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Abstract. Risk-weighted expected utility (REU) theory is motivated by small-

world problems like the Allais paradox, but it is a grand-world theory by nature.

And, at the grand-world level, its ability to handle the Allais paradox is dubious.

�e REUmodel described in Risk & Rationality turns out to be risk-seeking rather
than risk-averse on one natural way of formulating the Allais gambles in the grand-

world context. �is result illustrates a general problem with the case for REU

theory, we argue. �ere is a tension between the small-world thinking marshaled

against standard expected utility theory, and the grand-world thinking inherent to

the risk-weighted alternative.

Buchak’s Risk & Rationality opens with four examples where the risk-averse
choice seems rational, despite violating expected utility theory. �ese allur-

ing choices appear compatible with Buchak’s risk-weighted expected utility theory,

however, making it an attractive alternative view of rational choice.

Here we challenge whether REU theory really does accommodate these examples.

We will focus on the most famous of the four, the Allais paradox. Our argument is

that REU theory struggles to handle this paradox on the theory’s own terms. Because

REU theory is not partition invariant, it is best understood as a “grand world” theory.

It should take into account every possible eventuality of concern to the agent. But

the treatment sketched in Risk & Rationality follows the usual, “small world” framing
appropriate only to partition-invariant theories, like expected utility theory. Moving

to the grand-world perspective hampers REU theory’s ability to handle the Allais

paradox. To recover the usual preferences, strong and implausible assumptions are

required.

�anks to Lara Buchak, Jennifer Carr, Justin Dallmann, Kenny Easwaran, and Sergio Tenenbaum

for helpful discussion and feedback.
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1. Allais, EU, and REU

Between the two gambles A and B, which do you prefer?

A = ($1 million, 1)

B = ($0, .01; $1 million, .89; $5 million, .1)

Most people prefer A to B. Better to walk away with a safe $1 million than to risk it
all for a 10% chance at $5 million, even if that risk is a meagre 1% chance. Many of

these same people prefer C to D given the following choice:

C = ($0, .9; $5 million, .1)

D = ($0, .89; $1 million, .11)

With a substantial chance of walking away empty-handed already on the table, they

are willing to take on an extra 1% risk of empty-handedness in exchange for a 10%

chance at $5 million. But, famously, expected utility theory forbids this combination

of preferences (Allais, 1953). If that trade-o� is acceptable to you in the second case,

it should be acceptable in the �rst case, too. So you can’t simultaneously prefer A to
B and C to D.1

REU theory is more permissive here. It allows us to accept the trade-o� between

an extra 1% risk of empty-handedness in exchange for a 10% chance at $5 million in

the risky context while rejecting it in the “safe” context, where a guaranteed $1 million

is an option. Risk & Rationality illustrates with a simple and plausible model on
which the risk-weighted expected utility of A exceeds that of B, yet the risk-weighted
expected utility of C still exceeds that of D (Risk & Rationality: 71). �e model’s
utility assignments are:

u($0) = 0

u($1 million) = 1

u($5 million) = 2

�ese concave utilities seem plausible enough to us. �ey don’t help expected utility

theory explain the usual Allais preferences, though. For that, Buchak argues, we

need a new ingredient: the risk function.
�e risk function alters how probabilities weigh against utilities in a gamble’s

evaluation. To see how the risk function operates, we start by ordering a gamble

1For present purposes, we follow Buchak (2013, §4) and bracket the possibility of “redescription”.

See Pettigrew (2014) for some critical discussion.
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from the worst outcome u1 to the best un:

G = (u1, p1; u2, p2; . . . ; un , pn).

