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Abstract

There is a large group of people engaging in normative or evaluative
studies of induction, such as computer scientists, statisticians, Bayesians,
learning theorists, and other formal epistemologists. They have pro-
vided many positive results for justifying (to a certain extent) vari-
ous kinds of inductive inferences, but they all have said little about
a very familiar kind. I call it full enumerative induction, of which an
instance is this: “We’ve seen this many ravens and they all are black,
so all ravens are black”—without a stronger premise such as IID or a
weaker conclusion such as “all the ravens observed in the future will be
black”. To remedy this, I propose that Bayesians be learning-theoretic
and learning-theorists be truly learning-theoretic—in two steps. (i) Un-
derstand certain modes of convergence to the truth as epistemic ideals.
(ii) See whether full enumerative induction can be justified as—that
is, proved to be—a necessary feature of every learning method that
achieves the highest epistemic ideal achievable for tackling the problem
of whether all ravens are black. The answer is positive, thanks to a new
result in learning theory (whose Bayesian version is proved as well). The
conceptual breakthrough consists in introducing a mode of convergence
slightly weaker than Gold’s (1965) and Putnam’s (1965) identification
in the limit; I call it almost everywhere convergence to the truth, where
the conception of “almost everywhere” is borrowed from geometry and
topology. (Those who only care about the philosophical ideas rather
than the technical details can read just the first two sections, i.e. up to
page 16.)
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1 Introduction

The general problem of induction is the problem of identifying two things:

(i) the range of the inductive inferences that we can justify,

(ii) the extent to which we can justify them.

Under the general problem there are several subproblems. There is, for exam-
ple, the special subproblem of how it is possible to reliably infer causal struc-
tures solely from observational data without experimentation, which has at-
tracted many statisticians, computer scientists, and philosophers.1 And there
is the more general subproblem of whether it is possible to escape Hume’s
dilemma—a dilemma that aims to undermine any justification of any kind
of inductive inference.2 In this paper I want to focus on a subproblem of
induction that is more normative and evaluative in nature.

Here is the background. Normative/evaluative studies of inductive in-
ference are pursued in many mathematical disciplines: formal epistemology,
statistics, and theoretical computer science. But somewhat curiously, they all
have said little about the most familiar kind of inductive inference, of which
an instance is this:

(Full Enumerative Induction) We have observed this many ravens
and they all are black; so all ravens are black.

To be sure, those disciplines have had much to say about enumerative induc-
tion, but typically only about a restricted version that weakens the conclusion
or strengthens the premise. Here is an example:

(Restricted Enumerative Induction) We have observed this many
ravens and they all are black; so all the ravens observed in the future will
be black

This is the kind of enumerative induction studied by Bayesian confirmation

1For a groundbreaking treatment of this problem, see Spirtes, Glymour, and Scheines
(1993/[2000]).

2See Hume (1777) for his formulation of the dilemma, and Reichenbach (1938, sec. 38)
for a more powerful formulation of the dilemma. A quite comprehensive list of attempted
responses is provided in Salmon (1966: chap. 2).
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theorists,3 and also by formal/algorithmic learning theorists.4 Classical statis-
ticians and statistical learning theorists study an even more restricted version
that adds a substantial assumption of IID (independent and identically dis-
tributed) random variables, where the randomness is due to objective chance.

So they all set aside a serious study of full enumerative induction. But
why? The reason for statisticians is obvious: their primary job is to study
inductive inferences under the IID assumption or the like. The reason for
Bayesians and formal learning theorists is deeper. Let me explain.

It is possible that there are nonblack ravens but an inquirer never observes
one throughout her entire life (even if she is immortal). Call such a possibility
a Cartesian scenario of induction, for it can be (but need not be) realized by
a Cartesian-like demon who always hides nonblack ravens from the inquirer’s
sight. Each Cartesian scenario of induction has a normal counterpart, in which
the inquirer receives exactly the same data in time (without observing a non-
black raven) and, fortunately, all ravens are black. A Cartesian scenario of
induction and its normal counterpart are empirically indistinguishable, but in
the first it is false that all ravens are black, while in the second it is true. And
that causes trouble for both formal learning theorists and Bayesians.

For Bayesians, justification of full enumerative induction requires justifying
a prior probability distribution that strongly disfavors a Cartesian scenario
of induction and favors its normal counterpart. Carnap and other Bayesian
confirmation theorists seem to never mention such an anti-Cartesian prior in
their papers, possibly because they cannot justify it or simply because they
do not care about it.

A subjective Bayesian would say that such an anti-Cartesian prior is epis-
temically permissible, but only because she thinks that any probabilistic prior
is epistemically permissible—even including those priors that strongly favor a
Cartesian scenario of induction and will thereby lead to counterinduction:

(Counterinduction) We have observed this many ravens and they all
are black; so, not all ravens are black.

So a subjective Bayesian must concede that counterinduction is epistemically
permissible as well. Similarly, by considering certain priors that equally fa-
vor Cartesian scenarios of induction and their normal counterparts, subjective

3See, for example, Carnap (1950), Hintikka (1966), and Hintikka and Niiniluoto (1980).
They all talk about the probabilistic inference from evidence F (a1) ∧ . . . ∧ F (an) to the
countable conjunction

∧∞
i=1 F (ai), where ai means the i-th individual (or raven) observed

in one’s inquiry. If the index i is understood as enumerating all ravens in the universe in
an order unbeknownst to the inquirer, then the evidence cannot be formalized the way they
do.

4See, for example, Kelly (1996) and Schulte (1996).
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Bayesian must also concede that it is epistemically permissible to have a de-
gree of belief in “All ravens are black” very close to 0.5 regardless of how many
black ravens have been observed in a row—namely, that it is permissible to
follow the skeptical policy of “no induction”. To make those concessions ex-
plicit is to invite worries and complaints from those who would like to have
a justification for full enumerative induction, against counterinduction, and
against the skeptical policy. That is probably why we seldom hear subjective
Bayesians talk about full enumerative induction.

Formal learning theorists fare no better. When they justify the use of an
inductive principle for tackling a certain empirical problem, they justify it
as a necessary means of achieving a certain epistemic ideal for tackling that
problem. The epistemic ideal they have in mind pertains to finding the truth.
Here is the idea. A learning method is a function from data to hypotheses. It
produces a sequence of hypotheses in a possible history of inquiry—a possible
way for the inquiry to unfold indefinitely. If a learning method will eventu-
ally produce the truth among the hypotheses on the table (say, “All ravens
are black” and “Not all are so”) and will henceforth continue to do so in a
possible history of inquiry, say that it converges to the truth in that possible
history of inquiry (with respect to the problem of whether all ravens are prob-
lem). Convergence to the truth sounds good, although it may not be the only
good thing to have. It sounds even better to have a learning method that
achieves convergence to the truth in all possible ways for the inquiry to unfold
indefinitely—that is the epistemic ideal that formal learning theorists think we
should strive for, aka identification in the limit (Gold 1965 and Putnam 1965).
When applied to the problem of whether all ravens are black, identification
in the limit sets an extremely high standard: convergence to the truth in a
Cartesian scenario and in its normal counterpart. But to find the truth in
one of those two scenarios is to fail to do it in the other. So the epistemic
standard in question—identification in the limit—is too high to be achieved
by any learning method. Where it is impossible to achieve identification in
the limit, nothing can be justified as a necessary means for achieving that.

So those are the reasons why normative/evaluative studies of inductive
inference have said little about full enumerative induction. And we are left with
the problem of giving a justification for full enumerative induction, against
counterinduction, and against the skeptical policy of “no induction”. I call
this problem the Cartesian problem of induction because of the role played by
Cartesian scenarios of the sort mentioned above. The point of pursuing this
problem is not to respond to every conceivable kind of inductive skeptic, but
to push ourselves to the limit—to explore the extent to which we can justify
full enumerative induction.
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The present paper aims to take a first step toward the first positive solution
to that problem. The key to my proposal is that Bayesians can and should
be learning-theoretic, and learning theorists should have been truly learning-
theoretic, true to what I identify as the spirit of learning theory. Here is the
idea:

Learning-Theoretic Epistemology

1. (Mathematics) There are various modes of convergence to the truth
for a learning method to satisfy with respect to one empirical problem
or another. For example, formal learning theory studies identification in
the limit, which may be called everywhere convergence to the truth, for
it quantifies over all possible ways for the inquiry to unfold indefinitely.
Statistics studies stochastic modes of convergence, such as almost sure
convergence to the truth (aka statistical consistency).

2. (Epistemology) Certain modes of convergence to the truth are epis-
temic ideals. Some modes or their combinations are higher epistemic
ideals than some others. The best learning methods for tackling an em-
pirical problem P must have at least this property: achieving the highest
mode of convergence to the truth that is achievable with respect to P .
Achieve the best you can have.5

3. (Crux) But for tackling the raven problem—i.e. the problem of whether
all ravens are black—it is provably impossible to achieve everywhere
convergence to the truth. So, to achieve the best we can have, we have to
first look for what can be achieved. How? Well, given that it is impossible
to converge everywhere, let’s try to see whether it is at least possible to
converge “almost everywhere”—to converge in “almost all” possible ways
for the inquiry to unfold indefinitely. And it should not be difficult to try,
because we do not need to do everything from scratch: mathematicians
have worked out some conceptions of “almost everywhere” and “almost
all”.

4. (Proposal) Let’s try to define various modes of convergence to the
truth, including “almost everywhere” convergence, and even some joint
modes, such as “almost everywhere” convergence plus “monotonic” con-
vergence. Find the combinations that are achievable with respect to the
raven problem. From among the achievable ones, identify the highest

5For precursors to this epistemological idea, see Reichenbach (1938), Kelly (1996), and
Schulte (1996).
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epistemic ideal. Then see whether a necessary condition for a learn-
ing method to achieve that highest one is to implement full enumerative
induction rather than counterinduction or the skeptical policy. If the an-
swer is positive, then we have a justification for that kind of induction.

5. (Result) Yes, the answer is positve, according to corollary 6.6. And
the story just told can be retold for Bayesians.

All this is done by holding on to the following guidelines of learning theory:

Look for what can be achieved.
Achieve the best we can have.

Think and acting in the way just described is what I mean by being truly
learning-theoretic. If I am right, that was how Gold (1965) and Putnam
(1965) created formal learning theory, one of the earliest branches of learning
theory.6 That is also how I am going to address the Cartesian problem of
induction.

The philosophical view articulated above is what I call learning-theoretic
epistemology, which has to be defended at greater length in a future work.7

This paper is devoted to developing its logical and mathematical foundation,
without which the above presentation would be mere hand-waving—a sin in
formal epistemology. That said, I will make several philosophical points to
motivate the mathematical steps to be taken in this paper. I will also explain in
detail how the mathematical results are meant to solve the Cartesian problem
of induction, assuming learning-theoretic epistemology.

Here is the roadmap for this paper: Section 2 implements the above pro-
posal and provides a pictorial but very informative sketch of the main results,
together with their intended philosophical applications. So those who do not
care about the mathematical details may read just up to the end of that section
(i.e. page 14). Sections 3-7 develop the technical details. Then section 8 re-
turns to the big picture, explaining how the idea of modes of convergence to the
truth unifies many branches of learning theory together with learning-theoretic
epistemology. The presentation of the main results is kept to a minimum. So

6Here is a reconstructed history. Gold and Putnam address certain mathematical or
empirical problems that are impossible to solve with an effective procedure—or, in the
terminology of this paper, impossible to solve by achieving everywhere convergence to the
truth with perfect monotonicity. What they do is in effect to drop perfectly monotonic
convergence and see whether it is at least possible to achieve everywhere convergence.

