Concept Utility

Abstract

In 2006, the International Astronomical Union revised their concept PLANET, ex-
cluding Pluto where it had before been included. In doing so they insisted that they
had improved their concept by revising it. But what could it mean for a concept to
be improved? Here we draw on the theory of epistemic utility, which explores how
some beliefs are more useful than others, to develop a notion of ‘concept utility’. We
show how the reliability and informativeness of beliefs, two features that contribute to
the utility of a belief, have direct correlates in the concepts that compose our beliefs.
These are how inclusive a concept is, or how many objects in an environment it applies
to, and how homogeneous it is, or how similar the objects that fall under the concept
are. We provide ways to measure these values, and argue that in combination these
measures can provide us with a single measure of concept utility. The resulting notion
of concept utility be used to decide how best to conceptualize an environment, and can
rationalize practices of concept revision.

Introduction

One feature of concepts is that we appear to sometimes discover that we have applied them
mistakenly — that we have extended them to objects they should not be applied to, or failed
to apply them to objects they ought to include. A recent example is a 2006 resolution of
the International Astronomical Union. Although they had up to then extended the concept
PLANET to Pluto, they decided that given an improved understanding of our solar system,
Pluto did not count as a planet after all. It would appear that they found a better way to
employ the concept PLANET. But what could make one application of a concept or set of
concepts better than another?

Here we tackle this question from the perspective of epistemic utility theory, a branch
of epistemology that aims to describe what makes our beliefs useful. In this literature,
two elements of beliefs are widely regarded as fundamental to their utility - namely their
plausibility, or how likely they are to be true, and their informativeness, or how much
they tell us about the world (section 1). We show here that concepts, as the components of
beliefs, have two properties that directly correlate with the plausibility and informativeness
of beliefs, namely their homogeneity and their inclusiveness. We provide measures for these
aspects of concepts, and argue that in combination they allow us to determine a measure of



concept utility (section 2). The resulting account allows us to directly compare the utility
of competing conceptual schemes, and to rationalize practices of concept revision, as we
illustrate by exploring the redefinition of PLANET (section 3).

1 Epistemic Utility

As Huber (2008) discusses, there are two distinct ways of thinking about the utility of
beliefs. On one view, associated with Carnap (1962), a good belief or theory is one that
is likely to be true. On this general approach, it would seem, the measure of utility of a
belief or theory is its plausibility.

If we adopt the standard Bayesian approach to thinking about the plausibility of a
hypothesis, then the plausibility (p) of a hypothesis (H) is simply its probability given
our evidence (E) and our other beliefs (B) about the world. Let us suppose, then, that
p is a measure of the plausibility of any hypothesis, namely of its posterior probability
conditional on the evidence and background beliefs:

p(H) := Pr(H|E A B)

If we take p as an exhaustive measure of the value of any belief, then we should always
prefer to adopt those hypotheses that score highest on this measure, and our task becomes
that of figuring out how to evaluate p for different hypotheses.

However, as Popper (1959), Levi (1967), Maher (1993), and others have argued, plau-
sibility cannot be the sole aspect we are concerned with when we decide what to believe.
If the only measure of the value of a belief were its plausibility, then we would have little
explanation for the kinds of beliefs we are inclined to commit to. Rather than only being
interested in acquiring beliefs that are likely to be true, we are also concerned to acquire
beliefs that are informative — that tell us something substantive about the world by elim-
inating various possibilities. Here is Maher on Cavendish’s evaluation of his experiments
on the weak electromagnetic force:

“Consider the conclusion Cavendish drew from an experiment he conducted in 1773.
The experiment was to determine how the electrostatic force between charged particles
varies with the distance between the particles. Cavendish states his conclusion this way:

We may therefore conclude that the electric attraction and repulsion must be inversely
as some power of the distance between that of the 2+ 1/50th and that of the 2—1/50th,
and there is no reason to think that it differs at all from the inverse duplicate ratio.

This statement indicates that Cavendish accepted He:

(Hc) The electrostatic force falls off as the nth power of the distance, for some n
between 1.98 and 2.02.

Why wouldn’t Cavendish have accepted only a weaker conclusion, for example by
broadening the range of possible values of n, as in H'c:



(H’c) The electrostatic force falls off as the nth power of the distance, for some n
between 1.9 and 2.1.

