediate update is where the negative correlation
between E and F is introduced.�us, when I �nally do learn F, it will reduce my
credence in E. Unless, of course, I do not make the metacognitive observation that
my credence in E is appearance-based.�en there is no intermediate update and
learning F does not a�ect my credence in E, as is appropriate.25

�is solution has prima facie appeal because it acknowledges what seems plausible:
that perceptual beliefs are o�en accompanied by metacognitive information about

25�is proposal is based on a suggestion of Scott Sturgeon’s from his talk, “Undercutting Defeat &
Edgington’s Burglar,” given at the Conditionals and Paradox: Celebrating the Work of Dorothy Edgington
conference.
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their sources, and that the rational response to subsequent underminers should
depend on what meta-data we have about a belief ’s sources. Nevertheless, it fails
for a fairly simple reason.�e metacognitive observation that my credence in E is
appearance-based cannot introduce the desired negative correlation. To see this,
notice that at the outset, before I look at the sock, the conjunction�e lighting is
deceptive ∧My credence at t′ that the sock is red will be based on its appearing red
at t is probabilistically independent of the proposition�e sock is red.�e fact that
in a moment my credence in E will be high based on misleading appearances has
no bearing on what the actual colour of the sock is. In other words, at the outset E
is independent of F ∧ E′, i.e. p(E∣F ∧ E′) = p(E). Because Rigidity will Preserve
this Independence, learning E′ in addition to F cannot lower the probability of E.
�us the intermediate, metacognitive update does not provide an opportunity to
introduce the negative correlation between E and F that we are a�er.
�ere is a second way of pursuing this strategy. Instead of accommodating the

metacognitive observation by conditionalizing on E′, I might apply an update rule
like Information Minimization (Shore & Johnson, 1980; Williams, 1980), feeding it
the constraint that p′(E∣F) should be low. On this approach, the transition from
p to p′ happens in two steps: p → p∗ → p′, with the �rst p → p∗ transition using
Je�rey Conditionalization on {E , E}, and the second p∗ → p′ transition happening
by Information Minimization with the constraint that p′(E∣F) be low.
�is approach gives away the game though. One way to see this is to note that

the �rst p → p∗ step is now super�uous. �e entire transition from p to p′ can
be achieved in a single step by applying Information Minimization once with the
constraints that p′(E) shall be high and p′(E∣F) low. Another way of seeing the point:
we are e�ectively conceding that Information Minimization must be used in all (or
nearly all) cases that were traditionally handled using Je�rey Conditionalization. For,
as we saw in §1.3, perceptual underminers are ubiquitous. Any judgment we make in
response to experience could, potentially, be undermined by the later discovery that
our faculties are unreliable when it comes to observations of the kind in question. If
we solve the problem this way, then all (or nearly all) cases of observation must be
handled by Information Minimization.
Fans of Information Minimization might be okay with this result, but there are

reasons not to be sanguine. One reason is that we must now always feed constraints
like “make p′(E) high but keep p′(E∣F) low” into our update rule.�e more such
constraints we put in by hand, the less epistemological work the rule does for us, and
the more we should wonder about the depth of our approach. And as we’ll see in
the next section, every update will require many such constraints, since there will
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generally be many possible underminers. We’ll see some additional reasons to be
wary of replacing Je�rey Conditionalization with Information Minimization in §7.

5. The Appeal to Richer Inputs

Let’s look elsewhere for an opportunity to introduce a negative correlation between
E and F. What about the �rst update, the one that happens in response to the sock’s
red appearance? If we apply Je�rey Conditionalization to the partition {E , E}, the
fact that Rigidity is Independence Preserving dashes any hopes of introducing the
desired negative correlation. But what if we use a di�erent partition, one that already
captures the defeat relations between underminer and underminee? For example,
instead of applying Je�rey Conditionalization to a distribution like:

E E

.99 .01

we could instead use:

E E

F

F

.001 .009

.989 .001

�en we get the desired results: p′(E) = .99 but p′(E∣F) = 0.1, so F will function as
an underminer a�er the �rst update.26

My main concern about this proposal is that it gets the right results but in the
wrong way. To see why, we must �rst consider a lesser problem, namely that it shi�s
a tremendous amount of work to an as-yet unarticulated part of Bayesian theory.
It has long been appreciated that Je�rey Conditionalization is incomplete as a rule

for updating probabilities in response to experience, since it does not specify what
distribution one should update on in response to a given experience (Field, 1978;

