
Knowability as Learning

The aim of this paper is to revisit Fitch's Paradox of Knowability in order to

challenge an assumption implicit in the literature, namely, that the key formal

sentences in the proof adequately represent the intended epistemic meaning

of their informal counterparts (call this the �standard interpretation�). The

assumption in question drives much of the technical work done in recent years on

Fitch's paradox, and is central to the philosophical debate concerning realist and

anti-realist views of truth and knowledge (a debate which brought Fitch's formal

proof to the forefront of philosophical logic not long ago). The central challenge

I pose to the standard reading of Fitch's paradox concerns claims of the form �p

is knowable�. I argue that questions about the knowability of a proposition are

analogous to questions about the provability of a theorem or the computability

of a function, questions which should not be answered in the style of the standard

interpretation. In taking the analogy to provability and computability seriously,

I call attention to di�erent formal semantics for knowability claims that are,

however, partially independent of semantics for simple knowledge claims (i.e.

claims of the form �p is known�). The semantics in question borrow heavily from

learning theory. The paper aims to illustrate the central di�erence between the

standard modal logic semantics and the learning theoretic semantics in terms

of the di�erence of the truth-conditions they require for knowability claims. I

argue that unlike the standard modal semantics, the learning theoretic semantics
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better accommodates the intended informal epistemic meaning of such claims,

insofar as they are taken to be epistemic claims concerning knowledge instead

of metaphysical claims about possibility.

1 Introduction

Consider the question of whether a given proposition p is knowable or not. In-

formally, knowability is often understood as a possibility of sorts. For example,

one can say of an inconclusive criminal investigation that the identity of the

perpetrator is unknowable given the evidence; one can say of a purported his-

torical fact that it is unknowable whether it really happened or not given the

lack of evidence and distant time of occurrence; one can say that some events

will forever remain unknowable to us, merely in virtue of the fact that we are

a certain type of creatures with certain limitations, both physically, cognitively

and spatio-temporally (i.e. it might be claimed to be unknowable to us what it

is like to have telepathic abilities, or perfect memory, or perfect mathematical

reasoning, etc.). In all these examples, certain facts are said to be such that

it is not possible to know them due to whatever reasons.1 The examples also

illustrate the variety of the reasons in question, some appealing to a purported

relationship between the agent and her evidence, some appealing to the agent's

overall epistemic environment, some appealing to the agent's constitution and

inherent limitations. What is knowable and what is not can thus be understood

as a function of a number of variables.

A formal exploration of the question of knowability, and how best to model it,

1Notice that I am understanding knowability as pertaining to true propositions (facts).
This is to be distinguished from knowability understood counterfactually, i.e. as the question
of whether certain non-facts could be known other things being di�erent (could we know who
the perpetrator is if we had an oracle that doled out the relevant missing evidence? Could we
know whether the purported historical fact really happened or not if we had a time machine?
etc.).
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can thus begin by looking at what might plausibly be the most speci�c level, and

generate more general levels by mere quanti�cation. So if we let P = {ϕ|ϕ ∈

Prop} (where Prop is just the standard recursive set of propositions from classic

propositional logic), A = {a, b, c, ...} denote a set of agents, W = {w0, w1, ...}

denote a set of epistemic environments, and E = {Hi|Hi ⊆ ℘(Prop)} (thus

modeling an agent's evidence as a set of propositions indexed as usual), one

could initially consider, as the most speci�c level, a predicate asserting that a

speci�c proposition p is knowable by a speci�c agent a on a speci�c epistemic

environment wn given the agent's speci�c evidence Hnm perhaps something

that looks like Knowable(p, a, wn, Hn). By quantifying on the parameters we

can ask more general questions, such as �what is knowable to the agent a in

general?� or �are there epistemic environments and evidence sets such that any

agent could in principle know that p?�, by considering truth conditions for the

predicates ∀ϕ∃wi∃HiKnowable(ϕ, a, wi, Hi) and ∃wi∃HiKnowable(p, a, wi, Hi)

respectively.