Or he could have made his conclusion conditional, as in H” ¢:

(H"¢) If the electrostatic force falls off as the nth power of the distance, for some n,
then n is between 1.98 and 2.02.

Both H’c and H”¢ are more probable than the conclusion that Cavendish actually
drew, as are infinitely many other weaker versions of Cavendish’s hypothesis. The
obvious suggestion is that although these weaker hypotheses are more probable than
He, they are also considerably less informative, and that is why Cavendish did not
limit himself to these weaker hypotheses.” (Maher 1993: 139-40)

If our priority in deciding what to believe were to maximize the chances of our having true
beliefs, then we should water down our beliefs so that they were so weak as to be almost
guaranteed to be true. If this were our only concern, indeed, then we should never adopt
any beliefs other than tautologies, which are guaranteed to be true. Since we are interested
in informative propositions, the value of a belief is measured not just by its probability of
being true, but by how much it tells us about the world. We value not just plausibility,
but also informativeness.

How is informativeness measured? One way is to compare hypotheses in terms of the
number of possibilities they exclude. Consider some hypotheses we might form about the
outcome of throwing a die ten times over. The hypothesis that one toss will be an even
number rules out just one alternative possibility — that all tosses will turn up an odd
number — and is not very informative; the hypothesis that there will be a 5 and a 2 rules
out more possible outcomes, and is more informative than the first; the hypothesis that
three tosses will turn up a 6 rules out more possibilities again, and if confirmed would be
again more informative. As we can see, the more possibilities a hypothesis rules out, the
more informative it is.

As a result, informativeness can be measured in the same terms that we used to measure
plausibility. As a hypothesis rules out more and more possibilities, after all, it becomes
less and less plausible given the same evidence. The informativeness of a hypothesis will
therefore co-vary directly with its implausibility given our beliefs and evidence (for various
other ways of thinking of informativeness see Huber 2008). Following Levi (1967), we may
therefore adopt the following measure of informativeness:

i(H):= Pr(—~H|E N B)

Of course informativeness as such cannot be what we are concerned with, since false beliefs
are not useful to us either. It would seem that what we want, ideally, are beliefs that
maximize both plausibility and informativeness (in principle such that i(H) = p(H), but
practically this may not be the case depending on which factor is viewed as more im-
portant). Following Huber (2008), we call this the ‘informativeness-plausibility’ theory of



acceptability. What matters about the theory, however, is that these two ‘virtues’ of belief
push in opposite directions. The more possibilities a belief rules out, the more informative
it has the potential to be. The fewer possibilities a belief rules out, on the other hand,
the more likely it is to be true. And so preferring to adopt hypotheses that are likely to
be true pushes us in the opposite direction of preferring hypotheses that are likely to be
informative.

How do we decide what to believe, then — the more informative, or the more plausible
of our hypotheses? Since we value both, a natural assumption is that we should adopt the
most informative hypothesis that meets our tolerance for plausibility in a given context.
In a scientific context, our demand on plausibility might be very high; while in another
context, it might be much lower. There are doubtless many points of debate and fine-tuning
that could be explored further on this question, but that is not our purpose here (for further
explorations see Levi 1967, Maher 1993, Huber 2008). Rather, we wish to explore, assuming
that something along these lines is right, what follows from these considerations for how
we might think of the utility of the components of our beliefs — our concepts.

2 Concept Utility

Above we considered Cavendish’s hypothesis about the electrostatic force. Let us consider
another example of a scientific hypothesis — Rutz et al.’s (2016) hypothesis about Hawaiian
Crows’ tool-use abilities:

Here we show that [...] the ‘Alala (C. hawaiiensis; Hawaiian crow), is a highly dex-
terous tool user. Although the ‘Alala became extinct in the wild in the early 2000s,
and currently survives only in captivity, at least two lines of evidence suggest that
tool use is part of the species’ natural behavioural repertoire: juveniles develop func-
tional tool use without training, or social input from adults; and proficient tool use is
a species-wide capacity (Rutz et al. 2016: 403).

In this passage, Rutz et al. have committed to the following hypothesis H;:
(Ha) Proficient tool use is a species-wide capacity in the ‘Alala.

This hypothesis, just like Cavendish’s, could be weakened to make it more probable. For
example, given a high probability for Hg;, we get an even higher probability for H:

(H!,) Occasional tool use is a species-wide capacity in the ‘Alala.