�e usual expected utility formula is:

EU(G) = u1p1 + u2p2 + . . . + unpn

A less familiar but equivalent way of writing this formula weights utility increases
instead of utilities, as we move from the worst possible outcome to the best:

EU(G) = u1 + (
n
∑
i=2

pi)(u2 − u1) +
⎛
⎝

n
∑
i=3

pi
⎞
⎠
(u3 − u2) + . . . + pn(un − un−1)

�e weights here are also di�erent than in the usual expected utility formula: the

increase from ui to ui+1 is weighted by the probability that things will be at least as

good as ui+1. So we can rewrite this formula:

EU(G) = u1 +
n
∑
i=2

p(u ≥ ui+1)(ui+1 − ui)

It’s these at-least-as-good-as weights that REU theory adjusts using a risk function, r.
We apply r to the probability that things will be at least as good as ui+1:

REU(G) = u1 +
n
∑
i=2

r(p(u ≥ ui+1))(ui+1 − ui)

If an agent generally gives less weight to the probability that the outcome will be at

least as good as ui+1, she will be risk-averse. She will be less in�uenced by potential

gains than a vanilla expected utility maximizer. If instead she gives more weight to

these probabilities, she will be risk-seeking:

r(p) > p for all p /∈ {0, 1} ⇒ risk-seeking

r(p) < p for all p /∈ {0, 1} ⇒ risk-averse

Risk&Rationality uses r(p) = p2 as its running example of a risk-averse r function.
When combined with the u values above, it generates the usual Allais preferences:

REU(A) = 1

REU(B) = .9901

REU(C) = .02

REU(D) = .0121

So A ≻ B and C ≻ D, as desired.
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2. A Grand-World Theory

Savage (1954) famously noted that every decision really has countless possible out-

comes. Even if you take the safe $1 million, life can still turn out any which way. You

might encounter family or health problems that o�set the monetary gain, or your

winnings might be wiped out in a stock market crash or a lawsuit. Or, things might

go the other way, turning out much better than expected, over and above the bene�ts

of your new fortune. So the safe-seeming million is really a gamble, with outcomes

of every possible utility.

Expected utility theory can group these numerous possibilities into a handful of

“coarse” outcomes because the theory is partition invariant, at least when formulated
appropriately (Joyce, 1999, 2000). We just need to set the utility of each coarse

outcome equal to the weighted average of the numerous, �ne-grained eventualities

it comprises. Expected utility theory then gives the same results either way. If we

calculate the expected utility at the �ne-grained level, we get the same evaluation as

we do at the coarse-grained level. Expected utility theory gives the same results in

the grand-world problem as in small-world formulations of the same problem.
But REU theory is essentially di�erent in this regard (Risk & Rationality: 93). If

we lump outcomes together, we alter the gamble’s riskiness. We change its structure,

e.g. by making the worst possible outcome more probable, or less bad. Consider a

three-outcome gamble with uniform probabilities, and outcomes of utility 0, 1, and

2:

G

2

1

0

1/3

1/3

1/3

If we lump together the bottomandmiddle outcomes, and assign the lumped outcome

a utility equal to its risk-weighted average, 1/4, we change the distribution of risk.
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G′

2

1/42/3

1/3

�e worst outcome isn’t quite as bad now, 1/4 rather than 0. But it’s still not great,
and it’s now twice as likely you’ll end up with that measly 1/4 of a utile. REU theory
is expressly designed to be sensitive to such di�erences, and the lumping changes its

evaluations accordingly: REU(G) = 5/9 while REU(G′) = 4/9.
So REU theory is not partition invariant, but partition sensitive. Coarse-graining

a gamble’s outcomes changes REU theory’s recommendations by altering the very

risky structure the theory is designed to respond to. For this reason, Buchak says,

REU theory must be viewed as a grand-world-only theory. It’s to be applied to �nal
outcomes: “outcomes whose value to the agent does not depend on any additional
assumptions about the world.” (Risk & Rationality: 93) Using the theory correctly
requires �ne-graining the outcomes until they specify everything the decision-maker

cares about (Risk & Rationality: 226–9). Yet we used a small-world rendering of the
Allais problem to motivate REU theory in the previous section.

Does it matter?