7But, for replies to some standard worries, see Kelly (2001, 2004) and Kelly and Glymour
(2004), in which they respond to Keynes’ worry that in the long run we are all dead, and
Carnap’s worry that no convergence criterion can constrain short-run inferential practices.
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Figure 1: A partial representation of the hard raven problem

if you are interested in some of the details not required for understanding the
statements of the main results (such as proofs, examples, and open problems),
you will be directed to the relevant parts of the very long appendix.

To declare the style in use: Emphasis is indicated by italics, while the
terms to be defined are presented in boldface.

2 Pictorial Sketch of Main Results

Here is the setting. Imagine that we are wondering whether all ravens are
black. There are two competing hypotheses: Yes and No. So we are confronted
with an empirical problem. Call it the hard raven problem. It can be
partially represented by the tree in figure 1. The observation of a black raven
is represented by a datum +; a nonblack raven, -. Observations of nonravens
will be considered in subsequent sections but are omitted from the picture for
simplicity. A data sequence (such as (+, +, -)) is a finite initial segment of a
branch of the tree. A state of the world—i.e. a possible way for the inquiry
to unfold indefinitely—is represented by an entire branch. A branch does two
things: it produces an infinite data stream, such as (+, +, +, . . .), and it makes
one of the competing hypotheses true, i.e. either Yes or No, as indicated
in the square at the tip. The Cartesian scenarios of induction discussed in
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the previous section are represented by the vertical branch that makes No

true. (There are actually an infinity of Cartesian scenarios if observations of
nonravens are considered, such as the case in which there exists a nonblack
raven but we will never see one because we will a black raven, then a white
shoe, then a black raven, then a white shoe, etc.)

In general, an empirical problem specifies a set of competing hypotheses
and a set of finite data sequences (possibly with some presuppositions that
come with the problem). A learning method for that problem is a mapping
that sends each of the finite data sequences to one of the competing hypotheses
(or to the question mark that represents suspension of judgment). A learning
method is evaluated in terms of its truth-finding performance in each state
contained in a state space S, which consists of all possible ways for the
inquiry to unfold indefinitely (without violating the presuppositions of the
problem under discussion). Each of those states makes exactly one of the
competing hypotheses true and produces an infinite data stream (e1, e2, e3, . . .),
to be processed incrementally by a learning method M to output a sequence
of conjectures M(e1),M(e1, e2),M(e1, e2, e3), . . . in time.

A learning method M is said to converge to the truth in a state s ∈ S
if, in state s, method M will eventually output the true hypothesis and then
always continue to do so. To achieve everywhere convergence to the truth
is to achieve convergence to the truth in all states in state space S. This
convergence criterion is what formal learning theorists call identification in
the limit.

The above is only one of the many convergence criteria that concern the
question of where convergence happens, and we may also consider the question
how convergence happens. Have a look at figure 2, in which various modes
of convergence to the truth are arranged by two dimensions. The dimension
that stretches to the upper right concerns where. The other dimension, which
stretches to the upper left, concerns how. I introduce three modes for each of
the two dimensions, so in combination there are nine modes to be considered
in this paper. (Stochastic modes of convergence will not be considered because
they are irrelevant to full enumerative induction.) Now I turn to explaining
those modes of convergence.

A learning method M for a problem is said to achieve almost everywhere
convergence to the truth if, for every competing hypothesis h considered in the
problem, M converges to the truth in “almost all” states that make h true—
or speaking geometrically, M converges to the truth “almost everywhere” on
the space of the states that make h true. “Almost everywhere” is defined
in a quite standard way in geometry and topology; it means “everywhere
except on a region that is topologically negligible, i.e. nowhere dense.” A
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Figure 2: Modes of convergence to the truth, arranged by two dimensions

more satisfactory formal definition will be provided shortly. But, intuitively,
we can think of a topologically negligible region as a slice of “hyper” Swiss
cheese, which is incredibly full of holes—it is a region in the ambient space that
can be constructed by removing an open set within every open neighborhood
of every point in the space.

But what counts as an open neighborhood of a state in an ambient state
space? I adopt what may be called empirical topology,8 which can be
defined by a very natural closeness relation between states:

(i) Consider an arbitrary state s (as depicted on the lefthand side of figure
3). An alternative state is “closer” to s iff more data are needed to dis-
tinguish it from s. The harder it is to distinguish two states empirically,
the closer they are empirically.

(ii) An open neighborhood of a state s is the set of states that are “close” to
s to at least a certain degree (as depicted on the righthand side of figure
3).

Then we can prove an interesting result—lemma 4.3—which says this:
Within the topological space of the states that make it false that all ravens
are black, the set of the Cartesian scenarios is one of the (many) topologically

8Empirical topology is proposed by Vickers (1989) in computer science and by Kelly
(1996) in epistemology.
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Figure 3: The empirical topology on a space of data streams or states

negligible regions. This is a lemma for proving a theorem of this paper. But I
do not wish to infer from “that is topologically negligible” to “we should ignore
that”. To infer that way is to ignore all possible states of the world, because
every state forms a singleton that is topologically negligible. And it is absurd
to ignore all states. A good justification for full enumerative induction has to
be formulated in a more careful way.

The point just made is important, so let me reiterate it in another way. An
immediate consequence of the lemma just reported is that, for any learning
method tackling the hard raven problem, if it implements full enumerative in-
duction and never applies counterinduction (which will be defined rigorously
in a subsequent section), then it fails to converge to the truth only in Cartesian
scenarios—and hence it achieves almost everywhere convergence to the truth
with respect to the hard raven problem. This result sounds good but does not
really suffice to justify full enumerative induction. For (as we will see in sec-
tion 5) there are other learning methods that also achieve almost everywhere
convergence to the truth—some are quite crazy, such as the learning method
that persistently implements counterinduction and switches to full enumera-
tive induction only after observing a white shoe or some other nonraven. So
the “almost everywhere” mode of convergence to the truth, alone, is too weak
to provide a justification for full enumerative induction and against counterin-
duction. Additional modes of convergence are needed to impose a stronger
constraint on good learning methods.

Accordingly, say that a learning method converges to the truth on a max-
imal domain if there exists no learning method that converges to the truth
in the same states and in strictly more states.

A learning method is said to achieve perfectly monotonic convergence
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to the truth if, whenever it outputs one of the competing hypotheses (rather
than suspending judgment), it outputs the truth and will continue to have the
same output regardless of any further data received—it basically halts, just
like an effective problem-solving method as studied in computability theory.

A learning method is said to achieve stable convergence to the truth if,
whenever it outputs a true competing hypothesis, it will continue to have
the same output.9 What if it outputs a falsehood? Stable convergence is
silent about this case. So, to be stable is to be “sort of” monotonic but not
necessarily perfectly so. Plato would probably love stable convergence to the
truth, for it basically requires that, whenever the inquirer forms a belief in
the true competing hypothesis, this belief is not merely a true opinion but has
been “stabilized” or “tethered” to the truth, attaining the epistemic status
that Plato values in Meno.

Finally, by ‘no requirement’ in figure 2, I mean no requirement on how to
converge.

The above finishes the sketch of the three modes of convergence on each of
the two axes in figure 2. So there are nine “combined” modes of convergence
arranged into a two-dimensional lattice structure, in which some modes are
ordered higher than some others. A mode, if ordered higher, is mathematically
stronger; it implies all the modes ordered lower in the lattice. That is math-
ematics. The following is epistemology. I make the evaluative assumption
that:

A mode of convergence to the truth, if ordered higher in the lattice in
figure 2, is a higher epistemic ideal.

In fact, I even think that this assumption is obvious—or will become so after
the definitions involved are rigorously stated and fully understood.10

9Stable convergence to the truth is closely related to some properties that have been
studied in learning theory, such as: Putnam’s (1965) and Schulte’s (1996) “mind-change”;
Kelly and Glymour’s (2004) “retraction”; Kelly, Genin, and Lin’s (2016) “cycle”. But these
properties are defined only in terms of belief change without reference to truth. Stable
convergence to the truth is a variant of the “no U-shaped learning” condition studied in
Carlucci et al. (2005) and Carlucci et al. (2013), where U-shaped learning means the three-
step process of believing in the truth, retracting it later, and then believing in the truth
again.

10You might ask: When we compare two modes that are not ordered in the lattice—such
that neither implies the other—how can we tell which corresponds to a higher epistemic
ideal? This is a substantial issue, but in the present paper I do not need to take a posi-
tion in order to justify full enumerative induction (although I do have an opinion, tending
to think that the consideration about “where to converge” should be prioritized over the
consideration about “how to converge”). See appendix A.5 for an interesting case study on
this issue.
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Figure 4: Modes achievable for the hard raven problem

The first main result is theorem 6.5 together with corollary 6.6, which says
that, for tackling the hard raven problem, the achievable modes of conver-
gence to the truth are the four in the shaded area of figure 4. So the highest
achievable mode is the one marked by a star: “almost everywhere” + “max-
imal domain” + “stable”. Furthermore, the starred mode can be achieved
only by a small range of learning methods: only those that refuse the skeptical
policy, implement full enumerative induction, and never apply counterinduc-
tion. We need all of those three modes of convergence to the truth—“almost
everywhere”, “maximal domain”, and “stable”—to narrow down the range so
much.

According to learning-theoretic epistemology, the right way to justify full
enumerative induction—or at least to justify its use for tackling the hard raven
problem—is the following:

Learning-Theoretic Argument

1. (Evaluative Premise) In the lattice depicted in figure 4, if a mode of
convergence to the truth is ordered higher, it is a higher epistemic ideal.

2. (Evaluative Premise) For tackling an empirical problem, the best
learning methods must at least achieve, of the nine epistemic ideals in
the lattice, the highest achievable one—when such a highest one exists
uniquely. (Achieve the best we can have!)

13



3. (Mathematical Premise) By the theorem reported above and proved
in this paper:

3.1 For tackling the hard raven problem, the achievable modes in that
lattice are the four in the shaded area depicted in figure 4.

3.2 Furthermore, the starred mode is achieved only by learning methods
that implement full enumerative induction rather than counterin-
duction or the skeptical policy.

4. (Evaluative Conclusion) So, the best learning methods for tackling
the hard raven problem must have at least the following properties:

4.1 achieving the starred mode of convergence to the truth, i.e., “almost
everywhere” + “maximal” + “stable” (by 1, 2, and 3.1);

4.2 implementing full enumerative induction, rather than counterinduc-
tion or the skeptical policy (by 3.2 and 4.1).

This argument has a number of features. It is a deductively valid argu-
ment for an evaluative conclusion about induction, only with premises that are
mathematical or evaluative, free from any empirical premise (such as “Nature
is uniform”). So, if it is possible to have a priori justified belief in mathe-
matical and evaluative theses, it is tempting to wonder whether we can have
a priori justified belief in the three premises and, hence, in the conclusion. If
the answer is positive, it is also tempting to wonder whether this argument
replies to any kind of inductive skeptical challenge. Those questions are very
interesting and important, and must be addressed in a follow-up paper.11

To clarify: The above does not mean that convergence to the truth is
all we care about. Feel free to pursue other epistemic ideals in addition to
convergence to the truth, as you see fit. This freedom is explicit in the learning-
theoretic argument; just look for the keyword ‘at least’ in the second premise.