Since H,; entails H(’ll, the latter is weaker than the former and therefore more probable
given the same evidence. But of course, since Hy, is stronger than H/,, we should endorse
the former since it is more informative.



But now notice that there is another way of altering the informativeness and plausibility
of the hypothesis — not by altering the strength of the claim made about the members of a
particular class (the ‘Alala ), but by altering the range of the category the claim is made
about. That is, by altering the concept over which we project our inductive generalization.
First, we can see that if the range of the concept over which the generalization is projected
is narrowed, we increase the plausibility of the hypothesis:

(H!,) Proficient Tool use is a capacity to be found in the ‘Alala that took part
in our study.

HY) is weaker than Hy, so it is more plausible given the same evidence. On the other hand
it is less informative, since it tells us nothing about the ‘Alala that did not take part in the
experiment. Since we have no reason to think that ‘Alala vary greatly in their cognitive
abilities, H,; is supported by the evidence to a sufficiently high degree of probability to
accept in a scientific context, and so Rutz et al have no reason to restrict their hypothesis
to H!,.

On the other hand, we could project our generalization over a concept with a greater
range:

(H!) Proficient Tool use is a genus-wide capacity in Corvidae.

! is much stronger than H,. The former entails the latter, and rules out many more

possibilities — it rules out any question over whether Rooks can use tools as well as the
‘Alala , etc. It is clear why Rutz et al. do not embrace H/J: our evidence about the ‘Alala
studied, coupled with our beliefs that not all crow species are cognitively the same gives
Hy; a high probability, but not H!/, which extends the generalization to all crow species.
So while this would be more informative, it would lower the plausibility to a level that we
will not accept in a scientific study.

What this illustrates is that by varying the range of the concept over which an inductive
generalization is made, the informativeness and plausibility of the hypothesis changes.
What exactly is it about the concept that co-varies with these changes?

First, the greater the range or extension of the target-concept, the greater the informa-
tiveness of the hypothesis. H! is extremely informative, because it tells us about all sorts
of different crows — Ravens, Rooks, Jackdaws, Hooded Crows, New Caledonian Crows, etc.
The first aspect of a concept that impacts on its epistemic utility will, then, be how many
things the concept extends to — what we can call its inclusiveness. We define inclusiveness,
then, as the proportion of objects in a taxonomy that a concept extends to (see Appendix
1, Definition 2).! A generalization extended to a highly inclusive concept will be very
informative, and one extended to less inclusive concepts, less informative. This gives us a

first principle of concept utility:

The term “inclusiveness” comes from Rosch et al. 1976, where it is used in that sense, see Corter and
Gluck 1992.



Inclusiveness: The inclusiveness of a concept determines the informativeness of
generalizations made using that concept.

What about plausibility? Clearly, in our example above, the plausibility of the gener-
alizations goes up as the range of things the generalization is extended to narrows. But
why is that? Falling under the concept ‘ALALA, there is a smaller number of birds than
fall under the concept CORVIDAE. But it isn’t simply the cardinality of the category that
has changed it is the amount of variation that exists within the category. In the concept
CORVIDAE there is a great deal of variation — if we discover something about ‘Alala , then
we might doubt whether it will apply to Ravens, since we know that Ravens are different
in many respects from ‘Alala. And while we decrease the variation within a category, the
likelihood of discoveries about one object falling under the concept extending to others
increases. Since all ‘Alala are much more similar than all Corvidae, a discovery about one
‘Alala is more likely to apply to other ‘Alala than other Corvidae.

The second feature of a concept that affects the utility of generalizations involving it
is therefore what we might call its homogeneity. We define homogeneity as the extent to
which members of a concept share features (see Appendix 1, Definitions 3 and 4, for a more
precise definition). This gives us a second principle of concept utility:

Homogeneity: The homogeneity of a concept determines the plausibility of gen-
eralizations made using that concept.

Granted that we value both informativeness and plausibility in our beliefs, similarly we
will value both inclusiveness and homogeneity in our concepts. And just as informativeness
and plausiblity vary in inverse proportion to one another in beliefs, inclusiveness and ho-
mogeneity vary in inverse proportion in concepts (in the same way in which, classically, the
“extension” and “comprehension” of a concept would, see Arnauld & Nicole 1662). Since
we value both informativness and reliability in our beliefs, we value both inclusiveness and
homogeneity in our concepts. And so this leads us to the following definition of concept
utility (see Appendix 1, Definition 5):

Utility: The utility of a concept is the product of its homogeneity and
inclusiveness.