26�is proposal has been suggested by several philosophers in personal communication, and is
discussed by Pryor (forthcoming, §10). Relatedly, Wagner (2013) endorses Je�rey Conditionalizing on
¬F ⊃ E. But as Gallow (forthcoming) points out, this lowers p(F). Surely a glimpse of a red-looking
sock shouldn’t a�ect your credence that the lighting is deceptive.
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Christensen, 1992).27 Je�rey Conditionalization presupposes that the distribution of
probabilities over some partition is “directly a�ected” (Je�rey, 1968, §§2–3), but it
does not say when these direct e�ects should28 happen in response to experience,
or what they should be like. In order for our theory of updating to be complete, we
would need a rule supplementing Je�rey Conditionalization, a rule that speci�es
what distribution to plug into Je�rey Conditionalization in each case.
Despite being incomplete in this way, Je�rey Conditionalization is interesting

because, for many problems of interest, we can make plausible, innocuous assump-
tions about what input distribution to use.�at is, we can apply the rule in obvious
ways that allow us to proceed to address orthogonal problems of interest.�e cur-
rent context is not like that, however.�e solution on o�er trades on precisely this
incompleteness of Je�rey Conditionalization, suggesting that we �ll out the gap in
Bayesian theory one way rather than another in order to solve a problem for Je�rey
Conditionalization. And if we pursue this solution seriously, we will �nd that �lling
out the gap is a surprisingly complex and non-obvious task. To see what a complex
and di�cult job it is, consider in detail what we would need to do in the sock example
to get all the desired results.
First, notice that the input partition must be much �ner than the simple, 4-cell

partition suggested above, {EF , EF , EF , E F}. Many di�erent propositions besides
F can undermine the support the appearance of the sock lends to E.�e fact that the
lights are deceptive is one underminer, but so are propositions about the health of my
eyes, the functioning of my visual system, and even the quality of the air in the room.
In short, there is a long list of potential underminers for E, and we will need an input
partition �ne enough to capture them all. Second, notice that the distribution over
this rich partitionmust be quite complex, since di�erent propositions will undermine
E to di�erent degrees. For example, discovering that the lighting renders colour
vision entirely unreliable would seem to defeat E completely, causing me to return
my credence that the sock is red to its original value. But what if, instead, I learn that

27Something very similar is true of Conditionalization of course. But the problem seems to have
been felt more severely by those interested in Je�rey Conditionalization, presumably because they are
concerned to reject an epistemology based on protocol-sentences, thereby ruling out the most obvious
solution to the parallel problem for Conditionalization.

28Some authors would object to this “should” talk, on the grounds that there is no fact of the matter
how one’s credences over the partition ought to change in response to experience, only a fact about
how they do change. On this view, normative questions only arise a�er an experience has had its
direct e�ects on one’s credences. Je�rey himself takes this view explicitly in his (1968, §3), though
Carnap clearly disagreed (Je�rey, 1975, p. 44), and (Christensen, 1992) follows Carnap, joining many
contemporary epistemologists in rejecting that view. I will follow Carnap and Christensen, as Je�rey’s
view here denies our starting assumption that experience provides prima facie evidential support. My
arguments are addressed to those who think experience plays a justi�catory, hence normative, role.
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the lighting is deceptive but only certain times of day?�en the defeat shouldn’t be
as extreme. And if I learn that the air in the room is unusual in ways that can cause
optical illusions, I might want to reduce my credence in E by a bit, but perhaps not
by very much. �ird, notice that the distribution chosen must be sensitive to the
agent’s background beliefs. Which propositions are underminers for which others is
largely sensitive to background beliefs. On one theory of optics, the quality of the air
might be irrelevant to the trustworthiness of visual perception, while on another it
might be highly relevant.
So we might be able to handle the problem that perceptual undermining poses for

Je�rey Conditionalization by shi�ing the work to the as-yet unspeci�ed, supplemen-
tary input rule. But we would be shi�ing a tremendous amount of complex, precise,
and subtle work to that rule.29�at is the lesser problem.
�e greater problem is that we would not just be shi�ing a lot of work, we would

also be shi�ing the wrong kind of work. An update rule is supposed to determine
our new credences as a function of our old beliefs and the new evidence. But on the
current proposal, “the new evidence” is not really the new evidence.�e complex
distribution we would be plugging into Je�rey Conditionalization would be produced
by considering how an experience as of a red-looking sock and our background
beliefs about optics combine to warrant new beliefs about the quality of the air
and the colour of the sock. And this is precisely the kind of work our update rule
was supposed to do.30 �e current proposal tries to save our update rule, Je�rey
Conditionalization, by turning its supplementary input rule into an update rule too.
�is is bad for a number of reasons. First, we drain substance from Je�rey Con-