11Those features of the argument—as indicated by italics in this paragraph—are key to
escaping from Hume’s dilemma—or so I argue elsewhere without assuming learning-theoretic
epistemology. The idea is to defend and develop a very general strategy due to Reichenbach
(1938: sec. 39). According to the Reichenbachian strategy, a justification of induction
does not have to be an argument for an empirical thesis about the uniformity of nature
(pace Hume) but can be an argument for an evaluative thesis about how to pursue an
inquiry. I call this the evaluative turn, and believe that it deserves more attention, although
I do not think that Reichenbach’s own implementation of this general strategy is good. A
better implementation is available by going Bayesian or learning-theoretic—or so I argue in
unpublished manuscript Lin (2017) “Hume’s Dilemma and the Evaluative Turn”, available
upon request.
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The achievement of the best achievable mode of convergence to the truth is
great. But it is not claimed to be sufficient for making a best learning method.
It is only claimed to be necessary. Well, this does mean that we should take
convergence to the truth very seriously. After all, if you suspect that your
learning method will not give you the truth even when it is given an infinite
amount of data, why do you want to follow it now?

The second main result is theorem 7.3, and one of its consequences is
that, for tackling any problem, following Ockham’s razor of a certain kind is
necessary for achieving any mode of convergence to the truth that is strong
enough to imply “almost everywhere” + “stable”.12 This kind of Ockham’s
razor says: “Do not accept a competing hypothesis more complicated than
necessary for fitting the data you have”, where a competing hypothesis is
simpler (less complicated) if it is more parsimonious in terms of the capacity
to fit data. In light of this result, a learning-theoretic epistemologist can argue
for the following evaluative thesis:

The best learning methods for tackling a problem P must implement the
kind of Ockham’s razor just mentioned if, with respect to P , the highest
achievable mode of convergence to the truth implies “almost everywhere”
+ “stable”.

The connection between the two main results is that, as we will see, any
instance of counterinductive inference violates that kind of Ockham’s razor.
In fact, the second main result serves as a lemma for proving the most difficult
part of the first main result.

The results sketched above all have Bayesian versions, stated and proved
in this paper. Some Bayesians would not care, but some other Bayesians
would and should, because there is a version of Bayesian epistemology that is
learning-theoretic in nature. To be more precise, consider cognitively idealized
agents—those who have sharp, real-valued degrees of belief in propositions
closed under certain logical connectives (such as ‘and’, ‘or’, ‘not’, and possibly
more). According to Bayesianism, those agents can be epistemically evaluated
as coherent or not. Versions of Bayesianism may differ in terms of what counts
as coherent—that is quite familiar. What is less familiar is that there is a
version of Bayesianism that adds the following:

12This theorem, 7.3, extends and strengthens some aspects of my earlier work on Ockham’s
razor with co-authors (Kelly, Genin, and Lin 2016) in order to cover the hard raven problem
and the like. But this theorem also simplifies and weakens some other aspects in order to
highlight the core idea; in particular, the concept of Ockham’s razor used here is simpler
and weaker (but strong enough for present purposes).
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Learning-Theoretic Bayesianism

1. Cognitively idealized agents can also be evaluated as good or bad agents
for tackling one empirical problem or another.

2. The best cognitively idealized agents for tackling an empirical problem
P must have at least the following properties:

(i) having coherent degrees of belief and a coherent plan for updating
them (presumably, the plan to conditionalize),

(ii) achieving the highest achievable mode of convergence to the truth
(presumably, via conditionalization) with respect to P—if such a
mode exists uniquely.

I call this view learning-theoretic Bayesianism. Clause (i) is a distinctively
Bayesian thesis. Clause (ii) is a learning-theoretic thesis; in fact, it is the
Bayesian version of the second premise in the learning-theoretic argument. The
epistemological idea is still learning-theoretic; it is just that, now, the doxastic
modeling is quantitative rather than qualitative. Learning-theoretic Bayesian-
ism deserves a more precise formulation than provided above—together with
a careful defense. But that has to be reserved for a follow-up paper.13

The above summarizes the main mathematical results and the way they are
used to solve the Cartesian problem of induction, assuming learning-theoretic
epistemology. The rest of this paper is devoted to the mathematical details.

3 Preliminaries: Learning Theory

This section reviews some definitions familiar in formal learning theory.

Definition 3.1. A problem is a triple P =
(
H, E ,S

)
consisting of:

• a hypothesis space H, which is a set of competing hypotheses,

• an evidence space E , which is a set of finite data sequences (e1, . . . , en),

• a state space S, which is a set of possible states of the world taking this
form: (h,~e), where:

- h, called the uniquely true hypothesis in this state, is an element
of H;

13Kelly (1996: ch. 13) is a pioneer of this view.
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- ~e, called the data stream produced in this state, is an infinite
sequence of data, written ~e = (e1, e2, e3, . . .), whose finite initial
segments (e1, . . . , en) are all in E .

The state space S of a problem
(
H, E ,S

)
is meant to capture the presup-

position of that problem in this way: S consists of all possible ways for the
inquiry to unfold indefinitely without violating the presupposition.

Definition 3.2. A learning method for a problem
(
H, E ,S

)
is a function:

M : E → H ∪ {?} ,

where ? represents suspension of judgment. Given each data sequence (e1, . . . , en) ∈
E , the output of M is written as M(e1, . . . , en).

Example 3.3. The hard raven problem poses this question: “Are all ravens
black?” This problem is partially represented by the tree structure in figure 1
and is formally defined as follows.

• The hypothesis space H is {Yes, No}, where:

- Yes means that all ravens are black,

- No means that not all ravens are black.

• The evidence space E consists of all finite sequences of +, 0, and/or -,
where:

- datum + denotes the observation of a black raven;

- datum -, a nonblack raven;

- datum 0, a nonraven.

• The state space S consists of all states in one of the following three
categories:14

(a) the states (Yes, ~e) in which ~e is an infinite +/0 sequence (namely,
an infinite sequence containing only + and 0 observations).

(b) the states (No, ~e) in which ~e is an infinite +/0 sequence.

(c) the states (No, ~e) in which ~e is an infinite +/0/- sequence that con-
tains at least one occurrence of -.

14Well, there is a fourth category: the states (Yes, ~e) in which ~e contains some occurrence
of - (a nonblack raven). But such states are logically impossible, so they need not be
considered.
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The second category (b) contains the states in which there are nonblack ravens
but the inquirer will never observe one, so they are the Cartesian scenarios
of induction.

Example 3.4. The easy raven problem is basically the same as the hard
raven problem except that its state space consists only of the states in cat-
egories (a) and (c), ruling out the Cartesian scenarios of induction. So the
easy raven problem presupposes that the inquirer is not living in a Cartesian
scenario of induction. It poses this question: “Suppose that you are not living
in a Cartesian scenario of induction, then are all ravens black?”

Definition 3.5. Let M be a method for a problem P =
(
H, E ,S

)
. M is said

to converge to the truth in a state (h,~e) ∈ S if

lim
n→∞

M(e1, . . . , en) = h ,

namely, there exists a positive integer k such that, for each n ≥ k, we have
that M(e1, . . . , en) = h. M is said to converge to the truth everywhere for
P =

(
H, E ,S

)
if it converges to the truth in every state contained in S.

Then we have the following negative result:

Proposition 3.6. Although the easy raven problem has a learning method that
converges to the truth everywhere, the hard raven problem does not.

Proof. The first part is a classic, well-known result in learning theory. To prove
the second part, let ~e be an infinite +/0 sequence. Consider state s = (Yes, ~e)
and its Cartesian counterpart s′ = (No, ~e). It suffices to note that, for any
learning method M for the hard raven problem, M converges to the truth in s
iff M fails to do so in s′ (because these two states are, so to speak, empirically
equivalent). So there is no learning for the hard raven problem that converges
to the truth everywhere.

No one can escape such a negative result.15 Bayesians are no exceptions.
The rest of this section is meant to make this clear. (But those who do not
care about Bayesian epistemology can skip).

15The same impossibility result remains even if we resort to partial identification in the
limit, a weakening of identification in the limit due to Osherson et al. (1986), which requires
that, in each possible way for the inquiry to unfold indefinitely, the true hypothesis is output
infinitely often and each false hypothesis is output at most finitely often.
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Definition 3.7. Let a problem P =
(
H, E ,S

)
be given. Subsets of state space

S are called propositions. Hypothesis h ∈ H and data sequence (e1, . . . , en) ∈
E are understood to express the following propositions:

|h| = {(h′, ~e ′) ∈ S : h′ = h};
|(e1, . . . , en)| = {(h′, ~e ′) ∈ S : ~e ′ extends (e1, . . . , en)}.

That is, |h| is the set of states in S that make hypothesis h true, and |(e1, . . . , en)|
is the set of states in S that produce data sequence (e1, . . . , en).16 Let AP de-
note the smallest σ-algebra that contains the above propositions for all h ∈ H
and all (e1, . . . , en) ∈ E . Given a probability function P defined on that algebra,
I will write P(h) as a shorthand for P(|h|). Similarly, I will write P(e1, . . . , en)
and P(h | e1, . . . , en), where the latter stands for conditional probability as de-
fined the standard way.17

Definition 3.8. A probabilistic prior for a problem P =
(
H, E ,S

)
is a

probability function P defined on σ-algebra AP with P(e1, . . . , en) > 0 for each
data stream (e1, . . . , en) ∈ E . P is said to (have its posteriors) converge to
the truth in a state s = (h,~e) ∈ S if

lim
n→∞

P(h | e1, . . . , en) = 1 ,

that is, for any ε > 0, there exists a positive integer k such that, for each n ≥ k,
P(h | e1, . . . , en) > 1 − ε. P is said to converge to the truth everywhere for
problem

(
H, E ,S

)
if it converges to the truth in each state in S.

Proposition 3.9. The hard raven problem has no probabilistic prior that con-
verges to the truth everywhere.

Proof. Copy the proof of proposition 3.6, paste it here, replace ‘learning method’
by ‘probabilistic prior’, and replace ‘M ’ by ‘P’.

4 Preliminaries: Topology

When convergence to the truth cannot be achieved everywhere, let’s see whether
it can be achieve at least almost everywhere. This section provides an expli-
cation of the concept of “almost everywhere”.

16If you like, the concept of problems and other learning-theoretic concepts can be defined
purely in terms of propositions, as done in Baltag et al. (2015) and Kelly et al. (2016).

17Namely, P(A |B) = P(A ∩B)/P(B).
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Let a space X of data streams be given. Choose an arbitrary data stream
~e therein, and take it as the actual data stream to be received incrementally
by the inquirer, as depicted on the lefthand side of figure 3. Consider an
alternative data stream ~e ′ that is identical to ~e up until stage n; namely,
e′i = ei for each i ≤ n but e′n+1 6= en+1. The larger n is, the later the point
of departure is and the more data one needs to distinguish those two data
streams. So, the larger n is, the harder it is to empirically distinguish those
two data streams, and the “closer” ~e ′ is to the actual data stream ~e—“closer”
in an empirical sense. Consider the set of the data streams that are at least
“that close” to ~e:

Nn(~e) = {~e ′ ∈ X : e′i = ei for each i ≤ n}.

Take that as a basic open neighborhood of point ~e in space X, as depicted
on the righthand side of figure 3. Such open neighborhoods provably form a
topological base of X.18

Similarly, given the space |h| of states that make a certain hypothesis h
true, two states in |h| are close (hard to distinguish empirically) iff the data
streams therein are close. So a basic open neighborhood of a state s = (h,~e)
in |h| takes the following form:

Nn

(
(h,~e)

)
= {(h,~e ′) ∈ |h| : e′i = ei for each i ≤ n}

= |h| ∩ |(e1, . . . , en)| .

Such neighborhoods provably form a topological base of |h|, turning |h| into a
topological space. This is the topological base we will use. It is determined by
the empirical distinguishability between states—distinguishability in terms of
(finite) data sequences.