It seems altogether clear that questions of knowability are questions about a

possibility of sorts. The simplest model in the literature takes the standard

Kripke models for possibility and necessity and applies them to a simple epis-

temic logic. If you let K be an operator denoting �it is known (by someone at

some time that)...�, then this model parses a knowability claim of the form �p is

knowable� as ♦Kp. Given the standard semantics for the modal and epistemic

operators, this model has as a consequence: |= (ϕ → ♦Kϕ) → (ϕ → Kϕ) for

any ϕ. This result is known as Fitch's Paradox, and is informally taken to mean

that if every truth is knowable, then every truth is known. The aim of this pa-

per is to use Fitch's result as motivation for thinking that the model itself is

in some respect defective and that it fails to account for the kind of possibility

involved in knowability claims. An alternative model is sketched that remedies
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these defects, and some epistemological considerations are brought to bear to

justify the proposed model.

2 Fitch's Paradox

2.1 Semantics and Proof

Let L be the language of classical propositional modal logic augmented by

an operator K. Let w ∈ W corresponds to the set of �points� or �worlds�

and let R ⊆ W × W be a relation between worlds, one for the operators

�,♦ denoted RM and one for the epistemic operator K, denoted RE . A

frame will be a triple F =< W,RM , RE >, and a model will be a quadru-

pleM =< W,RM , RE ,
>where 
 is an assignment of formulas of the language

to worlds in W de�ned in the standard recursive manner:

• w 
 ¬ϕ i� w 1 ϕ

• w 
 ϕ→ ψ i� w 
 ¬ϕ or w 
 ψ

• w 
 ϕ ∧ ψ i� w 
 ϕ and w 
 ψ (similar condition for ∨)

• w 
 �ϕ i� for all wi such that RM (w,wi), wi 
 ϕ

• w 
 ♦ϕ i� for some wi such that RM (w,wi), wi 
 ϕ

• w 
 Kϕ i� for all wi such that RE(w,wi), wi 
 ϕ

No special restrictions are placed for RM , but we shall assume that RE is

re�exive the guarantee the factivity of the K operator (i.e. to ensure that

Kϕ |= ϕ as knowledge is said to entail the truth of that which is known).

Lemma (Distribution). |= K(ϕ ∧ ψ)→ (Kϕ ∧Kψ)
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Proof: Let M be an arbitrary model. Let w 
 K(ϕ ∧ ψ) for some arbitrary

w ∈ W . Then wi 
 ϕ ∧ ψ for all RE(w,wi). Then wi 
 ϕ and wi 
 ψ. But

then since RE(w,wi), then w 
 Kϕ and w 
 Kψ. If so, then w 
 Kϕ ∧Kψ.

Lemma (Moore's Sentence). |= �¬K(ϕ ∧ ¬Kϕ)

Proof: Let M, w be arbitrary model and world. Assume towards a contradic-

tion that w 
 K(ϕ ∧ ¬Kϕ). Then w 
 Kϕ and w 
 K¬Kϕ(by Distribution

Lemma). Since RE is re�exive, then w 
 ¬Kϕ. Then w 
 Kϕ ∧ ¬Kϕ, which

is a contradiction. Discharging our assumption, w 1 K(ϕ ∧ ¬Kϕ) so then

w 
 ¬K(ϕ ∧ ¬Kϕ). Since w is arbitrary, M |= �¬K(ϕ ∧ ¬Kϕ). Since M was

an arbitrary model, |= �¬K(ϕ ∧ ¬Kϕ).

Theorem (Fitch's Paradox). |= (ϕ→ ♦Kϕ)→ (ϕ→ Kϕ)

Proof: Let M, w, ϕ be arbitrary model, world and sentence. Assume that

w 
 (ϕ → ♦Kϕ), and assume towards a contradiction that w 1 (ϕ → Kϕ).

Then w 
 ¬(ϕ → Kϕ) so that w 
 (ϕ ∧ ¬Kϕ). By our assumption, since

ϕ was arbitrary, then it can be instantiated by (ϕ ∧ ¬Kϕ), so that we get

w 
 ((ϕ∧¬Kϕ)→ ♦K(ϕ∧¬Kϕ)). Since w 
 (ϕ∧¬Kϕ), bymodus ponens then

w 
 ♦K(ϕ∧¬Kϕ). Then for some w′ such that RM (w,w′), w′ 
 K(ϕ∧¬Kϕ).

By the above Lemma (Moore's sentence), w′ 
 ¬K(ϕ ∧ ¬Kϕ). Contradiction.

Discharging our second assumption, then w 
 (ϕ→ Kϕ). Since M,w,ϕ are all

arbitrary, then |= (ϕ→ ♦Kϕ)→ (ϕ→ Kϕ).