It does. �emodel of §1 mishandles the Allais paradox in the grand-world context,

at least on one natural way of projecting the small-world Allais gambles onto the

big picture. �is raises the question whether any plausible model of REU theory

can handle the grand-world Allais problem. For if none can, the theory’s central

motivation is lost.

3. Grand-World Allais

�e safe million of option A is really a gamble. Life might still turn out terri�c,
terrible, or anywhere in between. How should we represent this gamble?

3.1. Normal Projections. Let’s start by considering the status quo. If you’re just

going about your life as usual, you probably expect things to go reasonably well,

though there’s a chance they could end up more extreme. You might meet with an

unexpected number of life’s little setbacks, you might even meet with severe tragedy.

On the other hand, things might go signi�cantly better than expected, or even much,

much better. How your life will turn out depends on many di�erent events, many

�ips of fate’s coin. So your expectations, we will assume, are captured by the familiar

bell-shaped curve of the normal distribution,N(µ, σ).
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Following Buchak, we can set the status quo as the zero-point of our utility scale.

So before the Allais gambles come into the picture, your expectations are normally

distributed around the mean µ = 0.
What should the standard deviation σ be? We will start with the somewhat

arbitrary but charitable assumption that σ = .2. Smaller values of σ are better for
REU theory, as we’ll see, and σ = .2 is quite small. On Buchak’s utility scale, a gain
of $1 million increases your utility from 0 to 1, which is �ve standard deviations if

σ = .2. �at means σ = .2 is so small, you are more than .9999997 con�dent that life
without the $1 million will be less good than what you would normally expect with

the $1 million.

Grand-world versions of the Allais gambles can now be obtained by adjusting

your expectations from the status quo. For example, the “safe” $1 million of gamble

A shi�s the mean up to µ = 1. If you gain a million dollars right now, other events
in your life could still turn out any which way. But most likely, things will go as

expected, with the $1 million improving things in the way one ordinarily hopes. In

other words, gamble A corresponds to the normal distributionN(1, .2) depicted in
Figure 1.

What about gamble B? It has three small-world outcomes: $0, $1 million, and
$5 million. So we replace each of these with a normal distribution centered on its

utility, though scaled down according to its probability. Applying the same method

to gambles C and D we get the distributions illustrated in Figure 1.
�ese are continuous distributions, whereas Buchak defends REU theory in a

�nite, discrete setting. But we can bridge the gap in a couple of ways, and it turns

out not to matter which we choose. So we reserve discussion of this wrinkle for the

Appendix, and proceed with our continuous approach.

3.2. �e Challenge for REU�eory. What does REU theory say about our grand-

world Allais gambles? Assuming r(p) = p2, we �nd that REU theory is actually
risk-seeking! B is now preferable to A:

REU(A) ≈ .887

REU(B) ≈ .900

While C continues to be preferable to D:

REU(C) ≈ −.073

REU(D) ≈ −.079
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Figure 1. Grand-world gambles A and B (top), and C and D (bottom)

In other words, REU theory now apes EU theory’s preferences. It does no better

at explaining risk-aversion in the Allais paradox than the theory it was meant to

replace.

In a way, this is not surprising. From the grand-world perspective, option A is
not really a sure thing. �ough it may secure the $1 million, it cannot secure a life

of utility 1 rather than utility 0. From the grand-world perspective, A is risky, much
like B.
So the challenge for REU theory is a tension between the grand-world context it

embraces, and the small-world thinking it seeks to validate. �e appeal of option

A is its certainty, the opportunity to avoid any risk. But REU theory insists on the
grand-world context, where that appeal dissolves. At the grand-world level, A is risky
and may not be preferable as a result. Indeed, we’ve just seen that it is not preferable

on one natural way of modeling the grand-world context.

Other models might be more friendly to the REU theorist’s cause, though. To

meet the challenge, they might try altering some of the parameters we’ve introduced.