ditionalization by taking away work it was supposed to do for us and moving it to
another part of our theory. Second, we move the work to a part of the theory we don’t
actually have yet. Finally, in shi�ing the work this way we undermine the paradigm
underlying rules like Conditionalization and Je�rey Conditionalization. Updating is
no longer a matter of aligning new unconditional probabilities with old conditional
probabilities on the evidence. Rather, it is a matter of doing whatever the as-yet

29Cf. Pryor (forthcoming), who worries that we would be moving epistemologically important
work “o�stage”.
30Worse yet, those new beliefs might not be determined by any formal rule. Conditionalization

and Je�rey Conditionalization use purely logical and probabilistic features of our priors and “the
new evidence” to determine new credences. But there might be no logico-probabilistic relationship
between a perceptual state, our prior credences, and the probabilities one should input to Je�rey
Conditionalization.
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unspeci�ed input rule does to determine new credences based on prior credences
and sensory experience.31

6. The Appeal to a Generic Underminer

Maybe instead of enriching the input distribution in such drastic ways, we can get
what we need with just one enrichment. Let G be the “generic” underminer, My
colour experience is not a reliable guide to the sock’s colour, and let’s use as our input
distribution:

E E

G

G

.001 .009

.989 .001

�en, when I later learn some fact that supports G, such as that the lighting is decep-
tive, the probability of E will be reduced to a low value (0.1 in this toy example). In
general, learning any particular underminer—about the quality of the lighting, the
health of my vision, the makeup of the air in the room—will support G and conse-
quently undermine E. So we get the desired undermining without having to cra�
a �ne-grained and carefully tuned input distribution. And, unlike the distribution
proposed in the previous section, this one might plausibly be taken to represent the
new evidence alone (as opposed to representing the joint e�ects of the new evidence
and our background beliefs).32

Myobjection here is that no proposition can legitimately play the role of the generic
defeater, G. G must be a proposition that is made probable by all underminers, and
which reduces the probability of E back to its original value, p(E). More speci�cally,
because underminers come in various strengths,Gmust bemade probable to di�erent
degrees by di�erent underminers. What proposition could have these features?�ree
proposals come to mind.
First we might try G1 =My colour experience is not a reliable indicator of actual

colours. But this proposition is too general.�e fact that my colour experience is
not reliable in general does not entail that it is probabilistically irrelevant in this

31�is objection is very much in the spirit of Christensen’s (1992) original concerns about (Je�rey)
Conditionalization, perhaps bringing the discussion full circle.
32�anks to Ralph Wedgwood for his helpful correspondence here.�is proposal is based on his

post at http://el-prod.baylor.edu/certain_doubts/?p=843.

http://el-prod.baylor.edu/certain_doubts/?p=843
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one instance. And some underminers will not have such broad scope. For example,
the proposition that the air in the room induces optical illusions is at least a partial
underminer of E, but it does not mean that my colour vision is unreliable in general.
Broadly speaking, many propositions will undermine E without su�ciently prob-
abilifying G, and G itself is not strong enough to act as a perfect underminer of E.
�us G cannot stand as a proxy between E and its various potential underminers.
Second we might try G2 =�e objective chance of E is low. G2 has the advantage

over G1 that, assuming compliance with the Principal Principle (Lewis, 1980), it
will reduce the probability of E to the desired level. And it’s plausible that many
underminers will support G2 to the extent that they are underminers. Still, it’s
contentious whether all underminers will support G2. For example, inadmissible
propositions might be capable of undermining E but would not do so by in�uencing
my credences about the chance of E. In general, how underminers will interact
with my beliefs about the chances will depend on one’s views about chances and the
Principal Principle, and such matters are contentious to say the least (see (Meacham,
2010) for some recent discussion of the relevant issues). And this worry points to
the really fundamental concern about G2: it is too theoretically loaded. �ere is
disagreement about whether there really are such things as chances, but even those
who think there are chances must concede that some others do not.�ese others will,
presumably, be sensitive to underminers in the same way as those who believe in
chances. But for them,G2 cannot play the role ofG, so the true story about perceptual
undermining cannot be that it works by updating on {EG2, EG2, EG2, E G2}.
�ird and �nally wemight tryG3 =My colour experience is not a reliable indicator in