2.2 Paradoxicality

Informally speaking, Fitch's result demonstrates, in the given model, the incon-

sistency of the claims that every truth is knowable, on one hand, and that not

every truth is known, on the second hand. Since it would be rather pressing
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to maintain that every truth is indeed known, the standard response to Fitch's

result is to take it as a reductio of the claim that all truths are knowable (see

Hart (1976), Williamson (1987), and especially Williamson (2000) where the

result is taken as demonstrating a �structural� limit to knowledge).

There are a number of philosophical theses that are committed in one form

or another to the claim that all truths are knowable, so Fitch's result is often

discussed in debates concerning the appropriateness of such so-called anti-realist

theses. Some authors �nd as cause of puzzlement that sophisticated versions of

anti-realist positions can be refuted, or at least seriously impaired, by Fitch's

result (see Salerno (2009)). One might also be puzzled by the result to the extent

that it shows how contingent ignorance entails necessary ignorance. Indeed, a

key ingredient required for Fitch's result is the Lemma I have dubbed �Moore's

sentence�. This Lemma exploits the fact that if ignorance exists, i.e. there is

some truth that is not known by anyone at anytime, then knowledge of that such

fact is impossible, to the extent that it would require knowledge of that which is

not known.2 One may reasonably be suspicious of the claim that if ignorance is

expressed by ϕ∧¬Kϕ for some true ϕ, then knowledge of one's own ignorance,

i.e. K(ϕ ∧ ¬Kϕ) cannot be had. Another reason to be somewhat perplexed by

the result is that it falls right out of the system as a logical consequence of its

semantics, without any external assumptions playing any role. As such, some

have found it odd that a substantial claim about the limits of knowledge could

be so easily established by only a very few semantic conditions on knowledge

and possibility operators.

The literature on Fitch's result is multifarious, ranging from treating it as a para-

dox requiring a revision or reformulation of certain anti-realist theses,3 treating

2This is similar to G. E. Moore's famous discussion about sentences of the form �p is true,
but I don't believe it�.

3E.g. Tennant (1997), Edginton (1985), or Dummet (2009) for an account that aims to
demonstrate that Fitch's result is not threatening to certain intuitionist theses.
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it as a paradox concerned with the sheer collapse of necessity and possibility in

epistemic contexts (due to a fallacious aspect of the model),4 treating it as a

robust result concerning the limits of knowledge,5 and �nally as a challenge to

revise the appropriateness of the model in which the result is framed. We shall

assume this last attitude. 6

3 Knowability, Computability and Learning

3.1 Ways to come to know

As we have stated a number of times, knowability is a possibility of sorts. If

the standard, simple model outlined above is to be found wanting, then a case

can be made that it fails to represent the relevant type of possibility involved

in knowability sentences. The parsing of knowability sentences that the above

model employs treats the possibility in question as bound to the relation RM ,

which we often call a �metaphysical� accessibility relation between possible states

of a�airs. The relation RE , which is often called the �epistemic� accessibility

relation, only comes to bear on the question of whether some given proposition

is known in a given world. To the extent that these relations are structurally and

philosophically distinct, knowability is cashed out as a metaphysical possibility

concerning epistemic claims.7

4E.g. Kvanvig (2006)
5E.g. Williamson (2000)
6For some examples of work done in this same general direction, see van Benthem (2004),

van Benthem (2009), Restall (2009).
7The relations would be structurally distinct to the extent that the epistemic accessibility

relation is restricted in at least one aspect in which the metaphysical relation of accesibility
is not, namely, its re�exivity. Analogously, the metaphysical possibilities (i.e. those accesible
from a given world) are often intended to be stronger than epistemic possibilities. For example,
given that the Evening Star is identical to the Morning Star, the claim �Evening Star =
Morning Star� is true across all worlds where Venus exists. However, it was an epistemic
possibility that the Morning Star 6=the Evening Star, even though it was not a metaphysical
possibility. Examples of this sort are meant to illustrate the di�erence between epistemic
possibilities and metaphysical possibilities (cf. DeRose (1991))
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So a worry is that the model should be about an epistemic possibility rather

than a metaphysical possibility. A second worry is that perhaps the model places

too much of the burden of the semantics on there being certan types of states

somehow connected (accesible) in the relevant manner. What if knowability is

more about the nature of the connection between these states, and not so much

about the states themselves?