We now propose that this maximizing concept utility as defined here can guide us in both
the determination and revision of a conceptual scheme.

Concept determination concerns the “static” problem of dividing up a set of objects
into various subsets. Given a domain of objects, and a set of relevant features whose
distributions is known relative to those objects, we are interested in partitioning the domain
of objects into various categories relative to those features - ‘determining’ how the domain
should be ‘conceptualized’.



Concept revision on the other hand concerns the “dynamic” problem of revising a
conceptual scheme given new discoveries about an environment. In the next two sections,
we proceed to illustrate both of those aspects, first by looking at some toy examples, and
then at a natural case.

3 Determining and revising a conceptual scheme

Consider a domain consisting of three objects 01-03. Suppose there are three relevant
properties Fi-F3 that are to be taken into consideration when we conceptualize these
objects. The question we are interested in is how the objects are going to be clustered into
distinct categories, relative to that set of properties.

P F F
ool 1 1 1
00| 0 1 1
o5/ 1 0 0

These objects could be anything at all. Various sea creatures, let us suppose, that display
some salient features. Some have a blow-hole (F}); some have a dorsal fin (F3), and some
have teeth (F3). Is there an optimal way to partition this group? We could conceptualize
them as just one kind of thing, grouping all three objects under one concept. Or, we could
think of them as three different kinds of thing — assigning a distinct concept to each object.
Between those two extremes, there are three ways in which we could think of them as two
kinds — grouping together o; and o2 under one concept, and assigning o3 to its own concept
(P21), or grouping together oy and o3 (Pa2), or 01 and o3 (Pa3). In total, we therefore get
five conceptualizations or partitions of the domain, representable as follows:

P1 I 010203

Py 010203
P22 : 01’0203
P23 . 0103‘02
P3 : 01’02‘03

Which one should be adopt? By calculating the twin values we have identified that feed
into the utility of concepts, their inclusiveness and their homogeneity, we can see that one
conceptualization emerges as optimal. In effect, it gives us a way to answer the question
“how many kinds of thing are there?” To introduce our measurements, we will go through
the calculation for one partition by step, and our reasoning should be easy to follow for
subsequent cases.

Consider the partition Py = {C1 = {01,02},C2 = {03}}. What is the utility of this
partition? First we calculate its inclusiveness Incl(Pe1). We compute this as the average



of the inclusiveness of the concepts in the partition - the inclusiveness, again, simply being
the proportion of objects in the domain that the concept extends to. C] includes two of
the three objects in the domain, so it gets a value of inclusiveness of 2/3. Cy includes one
of the three objects, and so it scores 1/3. The average inclusiveness for the two concepts
is 1/2, and so we find that Incl(Py1)=1/2.

Next we calculate the homogeneity Hom(Ps1) of the partition, which we once again
treat as average of the homogeneity of the concepts. A measure of the homogeneity of the
concepts is simply a measure of the extent to which the objects falling under the concept
are similar with respect to the properties that occur in the domain. We measure this as
the proportion of objects within a concept that feature a property or lack it, whichever is
bigger — assuming that having a property is just as much grounds for regarding two things
to be similar as lacking a property. By measuring things in this way, the resulting value
will always be a 1/2 or more. However, the minimal value on a scale of should ideally be
represented as zero, so we rescale the homogeneity values so that 1/2 is represented as 0, 1
is represented as 1, and other values fall in between (this is done by multiplying the value
by (2x-1), see Appendix 1).

Let’s see how this works by evaluating the homogeneity of the the C) with respect to
feature F}. This feature is possessed by exactly one of the objects in Cy but the other lacks
it. We want to say that they have no similarity with respect to F;. And so we take the
proportion of objects that have the feature — 1/2, and rescale it. This gives us a value of 0,
meaning that Hom(C4, F1) = 0. For the second property, Hom(C1, F3) scores 1, since the
property Fs is shared by all objects in C';. And that is the same for F3. The homogeneity
score for C is the average of those three, that is Hom(Cy) = (0+1+1)/3 = 2/3. Cy
consists of only one object, so it is maximally homogeneous relative to each property, and
scores 1.