this one instance. G3 has all the virtues ofG2 but without the complications that come
with appealing to the controversial notion of objective chance. Still G3 is dangerously
trivializing. How do we understand the notion that something is “an unreliable
indicator in just one instance”, except maybe as meaning either “the objective chance
is low” or “should not be trusted”?�e �rst option takes us back toG2 and its troubles,
while the second brings us back to the worry that Je�rey Conditionalization is being
sapped of any substance. It is well-known that any transition from one probability
function to another can be viewed as the result of Conditionalization, if we just
enrich the domain of the probability function appropriately (see (van Fraassen, 1989,
p. 322), for example). And interpreting G3 as saying something like “I should reduce
my credence in E” looks like it amounts to doing just that. We enrich the domain of
the credence function with proxy propositions that do nothing more than allow us to
model the desired transitions as instances of Conditionalization.�ese propositions
have no content beyond saying that we should have a certain credence in a certain
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proposition. Conditionalizing on them may give us the dsired credences, but then
rules like Je�rey Conditionalization become trivial, saying merely that you should
adopt the credences you think you should adopt.

7. Conclusion

I have argued for two claims. First, the clash between perceptual undermining
and rigid updating is not con�ned to Bayesianism. �e same problem arises in
Dempster-Shafer theory and in ranking theory. Second, all the proposed ways of
avoiding the clash in the context of Bayesianism were inadequate. I conclude that
perceptual undermining presents formal epistemology with a broader and more
resilient challenge than one might have thought.
How should we respond to this challenge? Maybe we just have yet to see how to

correctly apply rules like Je�rey Conditionalization. Or, maybe, we need di�erent
update rules to handle perceptual undermining.
If we take the second route, more abstract rules like Information Minimization

(Shore & Johnson, 1980; Williams, 1980) are a natural place to look. But even with
such proposals to fall back on, the signi�cance of perceptual undermining should not
be underestimated. First, appealing to a rule like Information Minimization raises
worries similar to those that emerged for the appeal to richer inputs in §5. Relying
on Information Minimization to solve our problem means feeding it constraints like
“p′(E) should be high but p′(E∣F) low”.�emore such constraints we put in by hand,
the less epistemological work the rule does for us, and the more we should question
the depth of our theory.�e supposed centrality of prior conditional credences to
updating is also called into question.
Second, rules like Information Minimization are o�en viewed as generalizations

of (Je�rey) Conditionalization, generalizations that we only need for uncommon or
recherché cases like the Judy Benjamin problem (van Fraassen, 1981). But given the
ubiquity of perceptual undermining noted in §1.3, we would need to change our view
here. Even simple cases of observation would now have to be handled by a highly
abstract rule like Information Minimization.
�ird and relatedly, the controversies around these more abstract rules become

more pressing. Information Minimization has been criticized for delivering counter-
intuitive results in the Judy Benjamin problem . It is also defended on the grounds
that it makes the “minimal revision” to the agent’s beliefs that respect the imposed
constraints. But the measure of distance between belief-states used in this appeal
is not symmetric, hence not a proper metric (Howson & Franklin, 1994). �ere
are other ways of measuring distance, and competing update rules corresponding



28 JonathanWeisberg

to them (see (Douven & Romeijn, 2011), for example).�e ubiquity of perceptual
underminers makes the need to settle this competition more pressing. It also raises
questions about whether having Je�rey Conditionalization as a special case provides
evidence for the correctness of these rules, as is sometimes suggested.
Gallow (forthcoming) o�ers a di�erent sort of Bayesian proposal. He proposes

an update-rule speci�cally designed to handle perceptual underminers, while still
preserving the idea that prior conditional credences should be our guide to new
credences. Indeed, Gallow shows that his rule has Conditionalization as a special
case when there is no chance of undermining.
Whichever approach Bayesians prefer, Dempster-Shafer theory and ranking the-

ory may need to follow suit. In the case of Dempster-Shafer theory, a successful
alternative may even be on the books already. As mentioned at the end of §2.2,
existing alternatives to Dempster’s rule, like those of Dubois & Prade (1986) and
Fagin & Halpern (1991), have yet to be explored as potential answers to the challenge
posed by perceptual undermining.