To illustrate these worries, suppose you are taking your �rst propositional logic

class in college, and its the end of semester and you have become pro�cient

at proving things in the standard propositional calculus. So far you have been

asked to prove things that you have been told before hand can indeed be proved,

so that so far all you have had to do is engineer a sequence of valid steps from

premises to conclusions. Now your instructor writes a formula on the board,

and asks the class whether that formula is a theorem of propositional logic, i.e.

whether it is provable in propositional logic alone, with no premises. Suppose

that the formula happens to be indeed provable in classical propositional logic

alone. Here is what a bad answer would be: to claim that the formula is indeed

provable since there is some scenario, very similar to the actual scenario, where

the formula has indeed been proved somehow. A logic instructor will quickly

correct the student providing one such answer by pointing out that she was not

asking whether it was conceivable that the formula could be proved, somehow,

but rather she was asking about the existence of a proof. Similarly, imagine

that you are now in a class on computability theory, and you are now familiar

with the standard Turing models. You know that a great deal of functions are

computable, e.g. addition, division, etc. The instructor de�nes a function f

you have never seen before on the board, and asks the class if that function is

computable. Suppose it is indeed computable. Here is again what a bad answer

would look like: f is computable to the extent that there is a scenario, not
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unlike the present scenario, where f is the function being computed by some

Turing machine Mi. The instructor will quickly point out that that is not what

is meant by the question, i.e. whether you could conceive of a scenario where

the function is being computed by some Turing machine.What her question was

meant to be asking was, rather, whether some Turing machine does indeed exist

that can be shown to be computing the function f in question.

What both examples are drawing attention to is that for questions about prov-

ability or computability, it is the existence of some procedure or transition

between items what is at stake. In the case of provability we are concerned

with the existence of a chain of inferences linking axioms or theorems to further

theorems. In the case of computability we are concerned with the existence of

programs or recursive procedures that can be demonstrated to generate all and

only the elements of a given set. Knowability is better understood as standing

in analogous grounds to provability and computability. In asking whether p is

knowable for an agent a (given some environment, etc.), the question of cen-

tral epistemological interest is whether the agent could come to know that p,

whether p is within the epistemological ken of the agent or not. This emphasis

leads one to consider models that implement some dynamics between an agent's

states.8

Given the analogy to questions of computability, a natural avenue to explore is

the application of concepts and methods from computability theory to models

of epistemic logic. The application in mind borrows heavily from learning theory

(sometimes also known as computational This application is not novel by any

means (see Kelly (1996) for a rich discussion and application to a number of

epistemological questions; I borrow heavily from the presentation therein). I

aim to emphasize the contrast with the standard model, and demonstrate the

8van Benthem (2004,0) are primary examples of applications of dynamic epistemic logic

in light of Fitch's result.
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�exibility of this learning theoretic model in terms of the �exibility it provides

in exploring issues of knowability in the fashion we saw in the introduction to

this paper. The model's complexity, compared to the simple standard Kripke

model, is the price one pays for a richer and deeper apparatus to explore the

intricacies of the concept of knowability and its cognates.

For simplicity we shall imagine we are concerned with a single agent a. The agent

has at her disposal a �nite segment of a denumerable sequence of data, encoded

in some canonical language (we shall assume the evidence is propositional).

Time will be modeled as a function of the growth of the data. The agent's

environment corresponds to her �nite segment of data, any and all background

knowledge she has, and some set of hypotheses. We shall imagine the agent is

exclusively concerned with the task of determining whether some hypothesis she

is pondering is true or not. Formally put:

• ωi =< ϕo, ψ1, ... > denotes an in�nitely denumerable ω-sequence of da-

tums, whose index corresponds to the time the datum is presented to the

agent, and where ϕ,ψ, ... are formulas of a propositional language.

• ωωdenotes the set of all ω-sequences.

• E =< K,H > is the agent's environment, where K is some set of propo-

sitions that constitute the agent's background knowledge, and h ∈ H is

an hypothesis the agent is concerned about. The set K serves to rule out

some members of ωω so as to reduce the agent's possible data sequences

to a proper subset of all possible sequences.