Or they might defend an altogether di�erent model.
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We have examined several variations on the present model and found them all

wanting. To summarize, the only way we have found for REU theory to recover the

Allais pattern is to make σ implausibly small, and the risk function r implausibly
extreme or speci�c. We go into more detail in the next section, and then discuss the

broader signi�cance of our �ndings in §5.

4. Tweaking the Model

4.1. Varying Levels of Risk Aversion. Would a more risk-averse r function make
A preferable? Let’s consider r(p) = px with other values of x besides 2.
We examined values of x ranging from 1 to 10 at intervals of .01.2�e result: A did

eventually become preferable to B, as expected. But D became preferable to C �rst.
As described in the Appendix, a careful search suggests strongly that there is no value

of x that recovers the Allais pattern, given σ = .2. Evidently, REU(D) > REU(C) for
x ≥ 2.57, while REU(A) > REU(B) only for values of x strictly greater than 2.57.
But even if there were a value of x > 2 that succeeded, we would have reservations.

�e risk function r(p) = p2 is already pretty extreme. An agent with this risk function
would reject a gamble that gives her a 50% chance of losing $100 and winning $299,

given utility linear in dollars. At r(p) = p3, she would reject such a gamble up until a
potential gain of $699.3

4.2. Larger Values of σ . We suggested that σ = .2 is implausibly small when we �rst
introduced this value, adopting it only to be charitable. If we make the model more

realistic by increasing σ , the Allais pattern fails to emerge, as expected. Instead, REU
theory’s preference for B over A only gets stronger. We explored the range .2 ≤ σ ≤ 1
at .01 intervals and found that REU(A) − REU(B) only becomes more negative as σ
increases. (Again, see the Appendix for details.)

4.3. Smaller Values of σ . To put our cards on the table though, we selected σ = .2
as our working “small” value because it’s about as small as σ can get before the above
results fail to hold. If we set the standard deviation lower, the Allais pattern can be

recovered.

At σ = .1, a slight adjustment to the r function is all we need to recover the
pattern. Just bump x from 2 up to 2.05 and we get the desired result. We have already
expressed reservations about r(p) = p2 implying an extreme level of risk-aversion.
All the more for r(p) = p2.05. But bracket that concern for a moment.

2Why start with 1 instead of 2? Just to be thorough.
3�ese are small-world examples, but with an appropriate back story, the small-world problem can

be made the same as the grand-world problem. For example, the gambles might be o�ered by God on

the last day of your life, with currency replaced by heavenly utiles.
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Consider what σ = .1 would mean on its own. You would have to be at least this
certain:

.99999999999999999999999

that fate will not decide against you to the tune of 1 utile, roughly the equivalent of

$1 million. You would have to be that certain that life with the $1 million dollars will

be better than the life you expected to lead without it. Can you really be so certain

that fate will treat you so well? Couldn’t you encounter enough misfortune that the

$1 million is e�ectively spent just bringing you up to the quality of life you expected

from the status quo?

We think σ = .2 is already implausible, and σ = .1 is beyond the pale. REU
theorists could stay just within the pale by picking a σ value in between. But it’s shaky
terrain. �e larger σ is, the more fragile REU theory’s ability to recover the Allais
pattern becomes. As σ increases from .1 to .2, the range of successful values for x
in r(p) = px narrows and then vanishes. At σ = .1 we can set x anywhere from 2.05
up to almost 2.9. But by the time we get to σ = .19, the range of successful x values
narrows to a subinterval of (2.5, 2.6). One must have a very speci�c r function to
have the usual preferences. And an extreme one to boot.

So there is a tension between σ and x. �e larger σ is, the less room there is to
�nd an x that recovers the Allais pattern. Once σ gets to .2, there is no room. REU
theory thus faces a dilemma. Very small values of σ , like .1, are too implausible. And
merely small values, like .19, make the r function too fragile, and too extreme.

4.4. ADilemma. �eREU theorist’s original response to grand-worldworries about

the Allais preferences may have been that, while the “safe” $1 million is not perfectly

safe, it is still safe enough for REU theory to recommend it. Our numerical analysis

challenges this response. �e response amounts to insisting that σ should be small,
smaller even than .2. And here we get caught in the dilemma just mentioned.