Appendix A: Results for Dempster-Shafer Theory

Here we prove the formal results used in §2.2.�e central results are that Dempster’s
Rule is Rigid, and that Rigidity is Independence Preserving in DST. We will also
see a short, direct proof that Dempster’s Rule Preserves Independence. �e �rst
route to independence-preservation, via rigidity, veri�es that DST is of a piece with
Bayesianism and ranking theory: all three are rigid, hence independence-preserving.
�e second, shorter route illuminates the case where Ω is in�nite, which we bracketed
back in fn. 9. But �rst, we verify minor claims promised in fns. 14 and 15.

Appendix A.I Minor Results. As promised in footnote 14:

Example 1: Non-conglomerability in DST: Let Ω = {AB,AB,AB,AB} and let bel
be given by the mass function:

m(S) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1/10 if S = B or S = B,

2/10 if S = (Ai ∪ B j) for some Ai ∈ {A,A}, B j ∈ {B, B},

0 otherwise.

�en for any Ai ∈ {A,A} and B j ∈ {B, B}:

bel(Ai ∣B j) = 2/9,

bel(Ai) = 0.
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And as promised in footnote 15:

Total Conglomeration: If (bel⊕belB)(A) = x for every belief function belB focused
on {B, B}, then bel(A) = x.

Proof. Suppose (bel⊕ belB)(A) = x for every belief function belB focused on {B, B}.
By the de�nition of ⊕, we have for any mB and S ⊆ A:

(m ⊕mB)(S) =
∑X∶X∩B=S m(X)mB(B)

c
+
∑Y ∶Y∩B=S m(Y)mB(B)

c
+
m(S)mB(Ω)

c
.

Now consider what happens as mB(B) +mB(B) approaches zero: c approaches 1, so
each of the le� two summands approaches 0 while the right summand approaches
m(S). Now recall that:

(bel⊕ belB)(A) = ∑
S∶S⊆A

(m ⊕mB)(S).

We just saw that, asmB(B)+mB(B) approaches 0, each term in this sum approaches
m(S), so the sum approaches bel(A). At the same time, by hypothesis the sum
remains constant at x, so bel(A) = x too. �

Appendix A.II Rigidity and Independence. Here we show that Dempster’s Rule
is Rigid, and that Rigidity is Independence Preserving in DST.

Dempster Combination is Rigid: If bel is a belief function, bel1, bel2, bel3 are belief
functions focused on {B, B}, and

(bel⊕ bel1)(B) = ((bel⊕ bel2)⊕ bel3)(B),

(bel⊕ bel1)(B) = ((bel⊕ bel2)⊕ bel3)(B),

then bel⊕ bel1 = (bel⊕ bel2)⊕ bel3.

Proof. Suppose bel, bel1, bel2, bel3 are belief functions satisfying the theorem’s hy-
potheses. Because ⊕ is associative (Shafer, 1976,�eorem 3.3),

(bel⊕ bel1)(B) = (bel⊕ (bel2 ⊕ bel3))(B),

(bel⊕ bel1)(B) = (bel⊕ (bel2 ⊕ bel3))(B).

Moreover, because bel2 and bel3 are both focused on {B, B}, their combination is
too. Let bel4 be that combination, i.e. bel4 ∶= bel2 ⊕ bel3. We then have:

(bel⊕ bel1)(B) = (bel⊕ bel4)(B),

(bel⊕ bel1)(B) = (bel⊕ bel4)(B),
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with bel1 and bel4 both focused on {B, B}.
We will show that, except in a special case, bel4 = bel1, and thus bel ⊕ bel1 =

bel ⊕ bel4 = bel ⊕ (bel2 ⊕ bel3) = (bel ⊕ bel2) ⊕ bel3, as desired.�e special case is
when bel’s mass function is only positive on subsets of B and B. In this case we can
show directly that bel⊕ bel1 = bel⊕ bel4. We begin there.
Suppose bel’s mass function, m, is positive only on subsets of B and B (not neces-

sarily strict). Let the Bi be the subsets of B, and the B j those of B. By the de�nition
of ⊕:

(bel⊕ bel1)(B) =
∑i m(Bi)m1(B) +∑i m(Bi)m1(Ω)

c1

= ∑
i
m(Bi)

m1(B) +m1(Ω)

c1
,

where c1 is our normalization constant. Similarly:

(bel⊕ bel4)(B) = ∑
i
m(Bi)

m4(B) +m4(Ω)

c4
,

Since by hypothesis (bel⊕ bel4)(B) = (bel⊕ bel1)(B),

∑
i
m(Bi)

m1(B) +m1(Ω)

c1
= ∑

i
m(Bi)

m4(B) +m4(Ω)

c4
.