Definition 4.1. Given a problem P =
(
H, E ,S

)
and a hypothesis h ∈ H,

the empirical topological base of |h| is the family of open neighborhoods
constructed above; namely, it is defined as follows:

B|h| =
{
Nn(s) : s ∈ |h| and n ∈ N+

}
=

{
|h| ∩ |(e1, . . . , en)| : (e1, . . . , en) ∈ E

}
r
{
∅
}
.

18Here is the standard definition of topological bases. Given a set X of points, a family
B of subsets of X is called a topological base if (i) every point in X is contained in some
set in B and (ii) for any B1, B2 ∈ B and any point x ∈ B1 ∩ B2, there exists B3 ∈ B such
that x ∈ B3 ⊆ B1 ∩B2.
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I now turn to some concepts borrowed from general topology.

Definition 4.2. Let X be a topological space equipped with a topological
base BX . A negligible (or nowhere dense) region within X is a subset R
of X such that, for each nonempty open neighborhood N ∈ BX , there exists
a nonempty open neighborhood N ′ ∈ BX that is nested within N and disjoint
from R.

A negligible region is like a slice of “hyper” Swiss cheese, incredibly full
of holes: wherever you are in the ambient space X, say point x, and however
small a basic open neighborhood of x is considered, say N , then within N you
can always find an open “hole” N ′ of that slice of Swiss cheese. Here is an
example:

Lemma 4.3. In the hard raven problem, the Cartesian scenarios of induction
(i.e. the states (No, ~e) with ~e being a +/0 sequence) form a negligible region
within the topological space |No|.

Proof. Each nonempty basic open neighborhood in the topological space |No|,
say N = |No| ∩ |(e1, . . . , en)|, includes a nonempty basic open neighborhood,
namely N ′ = |No|∩ |(e1, . . . , en, -)|, which is disjoint from the set of the Carte-
sian scenarios of induction.

With “negligible”, we can define “almost everywhere” and “almost all” the
standard way in topology:

Definition 4.4. Consider a property of points in a topological space X. That
property is said to apply almost everywhere on space X if it applies to all
points in X rX ′, where X ′ is some negligible region within X. In that case,
also say that it applies to almost all points in space X.

See appendix A.1 for a more detailed review of “almost everywhere” in
general topology.19

5 Mode (I): “Almost Everywhere”

The preceding section is purely explicatory: it provides an explication of the
concept of “almost everywhere”, and gives no epistemology at all. Epistemol-
ogy starts from here: using an explication of “almost everywhere” to define
an epistemic ideal and to explore its significance:

19Also see Oxtoby (1996) for an elegant presentation.
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Definition 5.1. A learning method M for a problem P =
(
H, E ,S

)
is said

to converge to the truth almost everywhere if, for each hypothesis h ∈ H,
M converges to the truth in almost all states that make h true—or speaking
geometrically, M converges to the truth almost everywhere on topological
space |h|.

Almost everywhere convergence can be defined in another way. Instead of
requiring convergence to happen almost everywhere on each hypothesis |h| ⊆
S, we can require convergence to happen almost everywhere on the entire state
space S. But we should not choose between those two definitions. To be truly
learning-theoretic, we should view them as two distinct epistemic ideals for us
to strive for where possible. When we can achieve both at the same time, we
should do it.20 It turns out that, if we were to consider both versions of almost
everywhere convergence, the main theorems of this paper would remain the
same.

The above definition makes possible a series of positive results. Here is the
first one:

Proposition 5.2. The hard raven problem has a learning method that con-
verges to the truth almost everywhere.

Proof. By the preceding result, lemma 4.3, the topological space |No| has the
following negligible region:

C = {(No, ~e) : ~e is a +/0 sequence},

which consists of the Cartesian scenarios of induction. So it suffices to an
example of a learning method that converges to the truth in:

- every state in |Yes|,

- every state in |No|r C.

The following learning method does the job:

M∗: “Output hypothesis No if you have observed a nonblack raven (-); oth-
erwise output Yes.”

This finishes the proof.

20I am indebted to Alan Hájek for discussion of this idea.
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Despite the above positive result, there are problems for which it is im-
possible to achieve almost everywhere convergence to the truth. Examples are
provided in appendix A.2; their philosophical implications are briefly discussed
in appendix A.3. The above positive result can be reproduced for Bayesians
as follows.

Definition 5.3. A probabilistic prior P is said to converge to the truth almost
everywhere for a problem P =

(
H, E ,S

)
if, for each hypothesis h ∈ H, P

converges to the truth almost everywhere on topological space |h|.

Proposition 5.4. The hard raven problem has a probabilistic prior that con-
verges to the truth almost everywhere.

Proof. Immediate from theorem 6.8, to be presented and proved below.

Well, the above is only a first step toward justifying full enumerative in-
duction. For there remains a subproblem, which may be called the problem
of counterinduction: Almost everywhere convergence to the truth, alone, is so
liberal that it is witnessed also by some crazy learning methods that apply
counterinduction. Here is an example:

M †: “Output hypothesis No if you have observed a nonblack raven (-) or
everything you have observed is a black raven (+); output Yes if every
raven you have observed is black and you have observed a nonraven (0).”

This method converges to the truth almost everywhere for the hard raven
problem because it converges to the truth in:

- every state in |Yes|r {s},
where s = (Yes, the constant sequence of +),

- every state in |No|r (C r {s′}),
where s′ = (No, the constant sequence of +).

{s} is a negligible region within |Yes|; C r {s′}, within |No|.
The learning method M † defined above applies counterinduction occas-

sionally. It will be ruled out by the modes of convergence to be introduced
below.
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6 Modes (II) and (III): “Stable” and “Maxi-

mal”

Before one’s opinion converges to the truth, it might be false, or it might
be true but to be retracted as data accumulate. But when one’s opinion has
converged to the truth, it is “tied” to the truth and will not “run away”, which
seems epistemically valuable. Plato expresses the same idea in Meno:

True opinions are a fine thing and do all sorts of good so long as they stay
in their place, but they will not stay long. They run away from a man’s
mind; so they are not worth much until you tether them by working
out a reason. ... Once they are tied down, they become knowledge,
and are stable. That is why knowledge is something more valuable than
right opinion. What distinguishes the one from the other is the tether.
(Emphasis mine.)

Hence the following definition:

Definition 6.1. A learning method M is said to have converged to the
truth given the n-th stage of inquiry in a state s = (h,~e) if

M(e1, . . . , ek) = h for each k ≥ n .

With the above concept we can define the following two epistemic ideals:

Definition 6.2. A learning method M for a problem P =
(
H, E ,S

)
is said to

converge to the truth with perfect monotonicity if

in any state s = (h,~e), given any stage n such that M(e1, . . . , en) 6= ?,
M has converged to the truth.

Say that M converges to the truth with stability if the following (weaker)
condition holds:

in any state s = (h,~e), given any stage n such that M(e1, . . . , en) = h
(i.e. the truth in s), M has converged to the truth.

Stable convergence is sort of monotonic but not necessarily perfectly so,
while perfect monotonicity can be very demanding. Indeed, when a learning
method for a problem achieves everywhere convergence to the truth with per-
fect monotonicity, it is basically what a computability theorist would call an
effective procedure for solving that problem.21 That combination of modes,

21Well, ignoring whether the learning method in question is a computable function.
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“everywhere” + “perfectly monotonic”, is a great thing to have where achiev-
able. But it is too high to be achievable for any problem that is inductive in
nature, such as the hard raven problem. In fact, we have a stronger negative
result:

Proposition 6.3. For the hard raven problem, it is impossible to simultane-
ously achieve the following two modes of convergence to the truth: “almost
everywhere” and “perfectly monotonic”.

And the following is the last mode of convergence needed to state the first
main result:

Definition 6.4. A learning method M for a problem is said to converge to
the truth on a maximal domain if there is no learning method for the same
problem that converges to the truth in all states where M does and in strictly
more states.22

Then we have the first main result:

Theorem 6.5. The hard raven problem has a learning method that converges
to the truth (i) almost everywhere, (ii) on a maximal domain, and (iii) with
stability. Every such learning method M has the following properties:

1. M is never counterinductive in that, for any data sequence (e1, . . . , en)
that has not witnessed a nonblack raven, M(e1, . . . , en) 6= No;

2. M is enumeratively inductive in that, for any data stream ~e that
never witnesses a nonblack raven, M(e1, . . . , en) converges to Yes as n→
∞.

The idea that underlies the proof of the above theorem is explained in
appendix B.1, which I have tried to make as instructive as possible. You do
not want to miss it if you are interested in how exactly stable convergence
helps to argue against counterinduction. The proof itself is in appendix B.3.

Corollary 6.6. Consider the modes of convergence to the truth arranged in
the lattice in figure 4. The four modes in the shaded area are exactly those
achievable for the hard raven problem. For a learning method to achieve the
strongest of those four, namely “almost everywhere” + “maximal” + “stable”,
a necessary condition is to implement full enumerative induction, rather than
counterinduction or the skeptical policy.

22I am indebted to Konstantin Genin for bringing this concept to my attention.
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This corollary follows immediately from preceding results: propositions 3.6
and 6.3 and theorem 6.5.

The rest of this section retells the essential part of the above story in
Bayesian terms.

Definition 6.7. Let P be a probabilistic prior for a problem P =
(
H, E ,S

)
.

P is said to have started to stably converge to the truth given stage n in
state s = (h,~e) ∈ S if

1. P(h | e1, . . . , en, . . . , en+i) is monotonically increasing as a function of i
defined on N,

2. P(h | e1, . . . , en, . . . , en+i) converges to 1 as i→∞.

P is said to converge to the truth with stability if, for each hypothesis h ∈ H,
for each state s = (h,~e) ∈ S that makes h true, and for each stage n as a
positive integer, if P(h | e1, . . . , en) > 1/2, then P has started to converge to
the truth given stage n in state s.

Theorem 6.8. The hard raven problem has a probabilistic prior that converges
to the truth (i) almost everywhere, (ii) on a maximal domain, and (iii) with
stability. Every such probabilistic prior P has the following properties:

1. P is never counterinductive in that, for any data sequence (e1, . . . , en)
that has not witnessed a nonblack raven, P(No | e1, . . . , en) ≤ 1/2;

2. P is enumeratively inductive in that, for any data stream ~e that never
witnesses a nonblack raven, P(Yes | e1, . . . , en) converges to 1 as n→∞.

All the results of this section are proved in appendix B.3. The above finishes
the mathematical result employed to justify full enumerative induction. I now
turn to an immediate application: justification of Ockham’s razor.

7 “Almost Everywhere” + “Stable” =⇒ “Ock-

ham”

I have presented a result (corollary 6.6) that can be used to justify a norm
that says when to follow this methodological principle:

Do not accept a counterinductive hypothesis.
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(When? At least when tackling the hard raven problem.) This section presents
a similar result, which can be used to justify a norm that says when to follow
this methodological principle:

Do not accept a hypothesis if it is more
complicated than necessary for fitting data.

This is Ockham’s razor of a certain kind, where a hypothesis is simpler iff it
is parsimonious in terms of the capacity to fit data.

To be more precise:

Definition 7.1. Let a problem P =
(
H, E ,S

)
be given. A data sequence

(e1, . . . , en) and a hypothesis h therein are said to be compatible if the
propositions they express have a nonempty overlap, which also means that
there exists a state in S that makes hypothesis h true and produces data se-
quence (e1, . . . , en). For each hypothesis h ∈ H, let E(h) denote the set of data
sequences in E that are compatible with h (so E(h) captures the data-fitting
capacity of h). The empirical simplicity order, written ≺, is defined on H
as follows: for all hypotheses h and h′ ∈ H,

h ≺ h′ iff E(h) ⊂ E(h′).