We can now combine the scores for inclusiveness and homogeneity to find a utility
measure for each concept. For C7 we find: U(C) = 2/3 x 2/3 = 4/9; and for Cy we find:
U(C2) =1 x1/3 =1/3. The average of the two gives us a utility score for this partition,
which is 7/18.

Consider for comparison the partition P; consisting of a single concept C' encompassing
all of the objects. We find that I(C) = 1, Hom(C, F;) = 1/3 for each i, and so Hom(C) =
1/3. From this it follows that U(P;) = U(C) = 1/3. Grouping all three objects together
therefore gets a slightly lower score than splitting them in two. The reason is that although
the inclusiveness of the single concept in P is 1, the homogeneity is just 1/3, because this
single concept now groups together one object that has very little in common with the
other two. Although P51 scores much lower on inclusiveness by splitting the domain into
two concepts, the gain in the homogeneity of the concepts results in it getting a higher
overall score. In fact, P51 beats all of the other partitions:

U(PQQ) < U<P23) < U(Pl) = U(Pg) < U(Pgl)

These results make intuitive sense. P9 scores the lowest, because it groups together two



objects that have no feature in common; P»3 does slightly better by grouping two objects
that have one property in common. P; and P3 are in a tie because they trade off inclusive-
ness for homogeneity and conversely: P; gets the highest score for inclusiveness but the
lowest score for homogeneity by including all objects in a single concept, while P gets a
maximal score for homogeneity but gets the lowest score for inclusiveness, by partitioning
the domain into three concepts.

This shows that when faced with multiple ways of classifying the objects in a domain,
measuring the inclusiveness and homogeneity of different classifications gives us a principled
way to choose between them. And hopefully it is now easy to see that maximizing the
combination of those values we maximize the utility of the beliefs we use these concepts
to form. To see this, suppose for a moment that the objects o1, 09,03 each stand for
populations of, let’s say, 100 objects bearing those properties. Now suppose that you make
a new discovery about one member of the group denoted as 0s. You notice that these
creatures have a pentadactyl bone structure in their fins. To make a prediction about your
environment, you want to project this property onto other members of the group — you form
an expectation about other objects in your environment that they might have pentadactyl
limbs given that the one you have observed has this feature. Over which individuals do
you project this generalization?

This will depend on which conceptualization you have adopted. If you have adopted the
second of the two-concept conceptualizations, you might generalize the discovery over all
the members of the concept to which you have assigned oo. In the case of Ps9, this means
you generalize over other individuals denoted under oy and also those denoted by o3. This
is a relatively informative inference, telling you about 200 creatures. But because under
the second concept in Py you have included creatures that are very dissimilar, failing to
share any properties considered so far, we might expect such an inference not to be very
reliable (see section 2). If we compare the same generalization made in P,;, where the
objects denoted by 0o were grouped together with those of 0; who are much more similar,
your generalization will be far more reliable, but just as informative. And so we can see
how optimizing the product of inclusiveness and homogeneity in the concepts we assign to
a group in turn optimizes the informativeness and reliability of generalizations we might
make in that domain: to optimise the epistemic utility of generalizations we will likely
form over a domain, we must first optimize the utility of the concepts we have used to
conceptualize that domain.

3.1 Revising a Conceptual Scheme

So much for the determination of an original taxonomy. We now consider two ways in
which discoveries about one’s environment can justify the revision of a conceptual scheme.
First, the discovery of new properties in an environment can justify such a revision. This
is intuitive: given closer examination of objects in our environment, we can find out that
objects that appeared closely related at a glance are actually quite different; or we might



find that objects that appeared very different initially turn out to have more in common
than we realized. Given such discoveries, we may find ourselves thinking that we need to
revise our conceptual scheme. Such considerations echo Waismann’s 1945 reflections on
what he called the ‘open texture’ of concepts, which he supposed was needed to accommo-
date the discovery of new features or dimensions. To illustrate how new features can affect
a conceptual scheme, consider what happens if we add two properties, F4 and Fjy, to the
previous matrix:
|F\ F, F3 Fy F;
o | 1 1 1 1 1
oo 0 1 1 0 0
o3 | 1 0 0 1 1

Let’s imagine these newly observed features in our population of sea creatures are skin
color — some are black and white, some are grey; and also feeding habits — some eat krill,
others don’t. While bearing in mind just the original three features, we found that oy and
01 had more in common than either had with o3; but now with these further properties
in mind it turns out that o; and o3 have more in common than either has with oo. This
has a clear impact on the optimality of the competing conceptual schemes. While before
P51 scored highest, now the highest score is attained by Pa3, which groups together objects
01 and o3. The ordering is now: U(Pe3) > U(P21) > U(Pa2). When new properties are
discovered, in other words, the norm of maximizing concept utility can justify revising the
scheme.