�e �rst horn comes from the long game of life, the many �ips of fate’s coin. Even

with $1 million dollars in hand, life is still a series of unpredictable events. Health,

wealth, family, and friends are all still uncertain, and could go any number of ways.

So there is a limit on how safe the REU theorist can insist the “safe” $1 million is, in

the grand scheme of things.

�e second horn we might call the “Joe Average” problem. �e kind of risk-

aversion displayed in the Allais paradox is quite ordinary and widespread (Huck

& Muller, 2012). So it’s unlikely to be the result of a fragile tendency or a highly

speci�c character trait. It should be robust. Yet the less safe we admit a “safe” $1

million dollars really is, the less robust is the range of potential REU models capable
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of accounting for Joe Average’s risk-aversion. Indeed, as we have seen, Joe Average

can become Joe Impossible quite easily, even while allowing that a “safe” $1 million

really is quite safe (σ = .2).

5. Discussion

Stepping back, a larger point emerges. �ere is a kind of paradoxical irony to REU

theory.

�e theory is meant to sympathize with our aversion to uncertainty. It allows us to

eschew options whose outcomes are less predictable—more “spread out” as Buchak

says—in favour of options whose outcomes are more determinate. To achieve this

e�ect though, the theory appears to bind itself to the grand-world problem. It rejects

the additive approach of expected utility theory, apparently sacri�cing the ability to

work at the small-world level as a result.

�e irony is that, at the grand-world level, everything is spread out. Every choice

has innumerable possible outcomes, and it is never certain how one’s choice right

now will play out in the grand scheme of things. Even a “safe” $1 million might leave

you destitute and miserable in the end. And that possibility threatens to undercut the

initial motivation for the theory. It doesn’t necessarily recommend the “safe” option

anymore once it’s in scare-quotes, which it is in the grand scheme of things.

REU theorists might try to answer this challenge a number of ways. Let’s explore

two of them, and see what challenges they face.

5.1. Response #1: Small Worlds A�er All. REU theorists might point out that peo-

ple don’t usually think about the Allais gambles anything like the way we have

described them. One doesn’t normally view them from the grand-world perspec-

tive, but rather just sees the $1 million as a guaranteed improvement by 1 utile over

the status quo. And, framed this way, REU theory easily sympathizes, as Buchak’s

original model shows.

But this may be sympathy for the devil. Perhaps it’s a descriptive truth that people

view these gambles in small-world terms. But as we have seen, Buchak herself

claims that REU theory forbids small-world thinking, because the theory is partition-

sensitive.

Could framing a decision problem in small-world terms be permissible, despite

REU theory’s partition-sensitivity? Given partition-sensitivity, using a more �ne-

grained description of a decision problem can change the theory’s recommendations.

It is usually held that we should go with the most �ne-grained description in such

circumstances. Two main considerations support this view.
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First, we may think that the grand-world decision problem is ultimately what we

should be solving. If small-world decision problems are just attempts at modeling the

grand-world decision problem, then partition-sensitivity implies that small-world

problems can be bad models. One reason for thinking it’s ultimately the grand-

world decision problem we ought to be solving is that �ne-grained outcomes are the

location of value. And decision theory is supposed to capture how to best achieve

ends we value.

Second, one might think that a description of a decision problem should capture

everything that is relevant for the agent. One criterion for relevance could be that any
detail that may change the agent’s decision should be included in the speci�cation of

the decision problem. And then, under partition-sensitivity, small-world decision

problems may leave out relevant detail.