So:
m1(B) +m1(Ω)

c1
=

m4(B) +m4(Ω)

c4
.

�us (m ⊕m1)(Bi) = (m ⊕m4)(Bi) for each Bi ⊆ B:

(m ⊕m1)(Bi) =
m1(B)m(Bi) +m1(Ω)m(Bi)

c1

= m(Bi)
m1(B) +m1(Ω)

c1

= m(Bi)
m4(B) +m4(Ω)

c4
= (m ⊕m4)(Bi).

Parallel reasoning involving B and the B j’s shows that the same holds there: (m ⊕

m1)(B j) = (m⊕m4)(B j) for every B j ⊆ B.�usm⊕m1 = m⊕m4, hence bel⊕bel1 =
bel⊕ bel4 as desired.
For the remainder of the proof then we bracket this special case. Let the Nk be

the sets that are neither subsets of B nor of B (‘N ’ for ‘Neither’). We now show that
bel1 = bel4 under the assumption that m(Nk) > 0 for some k.
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By the de�nition of ⊕:

(bel⊕ bel4)(B) =
1
c4

[m4(B)∑
i
m(Bi) +m4(Ω)∑

i
m(Bi) +m4(B)∑

k
m(Nk)] .

Adopting the following shorthand will prove useful:

a ∶= ∑
i
m(Bi), b ∶= ∑

k
m(Nk), c ∶= ∑

j
m(B j),

allowing us to tidy things up considerably:

(bel⊕ bel4)(B) =
m4(B)(a + b) +m4(Ω)a

c4
.

We can then a�ord to expand c4:

(bel⊕ bel4)(B) =
m4(B)(a + b) +m4(Ω)a

1 −m4(B)∑ j m(B j) −m4(B),∑i m(Bi)
,

which our shorthand renders:

(bel⊕ bel4)(B) =
m4(B)(a + b) +m4(Ω)a
1 −m4(B)c −m4(B)a

.

Parallel reasoning about B yields a similar equation:

(bel⊕ bel4)(B) =
m4(B)(c + b) +m4(Ω)c
1 −m4(B)c −m4(B)a

.

Now by hypothesis, (bel ⊕ bel4)(B) = (bel ⊕ bel1)(B), and likewise for B. Let’s
introduce constants for these values:

k ∶= (bel⊕ bel1)(B), k ∶= (bel⊕ bel1)(B).

And we’ll use the variables x, y, and z for m4’s assignments:

x ∶= m4(B), y ∶= m4(B), z ∶= m4(Ω).

We then have the following two constraints on m4:

k =
x(a + b) + za
1 − xc − ya

, (8)

k =
y(c + b) + zc
1 − xc − ya

. (9)

A third constraint falls out of the mass m ⊕m4 assigns to the Nk ’s, which must total
to 1 − k − k, and comes from products of the form m4(Ω)m(Nk):

1 − k − k =
zb

1 − xc − ya
. (10)
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And �nally, because m4 is a mass function, we have a fourth constraint:

x + y + z = 1. (11)

�ese four constraints form a set of linear equations in the unknowns x , y, and z.
Except in the special case where b = 0, we will see that there can be only one solution.
But we already dealt with the special case where b ∶= ∑k m(Nk) = 0 at the beginning
of the proof, and are now operating under the assumption that b ≠ 0.
To show that (8)–(9) have a unique solution in x, y, and z when b ≠ 0, we �rst

consider the case where z ≠ 0. In this case 1− k − k ≠ 0 too, for otherwise (10) would
entail b = 0.�us we can divide each of equations (8) and (9) by equation (10):

x(a + b) + za
zb

=
k

1 − k − k
, (12)

y(c + b) + zc
zb

=
k

1 − k − k
. (13)

Solving for x and for y:

x = z
( bk
1−k−k − a)

a + b
, (14)

y = z
( bk
1−k−k − c)

c + b
. (15)

Substituting (14) and (15) for x and y in (11) and solving for z, we �nd a unique
solution:

z = 1
( bk
1−k−k

−a)
a+b +

( bk
1−k−k

−c)
c+b + 1

. (16)

Substituting for z back into equations (12) and (13) yields unique values for x and
y as well. Because there is exactly one solution, and by hypothesis x = m1(B), y =
m1(B), z = m1(Ω) is a solution, m4 = m1 as promised.
What if z = 0?�en equations (8), (9), and (11) can be rewritten:

k =
x(a + b)

x(a + b) + y(c + b)
, (17)

k =
y(c + b)

x(a + b) + y(c + b)
, (18)

1 = x + y (19)

Since any increase in x must be accompanied by a decrease in y, the right hand side
of (17) is strictly increasing in x. So only one value of x can satisfy (17), and thus only
one value of y can satisfy (18). So the solution is still unique. �
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Having shown that Dempster Combination is Rigid, we now verify that Rigidity
is Independence Preserving in DST:

Rigidity is Independence Preserving (DST): Suppose the transition from bel to
bel′ is rigid on the partition {B, B}.�en if A and B are independent under
bel, they are independent under bel′ too.