Or in words, h is simpler then h′ iff h “fits” strictly less data sequences than
h′ does. Say that h is no more complex than h′ if h′ ⊀ h.

In the hard raven problem, for example, the inductive hypothesis Yes is
simpler than the counterinductive hypothesis No.

Definition 7.2. A learning method M for a problem P =
(
H, E ,S

)
is said to

follow Ockham’s tenacious razor just in case, for each hypothesis h ∈ H
and each data sequence (e1, . . . , en) ∈ E , h is the output of M given (e1, . . . , en)
only if

• (Razor Condition) h is no more complex than any hypothesis in H that
is compatible with (e1, . . . , en);

• (Tenacity Condition) h continues to be the output of M given any data
sequence in E that extends (e1, . . . , en) and is compatible with h.

In other words, a learning method M follows Ockham’s tenacious razor
just in case, whenever M outputs a hypothesis h, h is no more complex than
necessary for fitting the available data and h will continue to be the output
until it is refuted by the accumulated data. In the hard raven problem, to
comply with the razor condition is exactly to be never counterinductive—to
never infer No whenever one has not observed a nonblack raven.

Then we have the second main result:
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Theorem 7.3 (Ockham Stability Theorem). Let M be a learning method for
a problem. Suppose that M converges to the truth almost everywhere. Then
following two conditions are equivalent:

1. M converges to the truth with stability.

2. M follows Ockham’s tenacious razor.

I call it the Ockham stability theorem. I understand its epistemological
significance as follows. Almost everywhere convergence to the truth is a fun-
damental epistemic ideal to strive for whenever it is achievable. Convergence
with stability is also good epistemically, but without almost everywhere con-
vergence, it is not clear what value there is in achieving only stability. So,
almost everywhere convergence first, stable convergence second. Given almost
everywhere convergence, we might want to strive (further) for stable conver-
gence (if that is possible), and to achieve that is exactly to follow Ockham’s
tenacious razor, as stated in the above theorem.

An immediate application of the 1 ⇒ 2 side of the Ockham stability theo-
rem is to prove, as a corollary, the “never be counterinductive” part of theorem
6.5. For, when tackling the hard raven problem, to be never counterinductive
is exactly to comply with the razor condition. So the Ockham stability theo-
rem helps to justify a local norm of Ockham’s razor: Given that an inquirer
tackles the hard raven problem, she ought to always follow Ockham’s tenacious
razor and, hence, never apply counterinduction.

We can use the preceding theorem to justify the use of Ockham’s razor for
tackling other problems, such as curve-fitting problems. See appendix A.4 for
an example.

The rest of this section retells the essential part of the above story in
Bayesian terms.

Definition 7.4. A probabilistic prior P for a problem
(
H, E ,S

)
is said to

follow Ockham’s tenacious razor just in case, for each hypothesis h ∈ H
and each data sequence (e1, . . . , en) ∈ E , P(h | e1, . . . , en) > 1/2 only if

• (Razor Condition) h is no more complex than any hypothesis in H that
is compatible with the given data sequence (e1, . . . , en);

• (Tenacity Condition) for any data sequence (e1, . . . , en, . . . , en+n′) in E
that extends (e1, . . . , en) and is compatible with h, P(h | e1, . . . , en+i) is
monotonically increasing as a function of i ∈ {0, . . . , n′}.

Theorem 7.5 (Ockham Stability Theorem, Bayesian Version). Let P be a
probabilistic prior for a problem that converges to the truth almost everywhere.
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Then, condition 1 below implies condition 2 below (but the converse does not
hold):

1. P converges to the truth with stability.

2. P follows Ockham’s tenacious razor.

Although the converse does not hold,23 we might be able to formulate a
stronger version of tenacity or a weaker version of stability in Bayesian terms in
order to restore the equivalence between conditions 1 and 2. But that will not
be attempted here. For there is no loss in application to epistemology: to jus-
tify Ockham’s razor, what is really needed is just the implication relation from
the epistemic ideal expressed by 1 to the methodological principle expressed
by 2, which shows that the latter is necessary for achieving the former. The
converse does no justificatory work. Showing that Ockham’s razor achieves
an epistemic ideal does not suffice to argue that one has to follow Ockham’s
razor, for there might be other means that also achieves the epistemic ideal.

All the results of this section are proved in appendix B.4.

8 Modes of Convergence to the Truth

Before I conclude, let me situate the present work in a broader context. Here
is a new perspective on learning theory—or perhaps an old perspective that
deserves an explicit formulation and more attention.

1. There are different modes of convergence to the truth, which correspond
to different epistemic, truth-directed ideals for an inquirer to achieve
where possible.

2. Learning theory, as a mathematical theory, is the general theory of var-
ious modes of convergence to the truth (or the correct learning target,
which can be a concept, a function, or a predictive model). So learning
theory has a number of branches, each studying a certain group of modes
of convergence. I can count at least five branches:

(a) Computability theory studies the strongest mode of conver-
gence to the truth, which combines everywhere convergence and
perfectly monotonic convergence.

23Here is the reason why the converse does not hold: the tenacity condition—as defined
in the Bayesian framework—only requires posterior probability to remain the same or go
up as data accumulate, but does not require it to go up high enough to ensure convergence
to 1, let along convergence with stability.
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(b) Formal learning theory in the tradition of Gold (1965) and
Putnam (1965) drops perfect monotonicity and studies everywhere
convergence to the truth.

(c) For statistical problems, everywhere convergence to the truth is
too high to be achievable due to the chancy nature of those prob-
lems. So statistical learning theory (together with asymp-
totic statistics) studies modes of stochastic convergence to the truth.
One example is uniform convergence in probability, which is basi-
cally Valiant’s (1984) PAC (probably approximately correct) learn-
ing criterion. Another example is almost sure convergence. So
statistical learning theory is construed broadly to include at least
the PAC learning theory and part of asymptotic statistics.

(d) For the hard raven problem and the like, everywhere convergence
to the truth is too high to be achievable due to the presence of two
empirically indistinguishable states of the world. So topologi-
cal learning theory, the branch I develop here, studies almost
everywhere convergence to the truth and possibly other modes of
topological convergence.24

(e) Bayesian learning theory studies the Bayesian versions of all
the above modes of convergence.25 Instead of convergence of qual-
itative beliefs to the truth, it studies convergence of probabilistic
belief to full certainty in the truth.26

3. Learning-theoretic epistemology is meant to provide justifications for lo-
cal norms of inductive inference—“local” in the sense of being sensitive
to the problem tackled by the inquirer.27 But the justifications are sys-
tematically based on (i) a system of epistemic values and (ii) a general
epistemic norm. So this epistemology has two parts, one evaluative and
the other normative.

24For example, it is possible to talk about the almost sure convergence of a learning method
with respect to almost all chance distributions, taken as points in a topological space, whose
topology is generated by the total variation metric between chance distributions. That can
be called almost-everywhere almost-sure convergence to the truth, which I conjecture to
be achievable for many causal discovery problems that do not make the causal faithfulness
assumption or the like. This is work in progress.

25For an earlier advocate of learning theory for Bayesian inquirers, see Kelly (1996: chap.
13).

26Where convergence to full certainty in the truth is too demanding, we should see whether
it is possible to achieve at least convergence to high credence in the truth.

27For discussion of this kind of sensitivity, see appendix A.3, which presupposes appendix
A.2.
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(i) The evaluative part determines which mode of convergence to the
truth (or which combination of modes) corresponds to a higher epis-
temic ideal for an inquirer to achieve where possible. The present
paper provides an example, as depicted in the lattice in figure 2.

(ii) The normative part operates with this general guideline: “Look for
what can be achieved; achieve the best you can.” The present paper
provides a case study on the hard raven problem, full enumerative
induction, and Ockham’s razor.

In a nutshell, it is the idea of modes of convergence to the truth that
unifies the many branches of learning theory, together with learning-theoretic
epistemology. And it is from this unificatory perspective that I develop my
solution to the Cartesian problem of induction.

9 Conclusion

For tackling the problem of whether all ravens are black, the highest achievable
epistemic ideal (among the ideals considered in this paper) is the combination
of three modes of convergence to the truth: “almost everywhere” + “maximal
domain” + “stable”, as depicted in the lattice in figure 4. And a necessary
condition for achieving that is to follow full enumerative induction rather than
counterinduction or the skeptical policy.

I believe that learning-theoretic epistemology is a promising approach to
normative studies of inductive inference, but I will have to defend this philo-
sophical claim at greater length in a future work. The goal of this paper is,
instead, to develop a solution to the Cartesian problem of induction, to lay
its logical and mathematical foundation, to help spark the development of
competing solutions for future comparison, and—last but not least—to do all
this from a unificatory perspective on learning theories and learning-theoretic
epistemology, unified by the idea of modes of convergence to the truth.
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A Examples, Discussions, and Open Questions

This section contains materials that might be of interest to some but not all
readers.

A.1 Review of “Almost Everywhere” in Topology

Let X be a topological space (equipped with a distinguished topological base).
Let π be a property that may or may not apply to points in X. The following
conditions are equivalent:

1. π applies to almost all points in X—or speaking geometrically, π applies
almost everywhere on X.

2. Every nonempty (basic) open set of X has a nonempty (basic) open
subset on which π applies everywhere.

3. The set of points to which π applies is comprehensive enough to include
a dense open subset of X.

The equivalence between conditions 1 and 2 is used in some of the proofs in
this paper. Condition 3 emphasizes the fact that “being a dense subset of X”
alone does not suffice for “containing almost all points in X”. For example,
the set of rationals is dense in the set of reals, but the former is too small to
include an open subset of the latter. So the property of being a rational does
not apply almost everywhere on the real line.

Sometimes topologists adopt a more lenient criterion of “almost all”, ac-
cording to which a property π is said to apply to almost all points in X just
in case π applies to all points in X r X ′, where X ′ is a countable union of
negligible (i.e. nowhere dense) subsets of X. This more lenient criterion is
used for proving the well-known theorem that almost all continuous functions
defined on the unit interval are nowhere differentiable.28

The present paper adopts the more stringent criterion of “almost every-
where”, requiring that X ′ be a negligible subset of X. This choice is made

28See Oxtoby (1996).
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for a reason that is both epistemological and exploratory. The more stringent
convergence criterion corresponds to a higher epistemic ideal. I propose to
see whether the higher ideal is achievable for the hard raven problem, and the
answer is positive. If that were too high to be achievable, I would try to see
whether the lower ideal is achievable.

A.2 Too Hard to Achieve “Almost Everywhere”

A problem can be too hard to allow for the achievement of almost everywhere
convergence to the truth. There are multiple ways of generating such prob-
lems. A Cartesian skeptic has one way to offer, making use of two empirically
equivalent hypotheses:

Example A.1. The very hard raven problem poses the following joint
question:

Are all ravens black? If not, will all the ravens observed in the future be
black?

There are three potential answers: Yes, NoYes, and NoNo. Note that NoYes

is a Cartesian skeptical hypothesis, a hypothesis that is akin to (but not as
terrible as) the proposition that one is a brain in a vat. Hypotheses Yes and
NoYes are empirically equivalent—they are compatible with exactly the same
data sequences. This problem can be formally defined as follows:

• the hypothesis space H is {Yes, NoYes, NoNo},

• the evidence space E consists of all finite sequences of +, 0, and/or -,

• the state space S consists of all states in the following three categories:

(a) the states (Yes, ~e) in which ~e is an infinite +/0 sequence,

(b) the states (NoYes, ~e) in which ~e is an infinite +/0 sequence.

(c) the states (NoNo, ~e) in which ~e is an infinite +/0/- sequence that
contains at least one occurrence of -.