�ere may be some room for challenging these ideas. We could be permissive

about the framing of decision-problems despite partition-sensitivity. In response

to the arguments just provided, one might hold that the agent herself can decide

how much detail is relevant to her decision, and that value resides at whatever level

of description she chooses. McClennen expresses this view when he writes, “If the

world in fact opens to endless possibilities, still evaluation of risks and uncertainties

requires some sort of closure [...] Wherever the agent sets his horizons, it is here that

he will have to mark outcomes as terminal outcomes—as having values that may be

realized by deliberate choice, but nevertheless as black boxes whose contents, being

undescribed, are evaluatively irrelevant.” (McClennen, 1990, 249)

�e problem with this response is that it makes the recommendations of REU

theory highly sensitive to framing and context. �e detail that the small-world

version of the Allais problem leaves out is detail that the agent will likely �nd relevant

in other choice contexts. In many contexts, it will presumably matter, for instance,

how much interest you can get on your $1 million, or whether some disease will

keep you from enjoying it. If we are permissive about framing, then we need to hold

that the choice context changes what the agent �nds relevant, and at what level of

description she assigns ultimate value. We suspect most decision theorists will not

be willing to bite this bullet.

Of course, even if ideal REU theory is a grand-world theory, bounded rationality

might still call for smaller, more tractable frames. But then small-world EU would

be the better heuristic. As Buchak notes, given some plausible assumptions, EU

maximizers and REU maximizers make pretty much the same choices in the grand-

world problem (Risk & Rationality: 227–8). And since EU is partition-invariant,
small-world EU will match grand-world EU, which will closely match grand-world
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REU. Whereas small-world and grand-world REU can come well apart, as we’ve

seen.

So the challenges here are, �rst, to rationalize the use of small-world reasoning.

And then, second, to rationalize the use of REU-maximization rather than EU-

maximization in small-world problems.

5.2. Response #2: Varying the Variance. Gamble A doesn’t just promise safety in
that you de�nitely get the $1 million. It also promises the safety of �nancial security.

�ose with $1 million in the bank are less vulnerable to many of life’s setbacks; they

are not as easily ruined as the rest of us. And this points up an unrealistic feature of

our model: we assumed the same value of σ across the board. But really, it should
vary.

If $1 million shrinks σ by providing a measure of �nancial security, then $5 million
shrinks it even more. So we need three values to replace σ , one for each small-world
outcome: σ0 for utility 0, σ1 for utility 1, and σ2 for utility 2. �e general constraint
we have to work with is:

σ0 > σ1 > σ2

For example, we might set σ0 = .4, σ1 = .2, and σ2 = .1. If we do, we �nd the same
problem as before. REU theory is still risk-seeking given r(p) = p2, preferring B
over A and C over D.4

We conducted a search of what values of x and of the triple (σ0, σ1, σ2)may recover
the Allais preferences. We let the σi range from .1 to 1, and let x range from 1 to
4 at invervals of 0.1, taking values outside of these ranges to be too implausible to

consider. Some values within these ranges indeed recover the Allais preferences.

However, as before, a highly speci�c combination of values is needed. Solutions

only appear to exist for 2.1 ≤ x ≤ 2.7. So recovering the Allais preferences requires a
fairly extreme level of risk aversion. And even then, very speci�c combinations of σi
are needed, involving very small σ1 and σ2. �e Appendix links to aMathematica
notebook containing more details on the search and our results.

We thus face the same problems as before. �e Allais preferences cannot be

recovered with a large and robust range of REU models. And the REU models that

do recover them involve implausibly high levels of risk aversion and security.

Even if more plausible models could be found, there might still be cause for

concern. �ough it’s true that A is safe in the sense of promising �nancial security, its
advantage over B is supposed to come from the other kind of safety it promises: the
short-run guarantee of walking away $1 million dollars richer. So there is a concern

4REU(A) ≈ 0.944,REU(B) ≈ 0.945,REU(C) ≈ −0.0263,REU(D) ≈ −0.0333.
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about getting the right results in the wrong way. If REU theory does manage to

capture the usual Allais preferences, but only by appealing to reasons separate from

those that drive actual agents to have those preferences, it becomes doubtful whether

capturing those preferences really vindicates the theory.