The optimality of a taxonomy can also be altered by discovering new objects in a
domain, without discovering any new properties. Consider another object-feature matrix:

Fy F Fs
o1 | 1 1 1
oy | 1 1 1
o3| 1 1 1
04 0 0 1

Here we have found ourselves in an environment with three objects that are identical
with respect to the features Fi-F3, and a fourth that differs from the others with respect
to the first two but is similar with respect to the third. In this case, it might be intuitively
unclear whether to think of these four objects as all being the same kind of thing, in which
case we would group them together under one concept; or as being two different kinds of
thing, grouping the first three together, and separately from the fourth.

First consider the simple partition P; into one concept C; = {01,02,03,04}. One can
check that U(P;) = 2/3. Now consider an alternative partition P, that splits the group
into two - grouping the first three objects together under one concept Co; = {01,092, 03},
and assigning the fourth to its own concept Caa = {04}. The second partition scores
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U(P2) = 1/2, which is less than U(P;) = 2/3. In this case, then, it is optimal to think of
the objects as just one kind of thing: the cost to inclusiveness of splitting the group in two
concepts outweighs the gain in homogeneity.

But now consider what happens if we expand the domain by including more objects,
without adding any new properties:

P Fy F
1

01
02
03
04
04
05
06

OO OO = ==
O OO O = =
— = = = =

This time, U(P2) > U(P1). The utility of the two-concept partition remains at U (Ps) =
1/2, but the utility of the single partition has dropped to U(P,) = 1/3. The reason for this
is that in the original domain, when all the objects are grouped together, three quarters
of the objects in that concept share all their properties. But when the range of objects
increases, if we retain the same criteria for inclusion in the concept, fully half of the objects
are now distinct from the other half with respect to two thirds of the properties. A concept
that was originally quite homogeneous can therefore become lose its homogeneity without
any new properties appearing among its members, but simply because new objects are
discovered that are identical to one of the ‘odd man out’ objects that had been included in
that concept. Changes in the proportion of objects of different kinds within can therefore
motivate revising a conceptual scheme. Next, we turn to the recent revision of the concept
PLANET, and argue that this is exactly what happened in that case.

4 The Case of ‘Planet’

In 2006, the International Astronomical Union formed a committee to resolve a growing
dispute over the meaning of the category PLANET. During the convention of the IAU,
two resolutions were submitted to a vote and adopted, Resolutions B5 and B6. The effect
of these resolutions was to alter the definition of the category PLANET, excluding Pluto
and several other newly discovered celestial objects.

In the work of some philosophers, the decision to no longer call Pluto a planet has
been characterized as a terminological debate. Chalmers (2011), for example, presents the
debate over whether to count Pluto as a planet essentially as a verbal dispute, namely as a
question of language, rather than as a question of fact. Among astronomers, on the other
hand, the case is thought of quite differently: ‘the debate about whether or not Pluto is
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a planet is critical to our understanding of the solar system. It is not semantics. It is
fundamental classification’ (Brown 2010: 232). Our view is that Brown was right — that
the inclusion of Pluto in the category ‘planet’ turned out to be factually incorrect, given
that our goal in conceptualizing an environment is to maximize the utility of the beliefs
we are inclined to form about it. The norms we have set out so far can now be applied to
explain why.

4.1 Rationalizing the revision

The explanatory target before us is to show why it is that before the discovery of the
new objects in the Kuiper Belt that shared properties with Pluto, splitting the category
PLANET into two groups, one including Pluto and one including the other 8 planets, was
not justified; but that once the Kuiper Belt objects were discovered, the move becomes
justified. As we shall see, the measures we have introduced assign a higher utility to keeping
the nine objects within a single category before the discovery, but they assign a higher utility
to splitting the category into two after that discovery. The distinction between planets
and non-planets after 2006 was driven largely by whether an object satisfied a criterion
defined by Stern and Levison (2000), which they call a dynamical criterion — that a planet
is a ‘body in orbit about a star that is dynamically important enough to have cleared
its neighboring planetesimals in a Hubble time’ (Stern and Levison 2002: 4). Stern and
Levison quantified the dynamical criterion in terms of a specific parameter A, whose exact
definition we don’t need to go into here.