Then we have this negative result:

Proposition A.2. For the very hard raven problem, it is impossible to achieve
almost everywhere convergence to the truth.
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Sketch of Proof. Suppose for reductio that some learning method M converges
to the truth almost everywhere for the very hard raven problem. By al-
most everywhere convergence on the space |Yes|, there exists a +/0 sequence
(e1, . . . , en) such thatM converges to the truth everywhere on |Yes|∩|(e1, . . . , en)|.
By almost everywhere convergence on the space |NoYes|, (e1, . . . , en) can be
extended to some +/0 sequence (e1, . . . , en, . . . , e

′
n) such that M converges to

the truth everywhere on |NoYes| ∩ |(e1, . . . , en, . . . , e′n)|. Choose an (infinite)
data stream ~e ∈ |(e1, . . . , en, . . . , e′n)|. So:

(Yes, ~e) ∈ |Yes| ∩ |(e1, . . . , en)| ,
(NoYes, ~e) ∈ |NoYes| ∩ |(e1, . . . , en, . . . , e′n)| .

It follows that M converges to the truth both in state (Yes, ~e) and in state
(NoYes, ~e). But that is impossible because those two states are empirically
indistinguishable and make distinct hypotheses true.

Due to that negative result, learning-theoretic epistemologists make no nor-
mative recommendation as to how to tackle the very hard raven problem. This
raises some philosophical worries and questions, especially about the nature
and purpose of learning-theoretic epistemology—see the next subsection, A.3,
for a short philosophical discussion.

Here I would like to give more examples to show that, to construct a prob-
lem for which almost everywhere convergence is unachievable, it is not neces-
sary to invoke two empirically indistinguishable states, and it is not sufficient
to invoke two empirically equivalent hypotheses.

Example A.3. The cardinality problem poses the following question:

Given that the incoming data stream will be a 0/1 sequence, how many
occurrences of 1 will there be? Zero, one, two, . . . , or infinite?

This problem can be formally defined as follows:

• the hypothesis space H is {0, 1, 2, . . . ,∞},

• the evidence space E consists of all finite sequences of 0 and/or 1,

• the state space S consists of all states of the following form:

- the states (n, ~e) in which n is a natural number and ~e is a 0/1
sequence that contains exactly n occurrences of 1;

- the states (∞, ~e) in which ~e is a 0/1 sequence that contains infinitely
many occurrences of 1.
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In the above problem, any two states are empirically distinguishable, but
we still have the following negative result:

Proposition A.4. For the cardinality problem, it is impossible to achieve
almost everywhere convergence.

Sketch of Proof. Suppose for reductio that there exists a learning method M
that converges to the truth almost everywhere for the cardinality problem. So,
in particular, M converges to the truth ∞ almost everywhere in topological
space |∞|. It follows that, for some finite data sequence σ∗, M converges
to the truth ∞ everywhere on basic open set |∞| ∩ |σ∗|. Let k be the least
hypothesis compatible with σ∗. By the forcing lemma (in appendix B.2), there
exists a data sequence σk that extends σ∗ and is compatible with hypothesis
k such that M(σk) = k. Continue applying the forcing lemma to obtain this
result: for each n ≥ k, data sequence σn is extended into data sequence σn+1

compatible with hypothesis n+1 such that M(σn+1) = n+1. Let σ be the
infinite data sequence that extends σn for all natural numbers n ≥ k. Then it
is not hard to argue that M fails to converge to the truth in state s = (∞, σ).
But this state s is in basic open set |∞| ∩ |σ∗|. Contradiction.

The presence of two empirically equivalent hypotheses, alone, does not
imply the impossibility of achieving almost everywhere convergence. Here is
a counterexample:

Example A.5. The even-vs-odd problem poses the following question:

Given that the incoming data stream will be a 0/1 sequence with finitely
many occurrences of 1, will there be evenly many or oddly many?

This problem can be formally defined as follows:

• the hypothesis space H is {Even, Odd},

• the evidence space E consists of all finite 0/1 sequences,

• the state space S consists of all states of the following form:

- the states (Even, ~e) in which ~e is a 0/1 sequence that contains evenly
many occurrences of 1;

- the states (Odd, ~e) in which ~e is a 0/1 sequence that contains oddly
many occurrence of 1.
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The two competing hypotheses, Even and Odd, are empirically equivalent
because no data sequence refutes one and saves the other. But we still have
the following positive result:

Proposition A.6. For the even-vs-odd problem, it is possible to achieve con-
vergence to the truth everywhere—and, a fortiori, almost everywhere.

Sketch of Proof. Everywhere convergence is achievable for this problem, as
witnessed by this method: “Output Even if you have observed evenly many
occurrences of 1; otherwise output Odd.”

A.3 Sensitivity to the Chosen Set of Hypotheses

It was remarked earlier that, for the very hard raven problem, it is even impos-
sible to achieve almost everywhere convergence. As a consequence, learning-
theoretic epistemologists have been unable to make a normative recommenda-
tion for an inquirer tackling that problem. Let me say why they have nothing
to apologize.

The very hard raven problem embodies not just the philosophical problem
of responding to the inductive skeptic, but also the problem of responding
to the Cartesian skeptic, as highlighted by the two empirically equivalent hy-
potheses put on the table:

• Yes: “Yes, all ravens are black.”

• NoYes: “No, not all ravens are black; and yes, all ravens to be observed
are black.”

Learning-theoretic epistemology is not designed to respond to the Cartesian
skeptic, and we may conjoin it with a good, independent reply to the Cartesian
skeptic. To be sure, learning-theoretic epistemologists can, and should, insist
that when an inquirer tackles the hard raven problem rather than the very
hard one, she ought to be inductive and never be counterinductive, thanks to
the argument and the results provided above.

So learning-theoretic epistemology typically makes a normative recommen-
dation of this form: “If one tackles such and such a problem, one ought to
follow a learning method having such and such properties.” Such a normative
recommendation is sensitive to, or conditional upon, the problem pursued by
the inquirer.

In fact, learning theorists have long recognized that epistemology needs
such sensitivity, for a reason that is not tied to Cartesian skepticism but can
be traced back to the genesis of learning theory. The development of learning
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theory was historically motivated by the observation that it is mathematically
impossible for us learn everything by meeting the epistemic ideal of everywhere
convergence to the truth. That is, it is provably impossible to design a learning
machine that is so powerful as to be capable of convergently solving the “ulti-
mate” problem, the problem that entertains all hypotheses that human beings
can understand (Putnam 1963). The cardinality problem corresponds to one
such example, which makes the point even without invoking two empirically
indistinguishable states or a Cartesian-like demon who is always hiding some
observable items from the inquirer.

Given that it is impossible to design a learning machine for learning every-
thing that one can understand, one has to prioritize certain things to learn.
That is, in a context of inquiry, an inquirer has to identify the hypotheses
whose truth values she really wants to learn, and to pursue the problem con-
sisting of those hypotheses. When she switches to a different context of inquiry,
she might need to reconsider the priority and decide to pursue a different prob-
lem. For example, an inquirer in a philosophy seminar on Cartesian skepticism
might take the very hard raven problem to be of the utmost importance and
decide to pursue it. But when she returns to the laboratory, the only impor-
tant problem to pursue might just be the hard raven problem, rather than
the very hard one. Here I only claim that she might switch that way. As to
whether she ought to switch that way or is at least epistemically permitted to
switch that way, the positive answer has to be defended elsewhere.

To sum up, learning-theoretic epistemologists recognize two groups of im-
portant issues to address:

(Mathematical Issues) What can be learned? Which set of hypotheses
can be learned in the limit? Which problem can be solved with which
combinations of modes of convergence to the truth?

(Normative Issues) One has no alternative but to prioritize certain things
to learn. But which to prioritize? Which hypotheses and which problem
are the things that one really cares about, or ought to care about, in
which context of inquiry, such as a laboratory or a philosophy seminar?

While the mathematical issues have driven the development of learning theory,
learning-theoretic epistemologists still have a lot to do to address the normative
issues.
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A.4 How to Justify Ockham’s Razor: One More Exam-
ple

Here is one more example that illustrates the application of theorem 7.3 to
justification of Ockham’s razor:

Example A.7. Let x and y be real-valued variables, and suppose that y
depends functionally on x. The hard polynomial degree problem poses
the following question:

Given that y is a polynomial function of x, what is the degree of that
polynomial function?

This problem considers “rectangular” data on the x-y plane. A rectangular
datum ei is an open rectangle on the x-y plane that is axis-aligned and has
only rational endpoints. Understand ei to say: “The true polynomial function
passes through rectangle ei.” A (finite or infinite) sequence of such rectangles
is said to be compatible with a polynomial function if that polynomial function
passes through all rectangles therein. This problem can be formally defined as
follows:

• the hypothesis spaceH is the set of possible polynomial degrees, {0, 1, 2, . . .};

• the evidence space E is the set of finite sequences of rectangular data
that are compatible with at least some polynomial function;

• the state space S is the set of states taking the following form:

(d, ~e) ,

where d is a polynomial degree in H and ~e is an infinite sequence of
rectangular data that is compatible with at least one polynomial function
of degree d.

A hypothesis of a lower polynomial degree is simpler:

0 ≺ 1 ≺ 2 ≺ . . . n ≺ n+1 . . .

Here is an example of a learning method that follows Ockham’s tenacious
razor:

M∗
ock “Output degree d whenever d is the lowest polynomial degree that can

fit the data you have (namely, whenever the data sequence you have
is compatible with some polynomial function of degree d but with no
polynomial function of any lower degree).”
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This method never suspends judgment. There are other methods that also fol-
low Ockham’s tenacious razor, and they differ from the previous one by being
less opinionated, willing to suspend judgment occasionally before jumping to
a conclusion.

Before we apply theorem 7.3 to the hard polynomial degree problem, we
have to figure out what can be achieved for that problem:

Proposition A.8. For the hard polynomial degree problem, it is possible to
achieve convergence to the truth almost everywhere with stability on a maximal
domain.

Sketch of Proof. The existential claim is witnessed by the methodM∗
ock defined

above, and can be proved in a way that mimics the proof of the existential
claim of theorem 6.5.

For the hard polynomial problem, is it possible achieve a higher mode,
such as one that implies everywhere convergence or perfectly monotonic con-
vergence? The answer is negative. To secure at least almost everywhere con-
vergence, perfectly monotonic convergence is impossible because the problem
in question is essentially an inductive problem, with a hypothesis that goes be-
yond the logical consequences of data. Everywhere convergence is unachievable
because the state space is liberal enough to allow for two empirically indistin-
guishable states that make distinct hypotheses true. For example, consider a
data stream ~e being so unspecific that it is compatible with some polynomial
function of degree d and also with some other polynomial function of degree
d+1. So there are (at least) two empirically indistinguishable states that make
distinct hypotheses true, namely (d, ~e) and (d+1, ~e). Therefore, this problem
does not have a learning method that converges to the truth everywhere. This
is why it is called a “hard” problem, which suggests that we can obtain an
“easy” version if we are willing to make a sufficiently strong presupposition to
constrain the state space.29

So here is what we have: When tackling the hard polynomial problem, an
inquirer ought to achieve the highest achievable epistemic ideal among those
in the lattice in figure 4, and that is the joint mode of convergence to the
truth “almost everywhere” + “stable” + “maximal”. A necessary condition

29To be more specific, the easy polynomial degree problem is the same as the hard
one except that it has a more constrained state space, in which each state (d, ~e) is required
to be such that its data stream ~e is compatible with exactly one polynomial function and
that unique polynomial function has degree d. For this problem, everywhere convergence to
the truth is achievable.
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for achieving that is to follow Ockham’s tenacious razor, thanks to theorem
7.3. This is why an inquirer tackling the hard polynomial degree problem
ought to follow Ockham’s tenacious razor—or so I submit.