Proof. Suppose the transition from bel to bel′ is rigid on the partition {B, B}, and A
and B are independent under bel. Let bel3 be a belief function focused on {B, B}. By
rigidity:

(bel⊕ bel1)(A) = (bel′ ⊕ bel3)(A),

(bel⊕ bel1)(A) = (bel′ ⊕ bel3)(A),

for any bel1 such that (bel ⊕ bel1)(B) = (bel′ ⊕ bel3)(B) and (bel′ ⊕ bel1)(B) =

(bel ⊕ bel3)(B). If such a bel1 exists for every bel3, our independence assumption
entails:

bel(A) = (bel⊕ bel1)(A),

bel(A) = (bel⊕ bel1)(A).

�us:

bel(A) = (bel′ ⊕ bel3)(A),

bel(A) = (bel′ ⊕ bel3)(A),

for every bel3 focused on {B, B}, i.e. independence is preserved as desired.
Moreover, such a bel1 is guaranteed to exist for every such bel3. For any bel, bel′,m3

we can always �nd an m1 such that:

(bel′ ⊕ bel3)(B) = ∑
i
m(Bi)

m1(B) +m1(Ω)

c1
,

(bel′ ⊕ bel3)(B) = ∑
j
m(B j)

m1(B) +m1(Ω)

c1
.

If we just substitute 1 −m1(B) for m1(B) +m1(Ω), this boils down to solving two
linear equations of the following form for x and z:

k =
a
c1
(x + z)

k =
b
c1
(1 − x)

�
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�is establishes the RIP theorem for DST. Notice though, if we just wanted to
show that Dempster’s rule preserves independence, we could have taken a much
shorter route:

Dempster’s Rule Preserves Independence: Let A and B be independent under bel,
and let bel1, bel2, and bel3 be focused on {B, B}.�en:

(bel⊕ bel1)(A) = ((bel⊕ bel2)⊕ bel3)(A),

(bel⊕ bel1)(A) = ((bel⊕ bel2)⊕ bel3)(A).

Proof. Let A and B be independent under bel and let bel1, bel3, bel3 be focused on
{B, B}. First, by the associativity of ⊕:

((bel⊕ bel2)⊕ bel3)(A) = (bel⊕ (bel2 ⊕ bel3))(A). (20)

Second, because the combination of two belief functions focused on the same par-
tition is also focused on that partition, bel2 ⊕ bel3 is focused on {B, B}. So since A
and B are independent relative to bel:

(bel⊕ (bel2 ⊕ bel3))(A) = bel(A). (21)

�ird, since A and B are independent under bel, and bel1 is focused on {B, B}:

bel(A) = (bel⊕ bel1)(A). (22)

Chaining together (20)–(22) we have:

((bel⊕ bel2)⊕ bel3)(A) = (bel⊕ bel1)(A),

as desired. And parallel reasoning shows the same for A. �

�is proof is not only mercifully short, it also enables us to say something about the
case where Ω is in�nite, which we bracketed back in fn. 9,
As mentioned in fn. 9, when Ω is in�nite some belief functions have no cor-

responding mass function. Since Dempster’s rule is usually de�ned using mass
functions, how these “massless” belief functions combine is le� open by DST. Di�er-
ent generalizations are possible, and one might conceivably devise a generalization
that, at least for massless belief functions, escapes the theorem we just proved for
�nite Ω.
But any such generalization of Dempster’s rule would have to be very strange.�e

short proof relies only on very elementary properties of ⊕, properties that ought not
depend on Ω being �nite. Speci�cally, we assumed that (i) ⊕ is associative, and (ii)
the combination of two belief functions focused on the same partition is also focused
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on that partition. It would be very surprising, and puzzling, if these properties held
when Ω is �nite, yet failed for in�nite Ω.
Also noteworthy: even if we did devise such a generalization of Dempster’s rule,

the RIP theorem would still cover those cases where the agent’s belief function does
have a corresponding mass function. For these agents, the two properties necessary
to prove the theorem will hold. So only agents whose belief functions are “massless”
would escape the problem. Unless there is some reason “massive” agents are rational
to ignore perceptual undermining, there is no shelter in the massless edge-case.