To see this, consider Table 1. Here, objects that satisfy Stern and Levison’s criterion or
not are distinguished, by 1 and 0. The first nine listed bodies are the 9 planets according
to the taxonomy received in 2000 since the discovery of Pluto (1930). Underneath are 5
new celestial bodies discovered by Brown and his team between 2000 and 2005, including
Eris. Before the discovery of the five lower objects in the table, the line demarcating the
category PLANET falls below Pluto. With the discovery of those objects, it falls above
Pluto. What justifies restricting the category to above or below that line, before or after
the discovery of the new objects?

First, we can show that relative to the new feature identified by Stern and Levison in
2000, the utility of the partition of the 9 planets into two subcategories was lower than
the utility of maintaining a single category for the 9 bodies. That feature on its own did
not, in other words, justify creating a competing category to PLANET for just the object
Pluto. Assume for simplicity the relevant domain in 2000 to consist of only the first nine
bodies, namely the traditional nine planets (omitting the Sun, satellites, etc). Relative to
that domain, and considering the Stern and Levison criterion A > 1 as the relevant feature
to judge homogeneity, the inclusiveness of a category containing only Pluto would be 1/9
(since it contains only 1 of the 9 objects in the domain) and its homogeneity 1 (since it
is perfectly homogeneous, having only one member). The utility of the category, as the
product of these two, is therefore 1/9. The utility of having a category including the other
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Celestial Body A
Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto (1930)
Quaoar (2002)
Sedna (2003)
Eris (2003)
Orcus (2004)
Makemake (2005)

—_
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Table 1: Satisfaction of Stern and Levison’s criterion A

8 bodies is 8/9 for symmetric reasons. The overall utility of the two categories at this level
is therefore (1/9+8/9)/2 = 1/2. By contrast, consider keeping a single category PLANET
encompassing those nine objects. Its inclusiveness is 1, since it now includes all the objects
in the domain, and its homogeneity relative to the Stern and Levison’s discriminant is
8/9, since 8 out of the 9 objects share the discriminant property. Scaled according to
our algorithm this assigns a homogeneity score of 2 - (8/9) — 1 = 7/9. This means that
even though Pluto is an oddball in terms of the planetary discriminant A, the utility of a
partition splitting Pluto and the other planets into two categories is lower than the utility
of a partition that includes just one category encompassing all nine objects.

Consider now the expanded domain five years later in 2005, when the community’s
attention is drawn to Eris and to the other four Kuiper Belt objects discovered by Brown
and his team. First we can determine the utility of having a partition that includes the old
category PLANET (P) encompassing all the objects including Pluto, and a separate cate-
gory for the new objects, lets call it N. The inclusiveness of P is 9/14, and its homogeneity
again is 7/9. The inclusiveness of the complement category N is 5/14, but its homogeneity
is 1 (they all lack the discriminant). From our definitions, it follows that the utility of P is
1/2 whereas the utility of N is 5/14. The utility of that partition of the domain — keeping
Pluto with the old planets but creating a separate category for the newly discovered objects
— is therefore (1/2+5/14)/2 = 6/14, or 3/7.

On the other hand, contrast that with the partition that groups Pluto with the newly
discovered objects under one category (N) and restricts PLANET to the eight other bodies.
For this partition, Incl(P) = 8/14, and Hom(P) = 1; Incl(N) = 6/14, and Hom(N) = 1.
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So U(P) = 8/14, and U(N) = 6/14, hence the utility of that partition is 1/2, which is
greater than 3/7. In other words, once the new objects are discovered, our measures predict
that there is greater utility to introducing a partition that separates Pluto from the other
traditional 8 planets and groups it with the other objects; whereas before the discovery of
those objects, a single category including Pluto has a higher utility.