You might wonder whether Ockham’s razor can be justified in a simpler
way than I just did. Suppose that we have proved that a problem P is easy
enough to make it possible to achieve at least “almost everywhere” + “stable”,
setting aside all other modes of convergence. Then it is tempting to quickly
conclude that P ought to be tackled with a method that achieves “almost
everywhere” + “stable”, and then immediately apply theorem 7.3 to conclude
that P ought to be tackled with a method that follows Ockham’s tenacious
razor. It is tempting to do all this and rush to justify Ockham’s razor, without
considering higher epistemic ideals, such as one that adds convergence on a
maximal domain. Is it OK to rush to justify Ockham’s razor that way?

The answer is negative, and it is important to know why:30 Some problems
involve a trade-off between “stable” and “maximal” that forces the inquirer
to sacrifice one in order to secure the other—see appendix A.5 for an exam-
ple. In that case, it may not be immediately clear as to whether the inquirer
should opt for the package “almost everywhere” + “stable” or side with “al-
most everywhere” + “maximal”. Only the former requires following Ockham’s
tenacious razor; the latter does not.

A.5 Trade-off Between “Stable” and “Maximal”

There are situations in which the inquirer is, in a sense, forced to make a
trade-off between two desirable modes of convergence, such as stability and
maximality. Here is an example:

Example A.9. The bounded even-vs-odd problem poses the following
question:31

Given that the incoming data stream will be a 0/1 sequence with at most
two occurrences of 1, will there be evenly or oddly many occurrences of
1?

Then, this problem can be formally defined as follows:

• the hypothesis space H is {Even, Odd},
30The point made in this paragraph is a supplement to the way that I and co-authors

justify Ockham’s razor in Kelly, Genin, and Lin (2016). In that earlier work, the achievability
of “everywhere convergence” plus “cycle-free” (a variant of stability) is taken to be sufficient
for justifying the use of Ockham’s razor.

31I thank Konstantin Genin for bringing this problem to my attention.
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• the evidence space E consists of all finite 0/1 sequences that have at most
two occurrences of 1,

• the state space S consists of all states of the following form:

- the states (Even, ~e) in which ~e is a 0/1 sequence that contains ex-
actly zero or two occurrences of 1;

- the states (Odd, ~e) in which ~e is a 0/1 sequence that contains exactly
one occurrence of 1.

In this problem, Odd is simpler than Even.

Then we have the following trade-off result:

Proposition A.10. Consider the following two modes of convergence:

(1) convergence to the truth with stability,

(2) convergence to the truth on a maximal domain.

For the bounded even-vs-odd problem, each of those modes is achievable, but
they are not jointly achievable.

Sketch of Proof. Everywhere convergence is achievable for this problem, as
witness by this method: “Output Even if you have observed evenly many
occurrences of 1; otherwise output Odd.” As a consequence, convergence on
a maximal domain is equivalent to everywhere convergence. Suppose that
M converges to the truth on a maximal domain. So M converges to the
truth everywhere and, hence, in the states (Even, ~e) with ~e containing no
occurrence of 1. But convergence in those states can be argued to violate the
razor condition in Ockham’s tenacious razor. Then, by the Ockham stability
theorem 7.3, M fails to achieve stable convergence.

Fortunately, for the bounded even-vs-odd problem, the inquirer is forced to
choose between stability and maximality only in a weak sense: she could have
easily fine-grain the hypothesis space and ask instead: “How many occurrences
of 1 will there be? Zero, one, or two?” Call this fine-grained problem the
zero-vs-one-vs-two problem. For this problem, stability and maximality
are jointly achievable together with everywhere convergence. This observation
leads to the following open questions:
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(Open Questions) Are there problems for which it is possible to achieve
stability, possible to achieve maximality, impossible to achieve both si-
multaneously, and even impossible to achieve both no matter how the
hypothesis space is fine-grained? If there are such problems, which mode
of convergence should one sacrifice in exchange for the other?

I tend to think that, in such an unfortunate problem, stability should be
sacrificed in exchange for maximality—in general, the consideration about
“where to converge” should be prioritized over the consideration about “how
to converge”. But this normative claim will have to be defended in another
paper.

B Proofs

B.1 The Idea of Proof of Theorem 6.5

Theorem 6.5 has three parts. The existential claim and the universal claim
about “be enumeratively inductive” are two easier parts. The crucial part is
the universal claim about “never be counterinductive”. The reason why it is
crucial is two-fold: first, it is a very instructive special case of the 1⇒ 2 side
of the Ockham stability theorem 7.3; second, it is a lemma for proving the
part about “be enumeratively inductive”. So let me separate the crucial part
for a closer examination:

Proposition B.1 (Never Be Counterinductive). Let M be a learning method
for the hard raven problem that converges to the truth almost everywhere with
stability. Then M is never counterinductive.

Note that we do not need convergence on a maximal domain here. It will
be convenient to have the following concept:

Definition B.2. Given a problem
(
H, E ,S

)
, a data sequence (e1, . . . , en) ∈ E

is said to be compatible with a hypothesis h ∈ H if the propositions they
express have a nonempty overlap, namely:

|h| ∩ |(e1, . . . , en)| 6= ∅ ,

which also means that (e1, . . . , en) can be extended into a data stream ~e such
that (h,~e) is a state in S.

The proof of the above proposition proceeds as follows. Let M be a learn-
ing method for the hard raven problem that converges to the truth almost
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everywhere. Suppose that M is sometimes counterinductive, namely, for some
+/0 sequence (e1, . . . , en), we have that:

M(e1, . . . , en) = No . (1)

It suffices to show that M fails to converge to the truth with stability. Since
(e1, . . . , en) is a +/0 sequence, it is compatible with Yes. To summarize, we
have had:

• M converges to the truth almost everywhere.

• (e1, . . . , en) is compatible with Yes.

Given these two conditions, we can apply the so-called forcing lemma (to be
stated soon) in order to “force” M to output Yes by extending (e1, . . . , en)
into a certain +/0 sequence (e1, . . . , en, . . . , en′) such that:

M(e1, . . . , en, . . . , en′) = Yes . (2)

Now, choose a state s such that:

s ∈ |No| ∩ |(e1, . . . , en, . . . , en′)| . (3)

We can always make this choice because every data sequence is compatible
with No. By (1)-(3), we have: given the earlier stage n in state s, M outputs
the truth No but fails to have converged to the truth. So M does not converge
to the truth with stability. This finishes the proof of the part “never be
counterinductive” in theorem 6.5—as soon as the forcing lemma is stated and
established.

Let me state the forcing lemma here, remark on its importance, and leave
its proof to appendix B.2:

Lemma (Forcing Lemma). Let
(
H, E ,S

)
be an arbitrary problem. Suppose

that M is a learning method for it that converges to the truth almost every-
where, and that (e1, . . . , en) ∈ E is compatible with h ∈ H. Then the above
data sequence can be extended into a data sequence (e1, . . . , en, . . . , en′) ∈ E
such that:

1. (e1, . . . , en, . . . , en′) is still compatible with h,

2. M(e1, . . . , en, . . . , en′) = h.
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This lemma has a weaker and classic version, which deletes ‘almost’ and applies
only to learning methods that converge to the truth everywhere. The weaker
version has played an important role in proving many results in formal learning
theory. Now, with the forcing lemma strengthened to cover almost everywhere
convergence, many old proof techniques can be carried over to the learning
theory developed here.32 In fact, most of the results of this paper—positive or
negative—are proved with the help of the forcing lemma.

Now let me turn to sketching the proof of the part “be enumeratively
inductive”. Suppose that learning method M converges to the truth almost
everywhere with stability (and we are going to suppose that M converges on a
maximal domain only when we really need to). Then, by the preceding result,
M is never counterinductive, and hence it fails to converge to the truth in every
Cartesian scenario of induction, say (No, ~e), where ~e contains no occurrence of
a nonblack raven. This failure of convergence in the Cartesian state (No, ~e)
opens the possibility for M to converge to the truth in its normal counterpart
(Yes, ~e). To turn this possibility into a reality, it suffices to invoke the last
supposition of the theorem, that M converges to the truth on a maximal
domain. It can be shown that, in order for M to converge to the truth on a
maximal domain, the domain of convergence of M has to be so comprehensive
that it contains all states that make hypothesis Yes true, which implies that
M is enumeratively inductive.

As to the proof of the existential claim, it is almost routine to verify that
it is witnessed by the method M∗ constructed above, which says: “Output
hypothesis No if you have observed a nonblack raven (-); otherwise output
Yes.”

This finishes the proof sketch of theorem 6.5.

B.2 Proof of the Forcing Lemma

The forcing lemma has two versions, one for (qualitative) learning methods
and the other for probabilistic priors.

Lemma B.3 (Forcing Lemma, Qualitative Version). Let
(
H, E ,S

)
be an

arbitrary problem. Suppose that M is a learning method for it that converges
to the truth almost everywhere, and that (e1, . . . , en) ∈ E is compatible with
h ∈ H. Then the above data sequence can be extended into a data sequence
(e1, . . . , en, . . . , en′) ∈ E such that:

32In case you are interested: the forcing lemma can even be strengthened further to apply
to convergence to the truth on a dense set. I wonder whether such a weak convergence
criterion is interesting epistemologically, but I will not address this question here.
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1. (e1, . . . , en, . . . , en′) is still compatible with h,

2. M(e1, . . . , en, . . . , en′) = h.

Proof. Suppose that (e1, . . . , en) is compatible with h. Namely,

|h| ∩ |(e1, . . . , en)|

is a nonempty basic open set of topological space |h|. We are going to make use
of the following characterization of “almost everywhere” in general topology:

A property applies almost everywhere on a topological space (with a
distinguished topological base) if, and only if, each nonempty (basic)
open set U has a nonempty (basic) open subset U ′ such that the property
applies everywhere on U ′.

So, by the “only if” side and the hypothesis that M converges to the truth
almost everywhere, it follows that |h| ∩ |(e1, . . . , en)| has a nonempty basic
open subset:

|h| ∩ |(e1, . . . , en, . . . , ek)|

on which M converges to the truth everywhere. Now, within this nonempty
set, choose an arbitrary state (h,~e). So, in that state, M converges to the
truth. Then there exists a positive integer n′ ≥ k such that M outputs the
truth h given the n′-th stage along data stream ~e. That is:

M(e1, . . . , en, . . . , ek, . . . , en′) = h .

It is not hard to see that the input is still compatible with h.

Lemma B.4 (Forcing Lemma, Bayesian Version). Let
(
H, E ,S

)
be an

arbitrary problem. Suppose that P is a probabilistic prior for it that converges
to the truth almost everywhere, and that (e1, . . . , en) ∈ E is compatible with
h ∈ H. Then the above data sequence can be extended into a data sequence
(e1, . . . , en, . . . , en′) ∈ E such that:

1. (e1, . . . , en, . . . , en′) is still compatible with h,

2. P(h | e1, . . . , en, . . . , en′) > 1/2.

Proof. Copy the proof of the qualitative version of the forcing lemma, and
paste it here. Now, replace the only occurrence ofM(e1, . . . , en, . . . , ek, . . . , en′) =
h by P(h | e1, . . . , en, . . . , ek, . . . , en′) > 1/2. As the last step, replace each oc-
currence of M by P.
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B.3 Proofs for Section 6: Enumerative Induction

The proofs presented in this section rely on the forcing lemma proved in section
B.2.