Appendix B: Results for Ranking Theory

Here we show that Spohn Conditionalization is Rigid, and that Rigidity is Indepen-
dence Preserving in ranking theory.

Spohn Conditionalization is Rigid: If κ′ comes from κ by Spohn Conditionaliza-
tion on the partition {Bi}, then κ′(A∣Bi) = κ(A∣Bi) for all A, Bi .

Proof. Suppose κ′ comes from κ by Spohn Conditionalization on the partition {Bi}

with the input values {ri}.
First, by the de�nition of conditional ranks, we have for each i :

κ′(A∣Bi) = κ′(A∩ Bi) − κ′(Bi). (23)

Second, since κ′ comes from κ by Spohn Conditionalization on {Bi} with the values
{ri}, we know that:

κ′(A∩ Bi) − κ′(Bi) = min
j

{κ(A∩ Bi ∣B j) + r j} −min
j

{κ(Bi ∣B j) + r j}. (24)

When are the terms on the right-hand side minimized? Notice that κ(Bi ∣B j) = 0
when j = i, since κ(Bi ∣Bi) = 0 by the de�nition of conditional rank. Whereas
κ(Bi ∣B j) =∞ when i ≠ j, since then Bi ∩ B j = ∅.�us both terms are minimized
when i = j, giving us our third equation:

min
j

{κ(A∩ Bi ∣B j) + r j} −min
j

{κ(Bi ∣B j) + r j} = κ(A∩ Bi ∣Bi) + ri − ri

= κ(A∩ Bi ∣Bi). (25)

Fourth, by the de�nition of conditional rank:

κ(A∩ Bi ∣Bi) = κ(A∩ Bi ∩ Bi) − κ(Bi)

= κ(A∩ Bi) − κ(Bi)

= κ(A∣Bi). (26)
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Chaining together equations (23)–(26), we get:

κ′(A∣Bi) = κ(A∣Bi),

as desired. �

Rigidity is Independence Preserving (Ranking�eory): Suppose the transition
from κ to κ′ is rigid on the partition {B, B}.�en, if A and B are independent
under κ, they are independent under κ′ too.

Proof. Suppose the transition from κ to κ′ is rigid on {B, B} and that A and B are
independent under κ. Let Ai ∈ {A,A}. We will derive a series of eight equations
which we’ll then chain together.
First, by elementary set theory:

κ′(Ai) = κ′([Ai ∩ B] ∪ [Ai ∩ B]). (27)

�en by the third axiom of ranking theory, (R3):

κ′([Ai ∩ B] ∪ [Ai ∩ B]) = min[κ′(Ai ∩ B), κ′(Ai ∩ B)]. (28)

And by the de�nition of conditional ranks:

min[κ′(Ai ∩ B), κ′(Ai ∩ B)] = min[κ′(Ai ∣B) + κ′(B),

κ′(Ai ∣B) + κ′(B)]. (29)

Since the transition from κ to κ′ is rigid:

min[κ′(Ai ∣B) + κ′(B), κ′(Ai ∣B) + κ′(B)] = min[κ(Ai ∣B) + κ′(B),

κ(Ai ∣B) + κ′(B)]. (30)

�en, because A and B are independent under κ:

min[κ(Ai ∣B) + κ′(B), κ(Ai ∣B) + κ′(B)] = min[κ(Ai) + κ′(B),

κ(Ai) + κ′(B)]. (31)

But it’s an elementary theorem of ranking theory that κ′(B) or κ′(B)must be 0, so:

min[κ(Ai) + κ′(B), κ(Ai) + κ′(B)] = κ(Ai). (32)

By the independence of A and B under κ again:

κ(Ai) = κ(A∣B). (33)

And since the update from κ to κ′ is rigid:

κ(Ai ∣B) = κ′(Ai ∣B). (34)
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Chaining together equations (27)–(34), we get:

κ′(Ai) = κ′(Ai ∣B).

And parallel reasoning with B in place of B in the last two equations yields:

κ′(Ai) = κ′(Ai ∣B).

�us:

κ′(A∣B) = κ′(A) = κ′(A∣B),

κ′(A∣B) = κ′(A) = κ′(A∣B).

�at is, A and B are independent under κ′, as desired. �
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