6. Conclusion

�e moral we draw is that REU theory doesn’t clearly handle the very problems it

was designed to solve. It’s not that REU theory is �at-out inconsistent with the usual

Allais preferences in the grand-world context. To the contrary, we provided some

grand-world REUmodels that suggest the opposite. �e trouble is that the only such

models we found weren’t very plausible. �ey come too close to the small-world

problem by setting σ implausibly low.
Of course, there are many other shapes the risk function might take besides

r(p) = px , and other shapes may do better. Also, there are surely more realistic ways
of projecting the Allais gambles onto the grand-world context. We only scratched the

surface on one of these, when we brie�y considered using di�erent σi ’s for di�erent
small-world outcomes. So there may yet be models of REU theory that �t the bill. For

the theory to live up to its promise, however, we need to actually identify plausible

candidates. Until we do, it’s unclear how successful REU theory really is at achieving

its own ends.

7. Appendix

Here we describe the results of §§3–4 and how they are obtained. �eMathematica
code described below is available for download at the following URL:

http://www.utm.utoronto.ca/~weisber3/articles/REU.nb

Code for the three-σ model discussed in §5.2 can also be found there.

7.1. Analogue vs. Digital. Asnoted in §3.1, Buchak defends REU theory in a discrete,

�nite context, though we used continuous distributions in the main text. �ere are

two ways to bridge this gap.

�e �rst way is to extend REU theory to the continuous context. Given a gamble

represented by a continuous density p(u) over an interval of utilities [umin, umax],
we calculate its REU using p’s cumulative distribution function, P(u):

REU(G) = umin + ∫
umax

umin
r(1 − P(u)) du

http://www.utm.utoronto.ca/~weisber3/articles/REU.nb
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�is formula is just what we get from the discrete REU formula if we regard G as
a discrete gamble with evenly spaced outcomes, with utilities ∆ apart, and then let

∆ → 0.
�e second way is to work with discrete gambles directly. For example, we could

let Allais’ gamble A have �nitely many outcomes, with utilities:

−5.0,−4.9,−4.8, . . . , 4.8, 4.9, 5.0

We could then assign discrete probabilities that approximate the continuous distri-

butionN(1, .2). For example, an outcome of utility 1 would be assigned:

p(u = 1) = ∫
1.05

.95
N(1, .2) du

And likewise for the other 100 possible utility values.

�ese “fragmentations” of the continuous gambles give us �nite and discrete

representations of the grand-world context, as illustrated in Figure 2. We can then
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Figure 2. Fragmented gambles A (top-le�) through D (bottom-right)

apply the standard, discrete REU formula Buchak defends.
Whether we go discrete or continuous, we will have to work with numerical

approximations. �e normal distribution is central to both approaches. But, if we

take the discrete approach yet make it very �ne, the numerical REU values can be
arbitrarily close to those of the continuous approach. In fact, the discrete approach

needn’t be very �ne at all to match the results of the continuous approach that we

will use here. �e discrete model just described, where possible utilities range from
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−5 to 5 at intervals of 0.1, gives the same results as the continuous model. So we will
describe only the continuous approach here. (�eMathematica notebook linked
above provides code for both approaches.)

7.2. Programming the Model. We start by de�ning the Q-function, the comple-
ment of the normal distribution’s cumulative distribution function:

Q[µ_, σ_] ∶= 1. − CDF[NormalDistribution[µ, σ], u]

�en we de�ne four functions, one for each Allais gamble, to compute its REU given
a standard deviation σ and a power x for the risk function r(p) = px :

REUA[σ_, x_] ∶= −5. + ∫
5.

−5.
(1. × Q[1., σ])x du//N

REUB[σ_, x_] ∶= −5. + ∫
5.

−5.
(.01 × Q[0., σ] + .89 × Q[1., σ] + .1 × Q[2., σ])x du//N

REUC[σ_, x_] ∶= −5. + ∫
5.