We shall idealize the situation to be such that the truth of any h ∈ H is not

under determined by any data sequence. In other words, if h is true, then it

neatly partitions the set of data sequences ωω into those that make h true and

those that make h false. Conversely, any particular data sequence is such that
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it entails h or it entails ¬h. The agent can, upon presentation of a new datum,

engage in one of the following options: she can conjecture h, she can conjecture

¬h, or she can suspend judgment (perhaps until a new datum is presented). We

shall call a method any well-de�ned program that encodes the agent's reactions

to the data as it pours in. Methods can be such that they can either converge

in the limit or loop inde�nitely. Formally:

• [ωh] ∪ [ω¬h] = ωω(any hypothesis h partitions the set of data sequences)

• M = {m|m : ωω → {h,¬h, undef}} (M is the set of methods, i.e. the

set of functions from data sequences to a set that either outputs h, ¬h or

neither -we use undef to make clear the possibility of the method being a

partial function to the set {h,¬h})

• Conv(m,ωi) ⇔df (∃ϕi)[(ϕi ∈ ω) ∧ ∀ϕj=im(ϕj) = m(ϕi)] (m converges

on sequence ω at entry i i� the method outputs the same output for any

subsequent entry on ω)

• Loop(m,ω)⇔df ¬Conv(m,ω)

Amethod will be said to be logically reliable in the limit if, for all data sequences,

it converges on the correct hypothesis for that data sequence.:

• Rel(m,h)⇔df (∀ωi ∈ ωω)(Conv(m,ωi)∧(m(ωi) = h↔ ωi ∈ [ωh])) (these

methods are called veri�ers, since they converge on h when h is true)9

• Rel(m,¬h) ⇔df (∀ωi ∈ ωω)(Conv(m,ωi) ∧ (m(ωi) = ¬h ↔ ωi ∈ [ω¬h]))

(these methods are called refutators since they converge on ¬h when h is

false)

9These correspond to limiting computable r.e. sets.
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Notice that a method being logically reliable with respect to h does not mean

that the method in question needs to converge on ¬h if h is false. It only needs

to avoid converging on ¬h. When a method m is logically reliable with respect

to both h and ¬h, then it is a reliable decider of whether h or not h:

• Dec(m, (h ∨ ¬h))⇔df Rel(m,h) ∧Rel(m,¬h)

Notice that a method can be logically reliable while still producing some false

outputs until it manages to converge. But it is necessary for its being logically

reliable that it only produces a �nite amount of such outputs. Also notice that a

method can converge without there being any signal or indication for the agent

telling her that the method has indeed converged.

With these elements we can construct a rather natural condition for the knowa-

bility of some hypothesis h given a �xed epistemic environment, set of data

streams and extensions of them, namely, the existence of a logical reliable

method, the implementation of which would lead the agent (in the limit) to

conjecture the truth of h ever after.

• Knowable(h)⇔df (∃m ∈M)Rel(m,h)

As in the case of reliable decidability, a distinction needs to be made between h

being knowable by itself, and whether h or not h is knowable:

• Knowable(h ∨ ¬h)⇔df (∃m ∈M)Rel(m,h) ∧ (∃m ∈M)Rel(m,¬h)

Notice that it being knowable whether h need not entail that one and the same

method is logically reliable as to whether h. In other words, it being knowable

whether h need not require there being a decider of h.10 These de�nitions can be

10Often, if there exists a veri�er and a refutator for h, a decider can be built by composing
or dovetailing both the veri�er and refutator, but this is not in general always the case.
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generalized to consider the knowability of a hypothesis not just on a �xed envi-

ronment and set of data streams, but on any environment and any data stream

(whenever K = Ø then every data sequence must be considered in assessing a

method's logical reliability). Since di�erent notions of convergence are amenable

to speci�cation (i.e. convergence with n conjecture �ips, convergence by a �xed

time, convergence to a gradual interval, etc), corresponding notions of knowa-

bility can be easily de�ned (knowability with n conjecture �ips, knowability by

some �xed time, etc.).11

As a rather simple example, let us consider the following example: Audrey is

pondering whether all ravens are black or not. Unbeknownst to her, all ravens re

indeed black. She has not collected any data yet, and nothing she knows already

bears on the issue (thusK = Ø). She settles on employing the following method:

If the latest data observed consists of a black raven, conjecture �all ravens are

black� and continue obtaining data;

else, conjecture "not all ravens are black" forever after.

Assuming all her data consists of nothing but observations of ravens that are

black or not, we can determine whether via this method Audrey can come to

know that all ravens are black. Since all ravens are indeed black, then whatever

data sequence Audrey comes across will be such that she will correctly converge,

upon the �rst observation, that all ravens are black (naturally Audrey does not

know that she has converged when it does happen). If not all ravens were

black, then Audrey would, in the limit, �nd an data entry of a non-black raven,

in which case her method will correctly have her conjecture �not all ravens are

black� forever after. In either scenario, her method would converge on the right

11See (Kelly, 1996, Ch. 7, 8, 9)

13



answer no matter what is the case (perhaps after a long time of producing an

incorrect conjecture).