Proof of Proposition 6.3. Suppose that a learning method M for the hard
raven problem achieves perfectly monotonic convergence. Then M is a “non-
inductive” method in that it never outputs Yes, so it fails to converge to the
truth in every state in |Yes|. So M fails to converge to the truth almost ev-
erywhere in the topological space |Yes|. So M fails to converge to the truth
almost everywhere.

Proof of Theorem 6.5. To establish the existential claim, it suffices to show
that it is witnessed by the learning method M∗ we have discussed: “Output
hypothesis No if you have observed a nonblack raven (-); otherwise output
Yes.” Proposition 5.2 has established that M∗ converges to the truth almost
everywhere. It is routine to verify that M∗ converges to the truth with sta-
bility. To show that M∗ has a maximal domain of convergence, note that it
converges to the truth in all states in |Yes| and in all states in |No| except the
Cartesian scenarios of induction. No learning method converges to the truth
in strictly more states. For to do so is is to converge to the truth both in a
normal state (Yes, ~e) and its Cartesian counterpart (No, ~e), which is impossi-
ble. This establishes maximal convergence for M∗, and finishes the proof of
the existential claim.

To establish the first part of the universal claim “never be counterinduc-
tive”, it suffices to invoke the proof that has already been detailed in appendix
B.1, or simply to note that it is a corollary of theorem 7.3. Note that the proof
relies only on the two modes of convergence to the truth, “almost everywhere”
and “stable”. To establish the second part “be enumeratively inductive”, sup-
pose that M is a learning method for the hard raven problem that converges to
the truth on a maximal domain, and that M is never counterinductive (making
use of the first part). It suffices to show that M is enumeratively inductive, as
follows. Since M is never counterinductive, M fails to converge to the truth
in each Cartesian scenario of induction. So the domain of convergence of M is
included in that of M∗, which has been proved to be a maximal domain of con-
vergence. But M converges on a maximal domain, so M must have the same
domain of convergence as M∗. Then M converges to the truth in every state
(Yes, ~e) contained in |Yes|. It follows that M is enumeratively inductive.

Proof of Theorem 6.8. The proof of the existential claim is the crux, so let
me first present the proof of the easy part, the universal claim. Just copy
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the proof of the universal claim in theorem 6.5 (i.e. the preceding paragraph),
paste it here, and apply the following replacements: First, replace the reference
to theorem 7.3 by the reference to its Bayesian counterpart, theorem 7.5.
Second, replace ‘learning method’ by ‘probabilistic prior’. Third, replace M
by P. As the last step, replace M∗ by P∗, which is the probabilistic prior to
be constructed below for proving the existential claim.

To prove the existential claim, construct a witness P∗ as a linear combina-
tion of two other probabilistic priors:

P∗ =
1

2
P0 +

1

2
P1 ,

where P0 and P1 are defined as follows. Let P0 be the probability function
generated by, so to speak, assuming that Yes is true and observations of +, 0, -
are i.i.d. (independent and identically distributed) random variables, with
equal probability 1/2 for + and for 0, and with probability 0 for -. So:

P0(Yes) = 1 .

P0(e1, . . . , en) =

{(
1
2

)n
if ei 6= - for each i ≤ n,

0 otherwise.

Similarly, let P1 be the probability function generated by, so to speak, assuming
that No is true and observations of +, 0, - are i.i.d. random variables with equal
probability 1/3 for +, for 0, and for -. So:

P1(No) = 1 .

P1(e1, . . . , en) =

(
1

3

)n

.

It suffices to show that P∗, defined as the half-and-half mixture of P0 and P1,
converges to the truth with all the three modes mentioned in the existential
claim. By the construction of P∗, we have:

P∗(Yes) = 1/2 .

P∗(No) = 1/2 .

P∗(e1, . . . , en | Yes) = P0(e1, . . . , en) =

{(
1
2

)n
if ei 6= - for each i ≤ n,

0 otherwise.

P∗(e1, . . . , en | No) = P1(e1, . . . , en) =

(
1

3

)n

.
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Now, calculate conditional probability P∗(Yes | e1, . . . , en) by plugging the above
probability values into the following instance of Bayes’ theorem:

P∗(Yes | e1, . . . , en)

=
P∗(e1, . . . , en | Yes)P∗(Yes)

P∗(e1, . . . , en | Yes)P∗(Yes) + P∗(e1, . . . , en | No)P∗(No)
.

Then we have:

P∗(Yes | e1, . . . , en) =

{
1

1+(2/3)n
if ei 6= - for each i ≤ n,

0 otherwise.
(4)

P∗(No | e1, . . . , en) = 1− P∗(Yes | e1, . . . , en) . (5)

lim
n→∞

1

1 + (2/3)n
= 1 . (6)

By the above three equations, (4)-(6), it follows that P∗ converges to the truth
in all states in |Yes|, and in all states in |No| except the Cartesian scenarios
of induction. But recall that, by lemma 4.3, the set of the Cartesian scenarios
of induction is negligible within the topological space |No|. So P∗ converges to
the truth almost everywhere. Argue for stable convergence by considering the
following two cases.

Case (i): suppose that P∗(Yes | e1, . . . , en) > 1/2 and state s ∈ |Yes| ∩
|(e1, . . . , en)|. So s = (Yes, ~e), where ~e is an infinite +/0 sequence. By equation
(4) and the fact that 1/

(
1 + (2/3)n

)
is a monotonically increasing function of

n that converges to 1 as n→∞, we have: P∗ converges to the truth in s and
P∗(Yes | e1, . . . , en) ≥ P∗(Yes | e1, . . . , en, . . . , en′) for any n′ ≥ n.

Case (ii): suppose that P∗(No | e1, . . . , en) > 1/2 and state s ∈ |No| ∩
|(e1, . . . , en)|. So, by equations (4) and (5), (e1, . . . , en) contains an occurrence
of -. Then s = (No, ~e), where ei = - for some i ≤ n. So P∗(No | e1, . . . , en, . . . , en′) =
1 for all n′ ≥ n. So we have: P∗ converges to the truth in s and P∗(No | e1, . . . , en) ≥
P∗(No | e1, . . . , en, . . . , en′) for any n′ ≥ n.

By the results of cases (i) and (ii), P∗ converges to the truth with stabil-
ity. To establish maximal domain of convergence, suppose for reductio that
there is a probability function P that has a strictly more inclusive domain of
convergence than P∗ does. But P∗ converges to the truth in all states except
the Cartesian scenarios of induction. So P must converge to the truth in a
certain normal state and in its Cartesian counterpart, which is impossible. So
P∗ converges to the truth on a maximal domain.
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B.4 Proofs for Section 7: Ockham’s Razor

The proofs presented in this section rely on the forcing lemma proved in section
B.2.

Proof of Theorem 7.3. Suppose that learning methodM converges to the truth
almost everywhere for problem

(
H, E ,S

)
. To prove the side 1 ⇒ 2 by con-

traposition, suppose that M does not follow Ockham’s tenacious razor. It
suffices to show that M does not converge to the truth with stability. Discuss
the following two exhaustive cases.

Case (i): Suppose thatM violates the tenacity condition. That is, M(e1, . . . , en) =
h and M(e1, . . . , en, . . . , en′) 6= h, where (e1, . . . , en, . . . , en′) is compatible
with h. By that compatibility, choose a state s in the nonempty set |h| ∩
(e1, . . . , en, . . . , en′). It follows that, given stage n in state s, M outputs the
truth h but it has not converged to the truth. So M fails to converge to the
truth with stability.

Case (ii): Suppose that M violates Ockham’s razor. Then M(e1, . . . , en) =
h, for some (e1, . . . , en) ∈ E and some h ∈ H, but there exists another hy-
pothesis h′ ∈ H that is compatible with (e1, . . . , en) and simpler than h. Since
(e1, . . . , en) is compatible with h′, by the forcing lemma B.3 and the almost ev-
erywhere convergence of M , we have: (e1, . . . , en) can be extended into a data
sequence (e1, . . . , en, . . . , en′) ∈ E such that, first, M(e1, . . . , en, . . . , en′) = h′

and, second, (e1, . . . , en, . . . , en′) is compatible with h′. Since (e1, . . . , en, . . . , en′)
is compatible with h′ and since h′ is simpler than h, it follows that (e1, . . . , en, . . . , en′)
is also compatible with h. By that compatibility, choose a state s ∈ |h| ∩
|(e1, . . . , en, . . . , en′)|. So, given the earlier stage n in state s, M outputs the
truth, h, but has not converged to the truth, for M(e1, . . . , en, . . . , en′) 6= h. It
follows that M fails to converge to the truth with stability.

To prove the side 2 ⇒ 1, it suffices to show that the tenacity condition
(alone) implies convergence to the truth with stability. Suppose that M has
the tenacity property, and that M outputs the truth h given stage n in state
s = (h,~e). It suffices to show that M has converged to the truth given the
same stage n in the same state s. Note that, for any natural number i, the
data sequence (e1, . . . , en+i) extends (e1, . . . , en) and is compatible with h. So,
by the tenacity condition, M(e1, . . . , en+i) = h, for all i ≥ 0. It follows that
M has converged to the truth, h, given stage n in state s.

Proof of Theorem 7.5. Copy the proof of the 1 ⇒ 2 side of theorem 7.3, and
paste it here. Then apply the following replacements. For case (i):

• First, replace M(e1, . . . , en) = h and M(e1, . . . , en, . . . , en′) 6= h
by 1/2 < P(h | e1, . . . , en) > P(h | e1, . . . , en, . . . , en′).

51



• And then replace each occurrence of M by P.

For case (ii):

• First, replace M(e1, . . . , en) = h
by P(h | e1, . . . , en) > 1/2.

• Then replace M(e1, . . . , en, . . . , en′) = h′

by P(h′ | e1, . . . , en, . . . , en′) > 1/2.

• Then replace M(e1, . . . , en, . . . , en′) 6= h
by P(h | e1, . . . , en, . . . , en′) 6> 1/2

• And, as the last step, replace each occurrence of M by P.

This finishes the proof of the 1⇒ 2 side.
To prove that the converse 2 ⇒ 1 does not hold, construct a problem

P =
(
H, E ,S

)
as follows. Consider only the following data streams, where m

and n are arbitrary natural numbers:

sω = 0ω .

sm = 0m1ω .

smn = 0m1n2ω .

Their initial segments form the evidence space E . The hypothesis space H
consists of

• h = “The actual sequence will not end with occurrences of 2.”

• h′ = “It will.”

The state space S consists of (h, sω), (h, sm), and (h′, smn), for all natural
numbers m and n. Construct a countably additive probability function P that
assigns the following probabilities to singletons of states:

P{sω} = 0 .

P{sm} =

(
1

2

)m+1

× 60% .

P{smn} =

(
1

2

)m+1

× 40%×
(

1

2

)n+1

.
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Those assignments of probabilities are designed to ensure the following:

P{sm} =

(
1

2

)m+1

× 60% .

P{sm0, sm1, sm2, . . .} =

(
1

2

)m+1

× 40% .

P{sm, sm0, sm1, sm2, . . .} =

(
1

2

)m+1

.

∞∑
m=0

P{sm, sm0, sm1, sm2, . . .} = 1 .

It follows that, for each natural number m, we have:

P(h | 0m) = 60% .

So P fails to converge to the truth H in state 0ω. It is routine to verify that
P converges to the truth in all the other states and, hence, does so almost
everywhere. It is also routine to verify that P follows Ockham’s tenacious
razor. In state (h, sω) and given information 0m, P assigns a probability greater
than 1/2 (namely 60%) to the truth (namely h) but fails to have started to
stably converge to the truth, because it even fails to converge to the truth in
that state. So P fails to converge to the truth with stability. This finishes the
proof.
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