−5.
(.9 × Q[0., σ] + .1 × Q[2., σ])x du//N

REUD[σ_, x_] ∶= −5. + ∫
5.

−5.
(.89 × Q[0., σ] + .11 × Q[1., σ])x du//N

We have chosen −5 and 5 as the minimum and maximum utility values because they
are quite extreme, and more extreme values are so improbable as to have no impact

on the results that follow.

7.3. Results for σ = .2. First we verify that REU theory is risk-seeking in the grand-
world context given r(p) = p2 and σ = .2:

REUA[.2, 2.] < REUB[.2, 2.] && REUC[.2, 2.] > REUD[.2, 2.]

True

So we consider other risk functions of the form r(p) = px , and examine the range
1 ≤ x ≤ 10 at intervals of .01:

AminusB = Table[{x, REUA[.2, x] − REUB[.2, x]}, {x, 1., 10., .01}];

CminusD = Table[{x, REUC[.2, x] − REUD[.2, x]}, {x, 1., 10., .01}];

ListPlot[AminusB, CminusD]

�ough it’s not immediately obvious from the graph (Figure 3), REU(D) overtakes
REU(C) before REU(A) overtakes REU(B). By the time x = 2.57, C is no longer
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1 2 3 4 5 6 7 8 9 10

−0.05

0

0.05

REU(A) − REU(B)
REU(C) − REU(D)

Figure 3. REU(A) − REU(B) and REU(C) − REU(D) for 2 ≤ x ≤ 3

preferable to D while A has yet to become preferable to B:

REUA[.2, 2.57] < REUB[.2, 2.57] && REUC[.2, 2.57] < REUD[.2, 2.57]

True

Evidently, there is no r function of the form r(p) = px capable of producing the
Allais pattern in the grand-world context when σ = .2.

7.4. Results for σ > .2. Unsurprisingly, increasing σ isn’t promising. Still, for com-
pleteness, we check the range .2 ≤ σ ≤ 1 at .01 intervals to see if the Allais pattern
might re-emerge:

AminusB = Table[{σ , REUA[σ , 2.] − REUB[σ , 2.]}, {σ , .2, 1., .01}];

ListPlot[AminusB]

As expected, increasing σ only decreases the appeal of A relative to B: see Figure 4.
So we turn instead to examine smaller values of σ .

0.2 0.4 0.6 0.8 1

0

−0.02

−0.04

−0.06

Figure 4. REU(A) − REU(B) for .2 ≤ σ ≤ 1
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7.5. Results for σ < .2. Setting σ = .1 doesn’t by itself recover the Allais pattern.
Given r(p) = p2, we still have REU(A) < REU(B):

REUA[.1, 2.] < REUB[.1, 2.]

True

But a slight increase in risk-aversion is now su�cient to reverse this. Just by setting

r(p) = p2.05, we recover the Allais pattern:

REUA[.1, 2.05] > REUB[.1, 2.05] && REUC[.1, 2.05] > REUD[.1, 2.05]

True

On the other hand, too large an increase revives the problem of D being preferable
to C. For example, if we set r(p) = p2.9:

REUC[.1, 2.9] < REUD[.1, 2.9]

True

And as σ increases, the range of viable x-values narrows. For example, at σ = .15, x
has to be in a subinterval of (2.2, 2.7):

{REUA[.15, 2.2] > REUB[.15, 2.2], REUC[.15, 2.2] > REUD[.15, 2.2]}

{False, True}

{REUA[.15, 2.7] > REUB[.15, 2.7], REUC[.15, 2.7] > REUD[.15, 2.7]}

{True, False}

And at σ = .19, x has to be in a subinterval of (2.5, 2.6):

{REUA[.19, 2.5] > REUB[.19, 2.5], REUC[.19, 2.5] > REUD[.19, 2.5]}

{False, True}

{REUA[.19, 2.6] > REUB[.19, 2.6], REUC[.19, 2.6] > REUD[.19, 2.6]}

{True, False}

So increasing σ tightly constrains x.
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