In this concrete case we can see that our measures reflect the pattern of decisions as
they in fact have unfolded. First, we can see that the introduction of the Stern Levison
feature was not by itself sufficient to force a revision of the received taxonomy before
the discovery of the new objects — even though Pluto was distinct from the other planet
on this measure. However, once sufficiently many relevant objects had been discovered
relative to that feature, the revision is justified. The case of PLANET therefore follows
the pattern discussed at the end of the last section, where an anomalous subcategory,
when its population grows due to the discovery of new objects rather than properties, can
prompt the revision of the conceptual scheme. Once we understand the relevance of both
homogeneity and inclusiveness to a taxonomy, due to their role in supporting the utility
of the beliefs we are in a position to form using that taxonomy, the decision becomes
transparently justifiable.

Admittedly, our analysis simplifies the complexity of the original case, since many more
features should be taken into account to calculate the utility of those concepts and of the
associated taxonomies (see the discussion in Appendix 2). However, Stern and Levison’s
dynamical criterion is in a sense the main criterion used by the IAU to delineate between
Pluto and the other planets. Similarly, our analysis considerably shrinks the domain of
relevant objects, since by 2000 dozens of so-called Kuiper Belt objects had already been
discovered. If we trust Brown’s testimony, however, it is indeed the discovery of those first
“large” Kuiper belt objects between 2000 and 2005 that gradually put pressure on the old
conceptual scheme, and led to a contraction of the old category PLANET. And so we think
that we have identified the crucial elements of the transition, and the factors that really
lead to the revision of the conceptual scheme.

5 Conclusion

Ordinary practices of concept revision suggest that concepts are the kinds of things that
we can discover we are employing suboptimally. To make sense of this, it is necessary to
have a theory of concept utility - a theory that tells us what an ideal conceptualization of a
domain might be. Standard theories of concepts in philosophy offer no such account. The
current paper rectifies this by offering an account of concept utility grounded in the rich
philosophical notion of epistemic utility, and we believe represents a significant advance in
our understanding of both concepts and the reach of epistemic utility theory.
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Appendix 1

This appendix lays out some definitions intended to make precise the notion of concept
utility. To keep things simple we assume a finite domain D of objects. We regard concepts
as intensional entities, but in what follows, without loss of generality, we handle concepts
extensionally and identify them with subsets of the domain (see Definition 1). We take for
granted the notion of partition (a set of concepts that are mutually exclusive and exhaustive
of the domain). We say that a partition refines another partition if each concept of the
former is a subset of a concept of the latter. Similarly, we take for granted the notion
of a feature, namely a binary property that an object can have or fail to have (see the
Mlustration below).

Definitions

Definition 1. A concept C is a subset of the domain D (i.e. the set of C-objects, or
objects satisfying C').

Definition 2. A conceptual scheme or tazonomy is a finite family (P;)i<m of partitions of
the domain into distinct concepts, such that for each i, the partition P11 is a refinement
of P;. The level k in a taxonomy is the corresponding partition Py.

Definition 3. The inclusiveness of a concept C, noted Incl(C'), is the proportion of objects
of D satisfying C.

Definition 4. The homogeneity of a concept C relative to feature F;, written Hom(C, Fy)
is the proportion of the C-objects positively satisfying feature F;, or the proportion of C-
objects mot satisfying feature F;, whichever is greater, rescaled to a minimum value of .5
and a maximum value of 1 (when the modal proportion is x, the homogeneity is 2x — 1).

Definition 5. The homogeneity of a concept C relative to a finite set of features (F})i<n
(written Hom(C') when feature set is clear from context) is the sum of the homogeneities
of C relative to each feature, divided by the number n of features.

Definition 6. The epistemic utility of a concept relative to a set of features is the product
of its inclusiveness and homogeneity relative to that set, namely:

U(C, (F)i<n) = Incl(C) x Hom(C)

Definition 7. The epistemic utility E of a level within a tazonomy is the average of the
epistemic utilities of concepts at that level.

Definition 8. The epistemic utility of a taxonomy is the sum of the epistemic utilities of
the levels of the partition, divided by the number of levels.
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Remark 1. We could define the epistemic utility of a level to be the product of the average
inclusiveness of concepts at that level by the product of their average homogeneities. How-
ever, that definition appears slightly less natural to us, if indeed epistemic utility is first
attached to concepts.

Remark 2. We could assign different weights to different features. We assume equal
weights in what follows, but the generalization would pose no difficulty.
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