3.2 Epistemological Virtues and Worries

To use these concepts in providing semantics for an epistemic logic, we can

interpret the operator ♦ in ♦Kp as an existential quanti�er not over possible

worlds (i.e. static descriptions that contain an agent's knowledge) but rather

over logically reliable methods, which can be understood as procedures to help

the agent navigate through a in�nitely denumerable sequence of states (de�ned

by her �nite amount of evidence at any given time, her background knowledge

and her current reaction to her evidence). The provided de�nitions might make

on worry that the model would translate into an account of full-�edged knowl-

edge along the following lines: S knows that p at t i� S has converged on p by

t through a logically reliable method. This might worry an epistemologist con-

cerned with issues of justi�cation or warranted assertability. Consider Audrey's

case above. Upon her very �rst observation, she will converge on the correct

conjecture. Does that mean that she thereby knows that all ravens are black?

One observation seems too meager an evidence set to ascribe Audrey with any

knowledge yet. Surely, she needs more instances before being warranted or jus-

ti�ed in believing that all ravens are black. Similarly, perhaps because of how

beliefs work (if knowledge is indeed something like justi�ed true belief), Audrey

quite likely doesn't yet believe that all ravens are black after her very �rst ob-

servation -she might merely be saying it because her method requires her to do

so.

I do not aim to engage the traditional epistemologist on these points, as good

as they are. I am willing to grant him that perhaps that is indeed the case,

so that logically reliable convergence does not ipso facto entail knowledge. But
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I do want to claim that in such scenario, the agent is guaranteed to have the

possibility of forming a true belief and of being justi�ed, whatever else it takes.

After all, she will keep on gathering evidence upon convergence (remember that

she doesn't know her method has indeed converged, because convergence does

not entail any sort of marking or signal that it has happened). At some point,

she is bound to have �enough� evidence by whatever standards one might want

for evidential support. The evidence might be vast enough to convince or cause

her to believe that all ravens are black. Whatever else needs to take place, the

conditions for its obtaining can be guaranteed by employing a logically reliable

method. If this is right, one can have a model of knowability separated (albeit

not entirely independent) from a model of knowledge. Perhaps a lesson to derive

from Fitch's proof is that a model of knowability is not so easily derived from a

model of knowledge.

The most relevant consequence of this computational model, as far as Fitch's

paradox goes, is that it falsi�es the antecedent of Fitch's proof, at least when

considered unrestricted. The reason is simply that it is false that every truth

is knowable (generalizing over every possible data sequence, environment and

background knowledge). For there are truths for which it can be proved that no

logically reliable method exists (modulo the aforementioned generalizations).12

4 Coda

We have considered the possibility of furnishing an epistemic logic aimed at

modeling issues of knowability with semantics borrowed from work on compu-

tational learning. The framework brings to bear a rich number of parameters

12For example, the real number whose binary expansion encodes the truth-set of FOL is
non-computable in the limit, the notion of limiting computability corresponding (roughly) to
that of knowability.
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all informally taken to be a factor in what counts for or against some fact being

knowable or not. Manipulation of a given parameter or set of parameters can

give rise to di�erent degrees or levels of knowability (and, more interestingly

perhaps, unknowability). Factors which are amiss in the standard framework

sometimes assumed to correctly model knowability sentences, and which has as

a logical consequence an entailment deemed problematic both for philosophical

and modeling reasons. In at least one respect, the learning theoretic framework

vindicates the Fitch result, albeit for entirely di�erent reasons (the proofs as

to the existence of truths for which no logically reliable method exists do not

involve anything like the Moore sentence Lemma, and are more akin to stan-

dard proofs using diagonalization techniques). But the result might not be so

robust as to remain invariant under di�erent manipulation of the parameters.

This and a host of other questions are open for exploration on this framework

(what class of sentences in a propositional language can be said to be knowable

under a particular speci�cation of the evidence? under a speci�cation of the

background knowledge? what about sentences in a �rst-order language? what

about sentences expressing knowledge of one's ignorance? are they knowable,

and under what conditions? etc.).
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